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Abstract: In cooperative adaptive cruise control (CACC), autonomous vehicles are grouped into a
string of platoon and, the main objective is to automatically adapt their speed using on-board sensors
and communication with the preceding vehicle to maintain a desired inter-vehicle distance. Cruise
control is achieved in the presence of parametric uncertainty in the vehicle dynamics using principles of
adaptive control. This work proposes a novel combined CACC strategy for an uncertain homogeneous
platoon with guaranteed parameter convergence and asymptotic string stability. A novel distributed
consensus-based parameter estimator is proposed in conjunction with a model reference adaptive control
(MRAC) algorithm using a direct control-gain update law. The algorithm ensures exponential parameter
estimation error convergence to zero as well as asymptotic convergence of tracking-error to zero.
Conventional CACC protocols require a condition of persistence of excitation (PE) for parameter
convergence, which is required for better transient performance in converging to a string stable
configuration. The PE condition is highly restrictive in the context of cruise control since velocity profiles
which are demanded in the platoon model do not typically satisfy the PE condition. In contrast, the
proposed scheme can ensure parameter convergence under a significantly milder condition, coined as
collective initial excitation (C-IE). The C-IE condition is an extension of the concept of initial excitation
(IE), which is recently proposed in the context of adaptive control of single agent system. Unlike IE,
the C-IE condition caters to distributed estimation in the context of multi-agent systems. As far as the
authors are aware, this is the first work on CACC framework, which ensures exponential convergence
of parameter estimation error of each vehicle under the mild condition of C-IE, which further leads to
asymptotic convergence of the entire vehicle platoon to a string stable configuration. Simulation study
dictates that the proposed CACC architecture outperforms the existing CACC algorithms in terms of
tracking and estimation performance.

Keywords: C-IE, C-PE, CACC, Exponential Plant Parameter Convergence, string stability.

1. INTRODUCTION

Constrained highway capacities lead to traffic congestion,
which is increasing over the years concerning both the number
of traffic congestion and their lengths. An effective scheme
to enhance the road capacity is to maintain the inter-vehicle
distance between individual vehicles in the platoon. To achieve
this cooperative adaptive cruise control (CACC), an improved
version of adaptive cruise control (ACC) (Marsden et al., 2001),
can be employed as an automated vehicle-follower system
based on inter-vehicle wireless communication (Vahidi and Es-
kandarian, 2003; Shladover, 2005).

CACC architectures are better than ACC architectures in terms
of superior string stability properties (Jia et al., 2015). The
concept of string stability is coined in such a way that the
disturbances, which are introduced into a traffic platoon by
emergency braking and accelerating vehicles, will not be am-
plified in the upstream direction. While string stability in ACC
schemes cannot be ensured for inter-vehicle time gaps smaller
than 1 s, CACC is shown to ensure string stability for time gaps
significantly smaller than 1 s (Ploeg et al., 2013). In general,

CACC has various advantages like improved road throughput,
reduced aerodynamic drag, and reduced fuel consumption over
ACC architectures (Van Arem et al., 2006; Shladover, 2005).

Both the schemes ACC and CACC are fundamentally inspired
from classical adaptive control, which is a systematic technique
of simultaneous estimation and control. Since classical adap-
tive control typically suffers from poor transient performance
in the absence of parameter convergence (see [(Narendra and
Annaswamy, 2012), Ch.6]) due to lack of persistence of ex-
citation (PE), similar phenomenon is also observed in ACC
and CACC architectures. The PE condition demands richness
of information content regarding the unknown parameters for
all time-span, which is stringent in nature due to lack of prac-
tical viability and online verifiability (Lorıa, 2004). Hence, a
practical solution to the problem of parameter convergence and
transient response improvement is an active research issue in
adaptive control (Lorıa, 2004; Krstić et al., 1993; Datta and
Ioannou, 1994; Cao and Hovakimyan, 2008). It has been vali-
dated that parameter convergence enhances the overall stability
and robustness properties of the closed-loop adaptive systems
(Lin and Kanellakopoulos, 1998). In cruise control applica-
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tions, where majority of nominal operating conditions demand
a constant speed of the entire vehicle platoon, the PE condition
is certainly not satisfied due to scarcity of consistent variation
(richness) of the measured signals (velocity, acceleration etc.).

In contrast to PE-based results, some recent works (Roy et al.,
2016, 2017a,b; Roy and Bhasin, 2018; Jha et al., 2019, 2018)
have proposed a relaxed condition, called initial excitation (IE),
which is shown to be sufficient for parameter convergence
in the developed composite adaptive control architectures. In
comparison to PE, the IE condition can be checked online (Roy
et al., 2017b). The IE condition is milder than PE since it
requires the excitation/richness of the signal only in the initial
time-window of finite length.

CACC based platooning has a similar analytical structure as
distributed adaptive control of multi-agent systems, where in-
formation is shared via wireless communication using network
graph topology. The work in (Papusha et al., 2014) develops
a collaborative system identification with consensus-based pa-
rameter update law, while proposing a new term called, col-
lective persistence of excitation (C-PE) on the regressor signal
to claim parameter convergence even if no single agent has
PE input. Since it is not practical to achieve PE as well as C-
PE condition in most of the practical scenarios (like CACC,
adaptive coverage control (Schwager et al., 2009) etc.), a fur-
ther relaxed condition C-IE is recently coined (Garg and Roy,
2019) to be sufficient for consensus parameter convergence.
The C-IE condition does not require individual agents to satisfy
the IE condition necessarily; rather the IE condition can be
satisfied cooperatively through information sharing over the
communication graph and it is already been proved that the C-
IE condition is the most relaxed condition in comparison to PE,
IE, and C-PE condition (Garg and Roy, 2019).

The proposed work designs a combined CACC architecture
for uncertain homogeneous vehicle platoon. The term “com-
bined” is borrowed from combined MRAC literature, which
is a combination of direct and indirect MRAC (Narendra and
Annaswamy, 2012). The combined CACC architecture is com-
posed of a distributed parameter estimator of the uncertain
vehicle dynamics parameters and a MRAC control law with a
differential control parameter update routine. The control pa-
rameter estimator uses information from the vehicle dynamics
parameter estimator making the design analogous to combined
MRAC. The distributed parameter estimator of the vehicle dy-
namics is designed based on a two-layer filtering mechanism
(Jha et al., 2019) and a consensus-based component using in-
formation from immediate preceding and following vehicles’
instantaneous estimation. This distributed estimator can ensure
exponentially fast parameter convergence using the newly de-
fined condition of C-IE and thereby relaxes the need for exci-
tation (information content regarding the unknown parameters)
to persist for all time. The C-IE condition implies that the IE
condition is satisfied by all the agents cooperatively instead of
individually. So the information content is distributed among
all the vehicles’ regressors in the initial time-window, which
is strategically captured in the distributed estimator dynamics
leading to parameter convergence. Further the designed MRAC
law along with the distributed estimator ensures asymptotic
convergence of the vehicle platoon to a string stable reference
platoon, thus maintaining smooth and safe operation.

2. PRELIMINARIES

2.1 Signal Excitation Definitions.

This sub-section introduces several excitation definitions, which
are used to claim the parameter convergence properties of the
estimator dynamics.

The extended version of PE condition in multi-agent related
architecture called as collective persistence of excitation (C-
PE), based on (Papusha et al., 2014), is defined as follows.

Definition 1. A set of bounded signals pi(t) ∈ Rn, where
t ∈ [t0,∞), t0 ≥ 0 for all i = 1, ...,n, is collectively persistently
exciting if ∃ T > 0 and γ > 0 such that the following inequality
holds:

t+T∫
t

n

∑
i=1

pi(r)pi(r)T dr ≥ γI, ∀t ≥ t0. (1)

In contrast to C-PE condition, a further slackened condition
collective initial excitation (C-IE), based on (Garg and Roy,
2019), is defined subsequently.

Definition 2. A set of bounded signals pi(t) ∈ Rn, where
t ∈ [t0,∞), t0 ≥ 0 for all i = 1, ...,n, is collectively initially
exciting if ∃ T > 0 and γ > 0 such that the following inequality
holds:

t0+T∫
t0

n

∑
i=1

pi(r)pi(r)T dr ≥ γI (2)

where I denotes the identity matrix of dimension n.

Remark 1. The IE condition requires the excitation/richness
(Roy et al., 2016, 2017a) only in the initial finite time window,
unlike PE, where the excitation is needed for the entire time
span (Tao, 2003). It has been claimed that (Roy et al., 2017a,
2016) the IE condition is less stringent than PE since it is
online verifiable and it does not rely on the future behavior
of the signals. On the other hand, C-PE condition implies that
each regressor signal pi(t) need not be individually PE, rather
the set of signals can collaboratively satisfy the PE condition.
Along the similar idea, the introduced concept of the C-IE
condition shows the possibility of cooperatively satisfying the
IE condition without requiring the individual signals to be IE.
Hence, it can be conclude that the C-IE condition is milder than
PE, C-PE and IE conditions.

Fig. 1. CACC based homogeneous vehicle platoon.

3. MODEL DESCRIPTION

3.1 Model description for Vehicle Platoon architecture.

Consider a homogeneous platoon with n no of vehicles. Fig.1,
shows the platoon where vi(t) ∈ R denotes the velocity (m/s)
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of vehicle i, and di(t) ∈R is the distance (m) between vehicle i
and its preceding vehicle i−1. This distance is measured using
a radar or lidar mounted on the front bumper of each vehicle.
Furthermore, each vehicle in the platoon string can commu-
nicate with its preceding vehicle via wireless communication.
The main task of every vehicle in the platoon, except the Leader
(virtual leader in the proposed model), is to maintain some
desired inter-vehicle distance dr,i(t) ∈ R between itself and its
preceding vehicle. Define the set Sn = {i ∈ N|1 ≤ i ≤ n} with
the index i = O is fixed for the virtual leader. To regulate the
inter-vehicle distance, a constant time headway (CTH) spacing
policy is chosen, which is based on (Rajamani and Zhu, 2002).
The CTH is formulated by defining the dr,i(t) as

dr,i(t) = ri +hvi(t) ∀i ∈ Sn (3)
where ri ∈ R is the standstill distance (meters) and h > 0 is the
time headway (seconds). Hence the spacing error (meters) of
the ith vehicle is defined as

ei(t) =di(t)−dr,i(t)
=(qi−1(t)−qi(t)−Li)− (ri +hvi(t)) ∀i ∈ Sn

(4)

where qi(t) ∈ R and Li ∈ R representing the rear-bumper posi-
tion (m) and length (m) of vehicle i, respectively. The desired
behavior of the string of vehicle platoon is coined in terms
of string stability, which captures the notion of attenuation of
disturbances like emergency braking (Ploeg et al., 2013). An
established definition of string stability is as follows.

Definition 3 (String Stability (Ploeg et al., 2013)). Consider
the acceleration of vehicle i is denoted by ai(t) ∈ R. Then, a
platoon can be considered as string stable if

sup
w
|Xi( jw)|= sup

w

∣∣∣∣∣ ai( jw)
ai−1( jw)

∣∣∣∣∣≤ 1 ∀i ∈ Sn (5)

where ai( jw) is the Laplace transform of the acceleration of
vehicle i.

The dynamics of the ith vehicle is represented by the following
model.(ėi

v̇i
ȧi

)
=

0 −1 −h
0 0 1

0 0 −1
τ

(ei
vi
ai

)
+

(1
0
0

)
vi−1 +

 0
0
Ω

τ

ui ∀i ∈ Sn

(6)
where ui(t) ∈ R is the control input (m/s2) of vehicle i and τ

denotes each vehicle’s unknown driveline time constant (sec-
onds) and Ω denotes the engine’s performance. Engine’s per-
formance is effected by the different type of disturbances such
as wind gust, slope of road, etc. Based on Model (6) proposed
in (Ploeg et al., 2013; Harfouch et al., 2017) and considering the
ideal engine’s performance, the virtual leader vehicle model is
defined as(ėO

v̇O
ȧO

)
=

0 0 0
0 0 1

0 0 − 1
τO

(eO
vO
aO

)
+

 0
0

ΩO

τO

uO (7)

4. CACC FOR UNKNOWN HOMOGENEOUS PLATOON

A CACC architecture is constructed for the homogeneous ve-
hicle platoon in the presence of unknown parameters-vehicle
engine performance and driveline time-constant. The proposed
CACC scheme is composed of a distributed online parameter
estimation algorithm combined with a suitable control law to
ensure closed-loop system stability. The control law has two

components - baseline controller, which is used to ensure string
stability of the nominal model and an MRAC controller to
ensure asymptotic convergence of the uncertain model to the
string stable model.

4.1 Baseline Controller and CACC Reference model.

By considering various baseline conditions such as ideal engine
performance, persistent communication availability between
consecutive vehicles, the authors in (Ploeg et al., 2013) derived
a controller and a spacing policy, which ensures string stability
of the platoon. The CACC baseline controller is defined as

u̇bl,i =
1
h

(
−ubl,i +Kpei +Kd ėi +ubl,i−1

)
, ubl,i(t0) = 0 (8)

where Kp and Kd are the tuning parameters for controller. The
term, ubl,i−1 introduces information from the precedent vehicle
(i− 1), which makes CACC a powerful scheme in contrast to
ACC. Further the control input of the virtual leader is designed
as

u̇O =
1
h
(−uO +ur) (9)

where ur(t) ∈ R is an external input acting as the desired
acceleration (m/s2) of the virtual leader.

To design the adaptive component of the controller based on
MRAC approach, the CACC reference model is defined subse-
quently as provided in (Harfouch et al., 2017).ėi,r

v̇i,r
ȧi,r
u̇i,r


︸ ︷︷ ︸

ẋi,r

=


0 −1 −h 0
0 0 1 0

0 0 − 1
τO

ΩO

τO
Kp

h
−Kd

h
−Kd −

1
h


︸ ︷︷ ︸

Ar

ei,r
vi,r
ai,r
ui,r


︸ ︷︷ ︸

xi,r

+


1 0
0 0
0 0

Kd

h
1
h


︸ ︷︷ ︸

Bw,r

(
vi−1

ubl,i−1

)
︸ ︷︷ ︸

wi

∀i ∈ Sn

(10)

where xi,r(t) ∈ R4 and wi(t) ∈ R2 are ith vehicle’s reference
state vector and input vector, respectively; and Ar ∈ R4×4,
Bw,r ∈ R4×2 are the system matrix and input matrix, respec-
tively. Further, combining (9) with (7), the virtual leader dy-
namics becomeėO

v̇O
ȧO
u̇O


︸ ︷︷ ︸

ẋO

=


0 0 0 0
0 0 1 0

0 0 − 1
τO

ΩO

τO

0 0 0 −1
h


︸ ︷︷ ︸

Alr

eO
vO
aO
uO


︸ ︷︷ ︸

xO

+


0
0
0
1
h


︸ ︷︷ ︸

Blr

ur (11)

It has been proved in (Ploeg et al., 2013) that, the reference
model (10) is asymptotically stable around the equilibrium
point

xi,r,eq = (0 vO 0 0)T , for xO = xi,r,eq and ur = 0 (12)
where vO is a constant velocity, provided that the following
Routh–Hurwitz conditions are satisfied:

h > 0, Kp,Kd > 0, Kd > τOKp. (13)
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To invoke string stability of the CACC reference platoon dy-
namics (10), the following transfer function model is consid-
ered,

Xi(s) =
1

hs+1
∀i ∈ Sn (14)

which satisfies the string stability condition (5) based of Defi-
nition 3 for any h > 0.

4.2 MRAC in conjunction with Baseline Controller.

In this section, CACC reference model (10) will be used to
design the control input ui(t), ∀i ∈ Sn, such that the uncertain
platoon’s dynamics described by (6) and (7) converge to the
string stable nominal dynamics. To achieve this, the baseline
controller is augmented with an adaptive controller as

ui(t) = ubl,i(t)+uad,i(t) ∀i ∈ Sn (15)
where uad,i(t) ∈ R is the adaptive controller to be constructed
subsequently. Now substituting (15) in (6) and exploiting (8),
yields  ėi

v̇i
ȧi

u̇bl,i


︸ ︷︷ ︸

ẋi

=


0 −1 −h 0
0 0 1 0

0 0 −1
τ

Ω

τ
Kp

h
−Kd

h
−Kd −

1
h


︸ ︷︷ ︸

A

 ei
vi
ai

ubl,i


︸ ︷︷ ︸

xi

+


1 0
0 0
0 0

Kd

h
1
h


︸ ︷︷ ︸

Bw

(
vi−1

ubl,i−1

)
︸ ︷︷ ︸

wi

+


0
0
Ω

τ
0


︸ ︷︷ ︸

Bu

uad,i ∀i ∈ Sn

(16)

where xi ∈ R4, A ∈ R4×4, Bu ∈ R4, and uad,i(t) is defined as

uad,i = K̂T xi ∀i ∈ Sn (17)

where K̂(t) ∈ R4.

As compared to conventional CACC architectures (Harfouch
et al., 2017), this work modifies the reference model (10) by
incorporating actual state information in the reference model
dynamics as

ẋi,c = Arxi,c +Bwwi + l
(

xi(t)− xi,c(t)
)
∀i ∈ Sn (18)

where l > 0 is the free design parameter. In (Gibson et al.,
2013), this type of reference model modification is denoted as
closed-loop reference model. The parameter l plays a crucial
role in the proposed CACC architecture as revealed in the
subsequent stability analysis. Moreover, note that if asymptotic
convergence of xi(t) to xi,c(t) is satisfied, xi,c(t) will also
tend to xi,r(t), which implies that the fundamental objective
of following the open-loop string stable model (10) is not
hampered in the proposed closed-loop modification.

To facilitate the design objective of making system (16) respond
as the chosen reference model of (18), the following matching
condition is introduced (Gibson et al., 2013).

Assumption 1. There exist constant matrix K∗ ∈ R4 such that
Ar = A+BuK∗T (19)

The tracking-error (between actual and closed-loop reference
model) is defined as

ζi(t), xi(t)− xi,c(t) ∀i ∈ Sn (20)

using (20), (19), (18), (17), and (16), the tracking-error dynam-
ics ζ̇i(t) can be expressed as

ζ̇i(t) = Arζi− lζi +BuK̃T xi ∀i ∈ Sn (21)

where ζi(t) ∈ R4 and K̃(t) , K̂(t)−K∗. The standard direct
projection based adaptive update law for K̂ inspired from (Gib-
son et al., 2013) is, ˙̂K(t) = Pro jΩ(−Γζ T

i xiBT
u P,K). Since in

present context Bu is unknown, the control parameter update
law is designed as

˙̂K(t) = Pro jΩ(−Γζ
T
i xiB̂T

u P,K) ∀i ∈ Sn (22)
where Γ > 0 and P = PT ∈R4×4 is positive definite solution of
following algebraic Lyapunov equation

Ar
T P+PAr =−Q (23)

where Q ∈ R4×4 is a chosen positive definite matrix.

The quantity B̂u(t) is an online estimate of the unknown input
matrix. The following subsection develops the distributed pla-
toon parameter estimator, which supplies B̂u(t) for the control
parameter update.

4.3 Online Identification for unknown platoon Parameters

From the structure of (16), it can be conclude that the dynamics

ȧi =−
1
τ

ai +
Ω

τ
ubl,i +

Ω

τ
uad,i ∀i ∈ Sn (24)

only makes (16) uncertain, otherwise, all other parameters are
known. Hence taking advantage of that structure, the linear
parameterization of (24) is obtained as

ȧi = [−ai ui]

 1
τ
Ω

τ

= yT
i (ai,ui)θ ∀i ∈ Sn (25)

where yi(ai,ui) ∈ R2 is the known regressor and θ ∈ R2 is the
unknown platoon parameter needs to be estimated.

Assumption 2. ||θ ||< δ1, for some known constant δ1 > 0.

To handle the unavailability of the acceleration measurement
ȧi(t), the following filter equations are designed as

żi =−kzi + yi, zi(t0) = 0 ∀i ∈ Sn (26)
ġi =−kgi + ȧi, gi(t0) = 0 ∀i ∈ Sn (27)

where zi(t) ∈ R2 denotes the filtered regressor matrix and
gi(t) ∈R denotes the filtered version of ȧi(t) and k is a positive
scalar introduced to stabilize the above filter equations.

Analytically solving (26) and (27) and utilizing (25), the fol-
lowing relation can be deduced.

gi(t) = zT
i (t)θ ∀i ∈ Sn (28)

From (27), gi(t) cannot be explicitly computed since ȧi(t) is
unknown. However, after analytically solving (27) and applying
the by parts rule of integration, it can be shown that

gi(t) = ai(t)− e−ktai(t0)− khi(t), ai(t0) = 0 ∀i ∈ Sn (29)
where hi(t)∈R is the output of the subsequently designed filter
dynamics.

ḣi =−khi +ai, hi(t0) = 0 ∀i ∈ Sn (30)
Since ai(t) is measurable, (29) and (30) can be utilized to
obtain gi(t) online. Hence, it can be argued that the above filter
equations (26) and (27) converts the differential equation in (25)
to an algebraic one in (28), leading to the omission of ȧi(t)
information. A gradient-based law using (28) can be designed
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to estimate the system parameter θ ∀i ∈ Sn. However, this type
of law requires the stringent PE condition on zi(t) for parameter
convergence (Narendra and Annaswamy, 2012). To overcome
this restriction, another pair of projection-based integral law is
introduced, inspired by (Basu Roy et al., 2018).

Ṁi = pro j(zizT
i ), Mi(t0) = 0 ∀i ∈ Sn (31)

ẇi = pro j(zigi), wi(t0) = 0 ∀i ∈ Sn (32)
where the square matrix Mi(t) ∈ R2×2 denotes the integrated
filtered regressor and wi(t)∈R2 can be thought of as integrated
filtered version of ȧi (although dimensionally wi is different
from ȧi). Unlike (Adetola and Guay, 2008; Roy et al., 2016), the
use of pro j(.) (Basu Roy et al., 2018), which denotes projection
operator, restrict the variables Mi(t) and wi(t) within a compact
set.

Preposition 1. Integrating (31) and (32) and using (28), it can
be shown that

wi(t) = Mi(t)θ , ∀t ≥ t0 ∀i ∈ Sn (33)

Proof. For proof refer the (Basu Roy et al., 2018).

The matrices Mi(t)’s have the following properties:

Property 1: Mi(t) is a positive semi-definite function of time i.e.
Mi(t)≥ 0, ∀t ≥ t0.

Property 2: Mi(t) is a non-decreasing function of time in the
sense of matrix inequality i.e. Mi(t2)≥Mi(t1) for t2 > t1.

By exploiting these two properties and above filtering and
pro j(.) based arguments, a novel distributed consensus-based
parameter estimation law is proposed as follows (Garg and Roy,
2019).

˙̂
θi(t) = kθ zi(gi− zT

i θ̂i)︸ ︷︷ ︸
P

+Γθ (wi−Miθ̂i)︸ ︷︷ ︸
I

+ ∑
j∈Ni

(θ̂ j− θ̂i)︸ ︷︷ ︸
C

(34)

where θ̂i(t) ∈ R2 is an online estimate of the unknown platoon
parameter vector θ ∀i ∈ Sn, and kθ > 0 and Γθ > 0 are two
positive scalar gains used to tune the rate of convergence and
the neighbors sets are defined as N1 = {2},Ni = {(i− 1),(i+
1)},∀i = 2,3, ..,n− 1,Nn = {n− 1}. Here, the first term P
of (34) is a proportional-like component, the component I is
an integral-like term and the last term C is a term based on
the neighbor’s current estimates according to chosen network
topology. Together I and C circumvents the C-PE restriction
and leads to parameter convergence under the C-IE condition
as revealed subsequently.

Assumption 3. The set of filtered regressors zi(t), ∀i ∈ Sn,
satisfy the C-IE condition as per Definition 2.

4.4 Compact representation for parameter estimation error
dynamics

The parameter estimation error dynamics for all the n no of
unknown follower vehicles in the platoon can be compactly
represented as

∆θ̇ =−(L⊗ I2)∆θ − kθ Φ(t)∆θ −Γθ ΦI(t)∆θ (35)
where L ∈ Rn×n denotes the laplacian matrix, which is used
to represent the estimation information sharing phenomena
over the given network topology as in (Garg and Roy, 2019),
⊗ denotes the kronecker product and I2 ∈ R2×2 is the iden-
tity matrix, column vectors θ̂ = [θ̂1, ..., θ̂n]

T ∈ Rn2 and ∆θ =

[∆θ1, ...,∆θn]
T ∈ Rn2 by stacking the components θ̂i ∈ R2 and

∆θi = θ̂i−θ ∈R2, ∀i ∈ Sn. And Φ(t),ΦI(t) ∈Rn2×n2 are block
diagonal matrices, which are defined as

Φ(t) =

z1zT
1 . . . 0

...
. . .

...
0 . . . znzT

n


and

ΦI(t) =

pro j(z1(r)zT
1 (r)) . . . 0

...
. . .

...
0 . . . pro j(zn(r)zT

n (r))

 .
Theorem 1. The origin of the estimation error dynamics (35)
is Lyapunov stable, in addition if the Assumption 3 is satisfied,
then ||∆θ(t)|| exponentially converges to zero for t ≥ t0+T i.e.,

||∆θ(t)|| ≤ γ1e−γ2t , t ≥ t0 +T (36)
for some positive scalars γ1 and γ2.

Proof. Consider the following Lyapunov candidate

V (∆θ) =
1
2

∆θ
T

∆θ (37)

Taking the time derivative of (37) along the dynamics (35)
yields

V̇ (∆θ) =−∆θ
T
(
(L⊗ I2)+ kθ Φ(t)+Γθ ΦI(t)

)
∆θ ≤ 0 (38)

which implies V (∆θ) ∈ L∞ and it is non-increasing in time
∀t ≥ t0, i.e., the origin of the dynamics of ∆θ(t) is Lyapunov
stable.

Let’s assume the matrix J(t), which is defined as

J(t), (L⊗ I2)+ΦI(t), (L⊗ I2)+ pro j(Φ(t)) (39)
then by referring the proof of Theorem 1 from (Garg and Roy,
2019), it can be concluded that J(t0 +T )> 0, ∀t ≥ t0 +T.

Hence, (38) can be upper bounded as

V̇ (∆θ)≤−∆θ
T J(t)∆θ ≤−λmin(J(t))||∆θ ||2 (40)

using the same argument as in property 2, J(t)≥ J(t0 +T )> 0
∀t ≥ t0 +T , which implies that λmin(J(t)) ≥ c > 0, where the
λmin is the minimum eigen value of matrix J(t) and c is positive
real constant.

Using (37), (40) can be expressed as
V̇ (∆θ)≤−2cV (∆θ), ∀t ≥ t0 +T (41)

This differential inequality leads to the following exponentially
convergent bound on V (∆θ)

V (∆θ(t))≤V (∆θ(t0 +T ))e−2c(t−t0−T ), ∀t ≥ t0 +T (42)

From (37), ||∆θ(t)||=
√

2V (∆θ(t)), which implies that ||∆θ(t)||
is exponentially convergent to zero for t ≥ t0 + T , i.e., (36)
holds true. Since V (∆θ(t)) in (37) is radially unbounded, the
mentioned result is globally valid.

Remark 3. From classical control literature, it is well estab-
lished that an integral action in conjunction with a proportional
control improves the steady-state accuracy. Motivated by the
power of integral action, the integral-like component I is intro-
duced in the update law, which reduces the steady state param-
eter estimation error. In fact, the integral term in conjunction
with the cooperative term C circumvents the restrictive C-PE
condition for parameter convergence, while requiring a milder
condition of C-IE.
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5. TRACKING-ERROR STABILITY/CONVERGENCE
ANALYSIS

The tracking-error dynamics ζ (t) for all n no of vehicles in the
platoon are compactly represented as

ζ̇ (t) =
(

In⊗ (Ar− lIn)
)

ζ (t)+(1T
n ⊗Bu)K̃T (t)x(t) (43)

where ζ (t)∈Rn4, x(t)∈Rn4, K̃(t)∈Rn4 and 1n = {1, ......,1}∈
R1×n.

The compact representation for K̂ dynamics from (22) is given
as

˙̂K(t) = Pro jΩ(−Γ(1n⊗ B̂T
u )(In⊗P)ζ xT ,K) (44)

where the Proj operator in (44) ensures that K̂(t) remains within
a compact set for all time (Lavretsky and Wise, 2013).
Theorem 2. For the system (16) along with control input (17)
with the parameter update laws (35) and (44), the overall error
dynamics η(t) = [ζ T (t),∆θ T (t), K̃T (t)]T is Lyapunov stable
∀t ≥ t0 + T , provided Assumption 3 holds. In addition, the
tracking-error ζ (t) tends to zero asymptotically with asymp-
totic string stability i.e., limt→∞[xi(t)− xi,r(t)] = 0, ∀i ∈ Sn.

Proof. Consider the following Lyapunov candidate.

V =
1
2

ζ
T (In⊗P)ζ +

1
2

Tr(K̃T
Γ
−1K̃)

+
1
2

∆θ
T

∆θ

(45)

Taking the time derivative of (45) along the system trajectories,
yields

V̇ =
1
2

ζ
T (In⊗P)ζ̇ +

1
2

ζ̇
T (In⊗P)ζ +Tr(K̃T

Γ
−1 ˙̃K)

+∆θ
T

∆θ̇

(46)

after putting (43), (44) and using the compact representation of
Lyapunov equation (23) and resulting argument from proof of
Theorem 1, the relation in (45) can be modified as

V̇ ≤−1
2

ζ
T (In⊗Q)ζ − lζ T (In⊗P)ζ − k1||∆θ ||2

+ζ
T (In⊗P)(1T

n ⊗ B̃u)K̃T x ∀t ≥ t0 +T
(47)

where k1 is the λmin(J(t0+T )) and the inequality is due to (44).
Further (47) can be upper-bound as

V̇ ≤−1
2

λmin(In⊗Q)||ζ ||22− lλmin(In⊗P)||ζ ||22
− k1||∆θ ||22 +ζ

T (In⊗P)(1T
n ⊗ B̃u)K̃T x ∀t ≥ t0 +T

(48)

where λmin(·) is the minimum eigen value of the specified ma-
trix. From (20), (44) and by considering the proof of Theorem
1, (48) can be further modified as

V̇ ≤−1
2

λmin(In⊗Q)||ζ ||22− lλmin(In⊗P)||ζ ||22
− k1||∆θ ||22 + ||(In⊗P)||F ||∆θ ||2||K̃T ||2||ζ ||22
+ ||(In⊗P)||F ||∆θ ||2||K̃T ||2||ζ ||2||xi,c||2 ∀t ≥ t0 +T

(49)
where || · ||F denotes the Forbenious norm of a matrix and || · ||2
denotes the 2-norm, which is used for vectors.

Since ||In⊗P||F ∈ L∞, ||∆θ ||2 ∈ L∞ based on proof of The-
orem 1 and ||K̃||2 ∈ L∞ using pro j(.) operator, (49) can be
restructured as

V̇ ≤−1
2

λmin(In⊗Q)||ζ ||22− lλmin(In⊗P)||ζ ||22
− k1||∆θ ||22 +δ3||∆θ ||2||ζ ||22 +δ4||∆θ ||2||ζ ||2 ∀t ≥ t0 +T

(50)

where δ3,δ4 > 0. If the tracking-error ζ (t) fulfills the following
condition

||ζ ||2 ≤
m−δ4

δ3
(51)

where m > δ4, the following inequality can be written.

δ3||ζ ||22 +δ4||ζ ||2 ≤ m||ζ ||2. (52)
Hence, based on (52), inequality (50) can be further simplified
as

V̇ ≤−1
2

λmin(In⊗Q)||ζ ||22− lλmin(In⊗P)||ζ ||22
+m||ζ ||2||∆θ ||2− k1||∆θ ||22 ∀t ≥ t0 +T

(53)

It can be deduced that if the subsequent gain condition

k1 >
m2

4lλmin(In⊗P)
(54)

is satisfied, then V̇ is negative semidefinite. Therefore, V (t) ∈
L∞ which imply that the overall error dynamics η(t) ∈ L∞.
Further, the tracking-error ζ (t) can be upper-bounded by the
following inequality

||ζ (t)|| ≤

√
2V (t)

Λmin(In⊗P)
∀t ≥ t0. (55)

Since V̇ ≤ 0, ∀t ≥ t0, the inequality in (55) can be alternatively
expressed as

||ζ (t)|| ≤

√
2V (t0 +T )

Λmin(In⊗P)
∀t ≥ t0 +T. (56)

The Lyapunov function V (t) can be further upper-bounded as

V (t)≤ 1
2

(
λmax(In⊗P)||ζ (t)||22 +λ

−1
min(Γ)||K̃

T (t)||2

+ ||∆θ(t)||22
)
∀t ≥ t0.

(57)

Selecting ||θ̂(0)|| ≤ δ1 and considering assumption 2, it can be
claimed that

||∆θ(t)|| ≤ 2δ1 ∀t ≥ t0. (58)
Therefore, using (57), (58) and (44), an upper bound of ζ (t)
can be calculated analytically from (56) as

ζ (t)≤

√
λmax(In⊗P)||ζ (t0 +T )||22 +2λ

−1
min(Γ)δ

2
2 +2δ 2

1
λmin(In⊗P)︸ ︷︷ ︸

ν

∀t ≥ t0 +T.
(59)

Where δ2 is the upper bound K̃(t), based on pro j operator.
Since the stability proof requires (51) to be satisfied, it implies
that the error bound ν should be less than m−δ4

δ3
. Thus, m is

chosen in such a way that, it should satisfying the following
inequality

m > δ4 +δ3ν (60)
where a crude estimate of ν is utilized using ζ (t0). The choice
of m, which satisfies (60) is finally used in (50) to derive the
sufficient gain condition for Lyapunov stability. Furhter using
Barbalat’s Lemma (Slotine et al., 1991) on (53), it can be con-
clude that the tracking-error ζ (t) is asymptotically converging
to zero.

Remark 4. Since the actual system (16) is a linear system
with right hand side to be globally Lipschitz, using Global
Existence and Uniqueness Theorem (Slotine et al., 1991), it can
be claimed that the system dynamics will remain bounded in
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the initial time-window [t0, t0 + T ). Moreover, note that there
is a crucial difference between the gain condition (54) and a
similar gain condition obtained in (Roy et al., 2017a) for a
single agent linear MRAC problem. Unlike Roy et al. (2017a),
the gain condition is shared between l and k1. Hence, due to
the introduction of closed-loop reference model, the burden of
gain condition is divided between the closed-loop gain l and the
distributed estimator gain k1.

6. SIMULATION RESULTS

The proposed algorithm is simulated by considering the proto-
col as in Fig.1, where 3 unknown homogeneous vehicles are
forming a vehicle platoon using a virtual leader, which have
following system parameters.

τ0 = 0.1, Ω0 = 1, τ = 0.4, Ω = 0.8 ∀i ∈ {1,2,3}. The time
gap h = 0.7s. The baseline controllers’ gains are chosen as
Kp = 0.2 and Kd = 0.7 in order to maintain both string stability
conditions (13) and (14). The desired acceleration is selected as
ur(t) = 80exp(−2t); the design parameter l is chosen as l = 5.,
the adaptation gains are chosen as kθ = 5, Γθ = 5.

Fig.2 shows the convergence of norm of tracking error ζ (t) to
zero and Fig.3 shows the norm of controller parameter estima-
tion error K̃(t) ∈ L∞. Fig.4 shows the norm of error between
CACC reference model (10) and CACC closed-loop reference
model (18). From Fig.4 it can be concluded that limt→∞[xi(t)−
xi,r(t)] = 0 ∀i ∈ {1,2,3}, which is the primary design objec-
tive. Fig.5 represents the comparison of velocity profile, which
portrays velocity synchronization of the entire platoon. Fig.6
represents the comparison of norm of parameter estimation-
error ∆θ(t) for various cases, like P: means parameter estimator
consist only proportional error like term, P +C: means only
proportional and consensus terms are used in estimator, P+ I+
C: means all terms including integral term are used. Now from
Fig.6, it can be inferred that integral and consensus terms are
significant to achieve the exponential convergence under C-IE
condition. The C-IE condition is satisfied approximately after
some finite time as verified in the simulation by checking the
determinant of the matrix J(t).
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Fig. 2. Norm of tracking-error ζ (t) for uncertain vehicles in the
platoon.

7. CONCLUSION

This paper proposes a combined-CACC architecture using a
closed-loop reference model based MRAC algorithm for a ho-
mogeneous platoon, without knowledge of the platoon vehicle
dynamics parameters Ω (engine performance) and τ (drive-
line constant). The method is composed of a novel distributed
consensus-based plant-parameter estimator in conjunction with
a differential adaptive update law for the control-parameters.
Provided the set of filtered regressors zi(t), ∀i ∈ Sn, is C-IE,
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Fig. 3. Norm of controller parameter estimation-error K̃(t) for
uncertain vehicles in the platoon.
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Fig. 4. Norm of error between CACC open-loop, CACC closed-
loop reference model for uncertain vehicles in the platoon.
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Fig. 5. Comparison of velocities for virtual leader as well as
uncertain vehicles in the platoon.
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Fig. 6. Comparison of norm of Parameter estimation error
∆θ(t).

the algorithm guarantees exponential convergence of parameter
estimation error ∆θ(t) as well as asymptotic convergence of
tracking error ζ (t) to zero. The C-IE condition is milder than all
the conditions for parameter convergence available in literature
like PE, C-PE and IE etc. The use of closed-loop reference
model instead of the open-loop reference model in MRAC
protocol provides an additional design freedom in the CACC
algorithm, which is used to achieve better transient as well as
stability guarantee.
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