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Abstract: We propose a novel quaternion particle filter for nonlinear SO(3) estimation. For im-
portance sampling, the proposal distribution is designed to incorporate newly observed evidence.
For that, the unscented Kalman filtering is performed particle-wise on the tangent plane of the
unit quaternion manifold via gnomonic projection/retraction based on hyperspherical geometry.
As prior particles are driven towards high-likelihood regions on the manifold, computational
efficiency of quaternion particle filtering is significantly improved. The resulting hyperspherical
unscented particle filter (HUPF) is evaluated for nonlinear orientation estimation in simulations.
Results show that it gives superior tracking performance compared with the conventional particle
filter and other existing quaternion filtering schemes relying on parametric modeling.
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1. INTRODUCTION

Orientation estimation plays a key role in many appli-
cation scenarios, such as autonomous driving, computer
vision, robotic control, etc (see works from Li et al. (2020);
Hashim et al. (2019); Pfaff et al. (2020); Möls et al. (2020)
for an overview). However, accurate and robust recursive
orientation estimation is not trivial. For instance, various
options exist for parameterizing three-DoF spatial orienta-
tions. Euler angles provide a minimal representation, yet
suffer from gimbal lock. This ambiguity can be overcome
by employing the well-known rotation matrices. However,
the over-parameterization also introduces a large degree of
redundancy (nine elements are used for representing the
three DoF), leading to memory inefficiency and numerical
instability. One popular alternative are unit quaternions,
which provide a re-parameterization of the axis-angle rep-
resentation. Commonly, unit quaternions are expressed as
four-dimensional vectors, and thus only have one degree
of redundancy and no ambiguity. In this paper, we exploit
unit quaternions as the state representation for recursive
orientation estimation.

One of the major issues of quaternion filtering techniques
is the nonlinear group structure of the special orthogonal
group SO(3). As unit quaternions are naturally located
on the unit hypersphere S3 ⊂ R4 , conventional filter-
ing techniques, such as the Kalman filter (KF) and its
derivatives, e.g., the extended Kalman filter (EKF) or
unscented Kalman filter (UKF) (Van Der Merwe et al.
(2001); Julier and Uhlmann (2004)), cannot be trivially
applied. Adaptations were derived based on the local per-
turbation assumption (with Lie algebra for example) or

? This work is supported by the German Research Foundation
(DFG) under grant HA 3789/16-1.

by using high-order motion information (e.g., velocity or
acceleration), such that conventional filters can be applied
in a linearized/linear space (see Jahanchahi and Mandic
(2014); Bloesch et al. (2017); Hauberg et al. (2013)).

Another branch of quaternion filters exploits distributions
from directional statistics (Mardia and Jupp (2009)), such
that uncertainty of unit quaternions can be modeled di-
rectly on the manifold without linearization. In this re-
gard, the antipodal symmetry 1 of unit quaternions should
be specifically considered. Therefore, the Bingham distri-
bution on S3 has become a popular statistical tool for
designing quaternion filters since the distribution is inher-
ently antipodally symmetric. By assuming the Bingham
distribution as the underlying noise distribution, Glover
et al. (2012) have proposed Monte Carlo approaches for
pose registration and further introduced quaternion filter-
ing schemes based thereon (Glover and Kaelbling (2014)).
There, quaternion samples are randomly drawn from the
last Bingham posterior, propagated through the system
model and then reweighted according to the measurement
model for refitting the new posterior. To improve tracking
efficiency, the deterministic sampling-based quaternion fil-
ter was proposed by Gilitschenski et al. (2016) following
the concept of the unscented transform (seven samples are
drawn to approximate moments up to the second order).
Such an unscented quaternion filter still relies on identity
measurement models, meaning the observation noise has
to be Bingham-distributed. To eliminate this limitation, a
progressive filtering scheme (see Hanebeck et al. (2003))
was employed by Li et al. (2018a) for handling general
nonlinear quaternion estimation tasks (e.g., non-identity
measurement model). To further improve nonlinear track-

1 The antipode of a unit quaternion represents the same orientation
and thus should be endowed with identical density.
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ing accuracy and robustness of the Bingham quaternion
filtering, effort has also been dedicated to obtaining ar-
bitrary numbers of deterministic samples that approxi-
mate higher-order shape information of the underlying
density. By exploiting the hyperspherical geometry, Li
et al. (2019a) enabled flexible deterministic sampling on
the principal geodesic curves, which is further extended to
the whole unit quaternion manifold in Li et al. (2019c).
With more deterministic samples approximating higher-
order shape information, nonlinearity of system dynamics
can be better captured and improved tracking accuracy
and robustness were shown.

The aforementioned works all rely on specific forms of
the underlying distributions, regardless of whether the
probability density function is employed on a locally lin-
earized space or directly on the manifold. Such a para-
metric assumption can be error-prone for tracking scenar-
ios with, e.g., multimodality, high nonlinearities, or non-
stationarities, etc. The sequential Monte Carlo method,
also known as particle filter (PF), allows complete model-
ing of arbitrary densities and has been deployed as filtering
scheme in many nonlinear recursive estimation cases (see,
e.g., Smith (2013)). Naively deploying PFs for nonlinear
estimation tasks requires large numbers of particles and
suffers from the curse of dimensionality (particularly for
the four-dimensional quaternion particles). For peaky like-
lihoods or heavy-tailed noises, issues regarding efficient
importance sampling should be specifically addressed. As
was pointed out in Arulampalam et al. (2002), this mainly
relates to the design of an effective proposal distribution.
Adopting ideas of the UKF and the Gaussian particle
filtering (see Kotecha and Djuric (2003)), Zhou et al.
(2011) utilized a single quaternion-based UKF to obtain
the proposal distribution. The samples are drawn from
the UKF estimate for importance reweighting and the a
posteriori density is updated thereafter. The approach has
no resampling step and the Gaussianity assumption still
plays a key role in it, resulting in a similar attitude tracking
accuracy compared with the UKF. Van Der Merwe et al.
(2001) first proposed the so-called unscented particle filter
(UPF) with each particle running an individual UKF for
obtaining its own proposal distribution within the PF
scheme. Both theoretical proof and experimental results
have shown superior tracking efficiency and accuracy, es-
pecially for highly nonlinear and non-stationary estimation
tasks. However, existing works based on the UPF are
still restricted to Euclidean spaces and no on-manifold
extension has been made for nonlinear quaternion filtering.

In this work, we propose a novel hyperspherical unscented
particle filter for recursive estimation of unit quaternions.
Unlike other quaternion filtering approaches, it enables
complete modeling of arbitrary densities on the manifold
by exploiting the PF scheme. For improved handling of the
nonlinearity with reasonable computational cost, a hyper-
spherical unscented Kalman filter is proposed based on
the gnomonic projection/retraction for obtaining proposal
distributions particle-wise for importance sampling. More
specifically, the major contributions of this work are listed
below.

• A quaternion particle filtering scheme is proposed
without a parametric setup of the underlying density,

enabling flexible and complete modeling of arbitrary
uncertainties on the manifold.

• A novel unscented Kalman filter is proposed based
on the gnomonic projection/retraction technique and
deployed on each particle to obtain its individual
proposal distribution for importance sampling.

• The proposed quaternion filtering approach is applied
to nonlinear orientation estimation. Simulation re-
sults show improved tracking accuracy compared with
existing quaternion filters.

The remainder of the paper is structured as follows. In
Sec. 2, preliminaries about quaternion arithmetics and the
particle filter are introduced. The geometric structure of
the unit quaternion manifold with consideration of on-
manifold stochastic modeling is introduced in Sec. 3. The
novel quaternion unscented particle filtering scheme is
proposed in Sec. 4 and evaluated in Sec. 5. Finally, the
work is concluded in Sec. 6.

2. PRELIMINARIES

By convention, an axis-angle representation of a spatial
rotation can be parameterized by a quaternion in the
following vector form

x = [ cos(θ/2), sin(θ/2) n> ]> := [x0, x1, x2, x3 ]> , (1)

with θ being the rotation angle and the unit vector n the
rotation axis. Given a unit quaternion of the form above,
any point v ∈ R3 can be rotated according to

v′ =
(
x⊗ [ 0, v> ]> ⊗ x∗

)
2:4
. (2)

Here, x∗ = diag(1,−1,−1,−1) x denotes the conjugate
of x and ⊗ is the Hamilton product. We take out the
last three elements of the rotated quaterinon (the first
element is zero) to reobtain the rotated vector. Given
a quaternion x, its norm is defined as ‖x‖ = x ⊗ x∗ .
Therefore, quaternions representing spatial rotations in
(1) are of unit norm and are called unit quaternions.
The Hamilton product ⊗ aggregates two quaternions and
can be re-parameterized into an ordinary matrix–vector
multiplication. For instance, x⊗ y = Qx

x y = Qy
y x with

Qx
x =

[
x0 −x1 −x2 −x3
x1 x0 −x3 x2
x2 x3 x0 −x1
x3 −x2 x1 x0

]
, Qy

y =

[
y0 −y1 −y2 −y3
y1 y0 y3 −y2
y2 −y3 y0 y1
y3 y2 −y1 y0

]
. (3)

As unit quaternions are also of unit length in the Euclidean
space, the unit hypersphere S3 ⊂ R4 is a double covering
of the SO(3) group, which is closed under the Hamilton
product. Given a unit quaternion x ∈ S3, it can be easily
verified that matrices in (3) satisfy Qy>

x Qy
x = Qy

xQy>
x =

I4×4 and det(Qy
x) = 1 (also valid for the left matrix

Qx
x). Thus, the matrix representation of unit quaternions

belongs to the four-dimensional rotational group SO(4) .
Furthermore, the inverse of a unit quaternion corresponds
to the transpose of its matrix form, for instance Qy

x−1 =

Qy>
x , indicating an inverse rotation on S3 geometrically.

2.1 Sequential Monte Carlo Methods of Unit Quaternions

We focus on nonlinear quaternion estimation problems
with the system model as follows

xk = a(xk−1,wk−1) , (4)
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where xk−1,xk ∈ S3 are the unit quaternion states,
wk−1 ∈ W the system noise and a : S3 ×W → S3 the
transition function. The measurement model is given as

zk = h(xk,vk) , (5)

with zk ∈ Z denoting the measurement, vk ∈ V the
measurement noise and h : S3 × V → Z the observation
function. The sequential Monte Carlo method, i.e., the
particle filter, models the posterior distribution by means
of Dirac mixtures located at each particle µik, i.e.,

p(x0:k|z1:k) =
∑n
i=1ω

i
k δ(x0:k − µik) , (6)

with δ(·) being the Dirac delta function and ωik the
weights (

∑n
i=1 ω

i
k = 1). However, it is theoretically in-

feasible to draw samples directly from the posterior den-
sity p(x0:k|z1:k). Instead, i.i.d. samples are drawn from a
known and easy-to-sample distribution, namely the pro-
posal distribution q(xk|x0:k−1, z1:k), such that importance
weights can be evaluated recursively according to

ωik = ωik−1
pL(zk|xik) p(xik|xik−1)

q(xik|xi0:k−1, z1:k)
. (7)

Here, pL(zk|xik) denotes the likelihood evaluated at each
particle xik given measurement zk . After that, weights are
normalized, based on which a resampling is performed
(e.g., by using inverse transform sampling). A detailed
introduction to basic particle filtering can be found in Aru-
lampalam et al. (2002).

As shown in (7), designing and estimating the proposal
distribution appropriately plays an important role for the
performance of the particle filter. More specifically, one
possible proposal distribution of a quaternion particle filter
is the transition density that can be easily derived from the
system model in (4). However, setting q(xk|x0:k−1, z1:k) =
p(xk|xk−1) disregards the recently coming information,
i.e., the measurement. Inspired by the work done by Van
Der Merwe et al. (2001), we propose to apply the UKF
on the hypersphere to evaluate the proposal density for
each quaternion particle. The resulting hyperspherical
unscented particle filter (HUPF) enables incorporating
recently observed evidence and can drive the particles to
high-likelihood regions on the manifold. As a result, PF-
based quaternion estimations can be improved especially
in the cases where, e.g., heavy-tailed state densities, non-
stationary model or peaky likelihood, exist.

3. GEOMETRIC STRUCTURE OF UNIT
QUATERNION MANIFOLD

One of the key components of the aforementioned quater-
nion unscented particle filter is the adaptation to the
manifold structure. Conventional UKFs can only be de-
ployed in the Euclidean space as the noise term is assumed
to be Gaussian-distributed. Distributions from directional
statistics such as the Bingham distribution, the von Mises–
Fischer distribution or the projected Gaussian distribution
by Feiten et al. (2013), do allow stochastic modeling of
uncertain unit quaternions on the manifold S3 and un-
scented transform-based directional estimation approaches
exist (Gilitschenski et al. (2016)). However, efficiency is-
sues arise when deploying directional estimators in the
HUPF scheme. First, fitting a hyperspherical Bingham
or von Mises–Fisher density from samples requires time-
consuming calculation of normalization constants since no

closed-form solution exists. Though accelerations or look-
up tables have been introduced (e.g., in Gilitschenski et al.
(2014); Glover and Kaelbling (2014)), the computational
burden cannot be alleviated substantially for particle-wise
operations. Second, directional estimation approaches rely
on a large number of deterministic samples (generated via
online optimization) or the progressive filtering scheme
for nonlinear estimation, which worsen computational ef-
ficiency as well.

On the other hand, there exist works adapting the UKF
on Riemannian manifolds, as proposed in Hauberg et al.
(2013); Menegaz et al. (2019). Here, the key idea is to
estimate an on-tangent-plane Gaussian distribution in the
UKF scheme via the logarithm/exponential map. The set
of unit quaternions forms a compact Riemannian manifold
with a spherical structure. Any point x ∈ S3 can be
mapped to the tangent plane at a given point µ ∈ S3 ,
denoted as TµS3 , via the logarithm map

xt = Logµ(x) = (x− cos (β)µ)β/ sin(β) ∈ TµS3 ,

with β = acos(x>µ) being the arc length between x and
µ . The inverse operation, namely the exponential map, is

x = Expµ(xt) = cos (‖xt‖)µ + xt sin (‖xt‖) /‖xt‖ ∈ S3 .
Unscented transform on manifolds often deploys a zero-
mean Gaussian distribution on the tangent plane, from
which the sigma points are drawn. The samples can then
be mapped to the manifold via the exponential map and
diffused through uncertain system dynamics or updated by
the likelihood on the manifold, such that the on-tangent-
plane Gaussian distribution can be estimated again via
the logarithm map. It can be easily verified that the expo-
nential and logarithm map preserve the geodesic length
in respective domains, i.e., ‖Logµ(x)‖ = β ∈ [ 0, π/2 ]
(consider antipodal symmetry). The tangent plane at an
arbitrary point on the unit quaternion manifold is there-
fore a bounded Euclidean space. As the support of the
Gaussian distribution is unbounded, such a set-up is not
theoretically sound and may trigger robustness problems,
especially in the case of large uncertainties or non-zero-
mean noise. Sigma points can be drawn in these cases out-
side the range limit π/2 and miss-interpret the uncertainty
after being mapped to the manifold via exponential map.

From the perspective of Riemannian optimization (see Ab-
sil et al. (2009); Absil and Malick (2012)), we propose to
use the gnomonic projection/retraction as the geometric
tool for interpreting the uncertainty of unit quaternions on
the tangent plane (see also Li et al. (2019a,c) for details).
The gnomonic projection shoots a ray from the sphere cen-
ter through a given point x ∈ S3 and find its intersection
xt on a given tangent plane at µ ∈ S3. Mathematically,
the gnomonic projection is expressed as

xt = Pµ(x) = x/(µ>x) ∈ TµS3 ,∀x ∈ S3 ,
with TµS3 denoting the tangent plane at µ. The inverse
mapping, namely the gnomonic retraction, is essentially
the normalization of on-tangent-plane points, i.e.,

x = Rµ(xt) = xt/‖xt‖ ,∀xt ∈ TµS3 .
As introduced in Sec. 2 , the Hamilton product for unit
quaternions can be geometrically interpreted as four-
dimensional rotation applied to S3 . Therefore, follow-
ing relations can be established when performing the
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gnomonic projection/retraction between arbitrary unit
quaternions and the identity quaternion 1 = [ 1, 0, 0, 0 ]> .

Rµ(xt) = µ⊗R1(µ−1 ⊗ xt) ∈ S3,∀xt ∈ TµS3 ,
Pµ(x) = µ⊗ P1(µ−1 ⊗ x) ∈ TµS3,∀x ∈ S3 ,

which denote the rotation via µ−1 followed by the desired
operation (retraction or projection) at the identity and the
back-rotation to µ thereafter.

Under the gnomonic projection, a Gaussian distribution
on the tangent plane is free from range limitation when
interpreting the uncertainty of quaternions on the sphere.
Also, stochastic modeling of antipodal symmetry is inher-
ently guaranteed, since an infinitely remote point on the
tangent plane is projected onto inside of the corresponding
hemisphere (asymptotically on the sphere equator). The
tangent plane of the unit quaternion manifold is the four-
dimensional Euclidean space with three DoF (as it is
tangential to the sphere at µ ). For setting up the particle-
wise UKF, a three-dimensional zero-mean Gaussian distri-
bution is therefore deployed w.r.t. a local coordinate of the
tangent plane at each quaternion particle. As shown in (3),
the matrix representation of a unit quaternion x naturally
entails the orthonormal basis for referencing the tangent
space at x. For instance, when denoting the matrix-form
quaternion columnwise as Qx

x = [ x, e1, e2, e3] , the last
three column vectors expand the tangent space at x ,
namely TxS3 = span{e1, e2, e3} . Therefore, points on
specific tangent planes can be transformed to orientation-
invariant coordinates in R3 . Thus, the gnomonic projec-
tion/retraction w.r.t. the local basis can be derived as

τ =
(
(P1(µ−1 ⊗ x)− 1)

)
2:4
∈ R3,∀x ∈ S3 , (8)

x = µ⊗R1(1+ [ 0, τ> ]>) ∈ S3,∀τ ∈ R3 . (9)

In this manner, the on-tangent-plane UKF of each particle
is then invariant to its location on the manifold.

4. HYPERSPHERICAL UNSCENTED
PARTICLE FILTERING

In the proposed HUPF, each quaternion particle µik ∈ S3
in (6) is augmented as (µik , ω

i
k ,C

i
k) with its weight ωik and

a covariance matrix Ci
k ∈ R3×3 . A zero-mean Gaussian

distribution N (0,Ci
k) is deployed under the gnomonic

projection on the tangent plane at µik w.r.t. its local basis
for depicting the uncertainty of each individual particle.
The UKF in Wan and Van Der Merwe (2000) is modified
according to the hyperspherical geometry to obtain the
posterior estimate of µik and Ci

k as the proposal for
importance sampling.

The quaternion particles are initialized via random sam-
pling of the initial posterior density p(x0|z0) that is as-
sumed to be p(x0) . The detailed procedure of each re-
cursive estimation step is shown in Alg. 1. Given the
last posterior estimate of the particle µik−1 and covari-

ance Ci
k−1, sigma points {τ i,sk−1}ms=1 are first drawn on

the tangent plane w.r.t. its local basis with weights νs.
The local sigma points are then retracted to the manifold
and transformed into global coordinates. Here, function
retract(a,b) maps points b w.r.t. the local basis on TaS3
to quaternions of global coordinates via the gnomonic
retraction in (9). Afterward, the quaternion sigma points

Algorithm 1: HUPF

Input: {(µik−1, ωik−1,Ci
k−1)}ni=1 , measurement zk

Output: {(µik, ωik,Ci
k)}ni=1

/* particle-wise UKF on S3 */

for i← 1 to n do
/* UKF prediction */

{(τ i,sk−1, νs)}ms=1 ← getSigmaPoints(Ci
k−1) ;

{χi,sk−1}ms=1 ← retract(µik−1, {τ
i,s
k−1}ms=1) ; // (9)

{χi,sk|k−1}
m
s=1 ← propagate({χi,sk−1}ms=1) ; // (4)

µ̄ik|k−1 ← average({(χi,sk|k−1, νs)}
m
s=1) ;

{τ i,sk|k−1}
m
s=1 ← proj(µ̄ik|k−1, {χ

i,s
k|k−1}

m
s=1) ; // (8)

Ci
k|k−1 ←

∑
s νs τ

i,s
k|k−1(τ i,sk|k−1)> ;

{zi,sk|k−1}
m
s=1 ← measure({χi,sk|k−1}

m
s=1) ; // (5)

/* UKF update */

z̄ik|k−1 ←
∑
s zi,sk|k−1 ;

Ci
z ←

∑
s νs(z

i,s
k|k−1 − z̄ik|k−1)(zi,sk|k−1 − z̄ik|k−1)> ;

Ci
τz ←

∑
s νs τ

i,s
k|k−1(zi,sk|k−1 − z̄ik|k−1)> ;

Ki
k ← Ci

τz(C
i
z)
−1 ;

τ̄ ik ← Ki
k(zk − z̄ik|k−1) ;

Ci
k ← Ci

k|k−1 −Ki
k Cz

i (Ki
k)> ;

µ̄ik ← retract(µ̄ik|k−1, τ̄
i
k) ; // (9)

/* particle-wise reweighting */

τ̂ ik ← getRndSample(N (0,Ci
k)) ;

x̂ik ← retract(µ̄ik, τ̂
i
k) ; // (9)

ωik ← ωik−1
f(zk|x̂i

k) f(x̂
i
k|x

i
k−1)

f(x̂i
k
|xi

0:k−1
,z1:k)

; // (7)

end

{ω̃ik}ni=1 ← normalize({ωik}ni=1) ;

{(µik, ωik,Ci
k)}ni=1 ← resample({(µ̄ik, ω̃ik,Ci

k)}ni=1) ;

return {(µik, ωik,Ci
k)}ni=1

{χi,sk−1}ms=1 are propagated through the system dynamics

according to (4) . The prior mean µ̄ik|k−1 is then computed

using the intrinsic gradient descent algorithm as suggested
by Kraft (2003) 2 . Afterward, the propagated quaternion

sigma points {χi,sk|k−1}
m
s=1 are mapped by function proj

to the shifted tangent plane at µ̄ik|k−1 w.r.t. its local

basis according to (8) and the prior covariance Ci
k|k−1 is

computed. Meanwhile, the predicted measurements for the
sigma points are obtained according to the measurement
model in (5). Then, we fuse the measurement zk on the
prior tangent plane at µ̄ik|k−1 to obtain the posterior mean

τ̄ ik in the local basis. Consequently, the location of tangent
plane is updated to µ̄ik, around which the posterior Gaus-
sian distribution of covariance Ci

k is centralized. Given
the on-tangent-plane UKF proposal above, importance
sampling is then performed. An individual particle x̂ik
is generated by randomly sampling from corresponding
posterior estimate N (0,Ci

k) w.r.t. the local basis at µ̄ik
and retracting to S3 thereafter. Subsequently, the particle
weights are updated according to (7) and re-normalized.
For handling potential degeneration issues, one can apply

2 Corresponding to the proposed noise model, we measure the error
metric on tangent plane under the gnomonic projection.
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Fig. 1. Multimodal distribution of uncertain rotation axis
used in Sec. 5.2. It is synthesized by a von Mises–
Fisher mixture with κ = 20 for each component.

the resampling approaches in Arulampalam et al. (2002)
to obtain uniformly weighted particles.

5. EVALUATION

We evaluate the proposed hyperspherical unscented par-
ticle filter for nonlinear quaternion estimation based on
simulations. The system model is set up as

xk = xk−1 ⊗w2
k−1 , (10)

containing a squared random system input w2
k , wk⊗wk

with wk = [ cos(0.5 θw), ζ>w sin(0.5 θw) ]> ∈ S3 . The ran-
domness is hereby introduced by the rotation angle θw and
the rotation axis ζw , which are assumed to follow different
distributions in the individual test cases. Furthermore, we
apply the following measurement model

zk =
(
xk ⊗ [ 0, s>0 ]> ⊗ xk

)
2:4

+ vk ,

which rotates a point initialized at s0 according to the
current quaternion state as introduced in (2). An additive
measurement noise is applied after the position observa-
tion and assumed to follow a zero-mean Gaussian distri-
bution, i.e., vk ∼ N (0,Σv) . Thus, it is straightforward to
derive the likelihood function in (7) as

f(zk|xk) = fv

(
zk −

(
xk ⊗ [ 0, s>0 ]> ⊗ xk

)
2:4

)
.

For evaluating the tracking accuracy in an intuitive way,
we map the estimated quaternion states x̂k to the measure-
ment space via the observation equation (x̂k ⊗ [ 0, s>0 ]> ⊗
x̂k)2:4 and compare it with the one given by the ground
truth. Such a conversion does not conceal error as it keeps
the degree of freedom unchanged. Thus, the estimation
error can be expressed as the Euclidean distance. For all
the evaluation cases below, we perform 100 Monte Carlo
runs of 50 steps and plot the error as well as runtime
statistics with box plots 3 .

5.1 Evaluation under Different Measurement Noise Levels

In this test case, we apply the proposed HUPF for
the given orientation estimation problem under different
measurement noise levels of Σv = c · I3×3 , with c ∈
{0.1, 0.05, 0.0005} and I3×3 ∈ R3×3 being the identity ma-
trix. For the random system input wk−1 as defined in (10),
the uncertain angular term θw is assumed to be von Mises-
distributed and the axis term ζw follows a von Mises–
Fisher distribution, i.e., θw ∼ VM(φθw, κ

θ
w) and ζw ∼

3 In tracking failure cases, error and runtime are set to be zero on
purpose as shown, e.g., in Fig. 2(c) and Fig. 3(a).

VMF(φζw, κ
ζ
w), respectively. The mean values for rotation

angle and axis are φθw = π/6 , φζw = [ 1
√

3, 1
√

3, 1
√

3 ]> ,
and κθw = κζw = 100 denote their uncertainties, with
smaller value indicating stronger noise. As comparisons,
we run the conventional quaternion particle filter using
2000 samples with the same resampling scheme and two
other existing quaternion filters using the Bingham distri-
butions, which rely on a parametric modeling of the un-
derlying density. Considering the nonlinearity, we deploy
the unscented Bingham filter by Gilitschenski et al. (2016)
(drawing 7 deterministic samples) within the progressive
filtering scheme in Hanebeck et al. (2003) (ProgUKF-7).
Furthermore, a Bingham filter (RieBF-200) using 200 de-
terministic samples generated by the Riemannian spherical
sampling approach proposed in Li et al. (2019c) is used.

As shown in Fig. 2, the proposed filter shows superior
performance regarding accuracy and runtime compared
with the other nonlinear quaternion filters under high and
medium measurement noise levels. The ProgUBF has the
same prediction step as proposed in Gilitschenski et al.
(2016) 4 and updates the prior progressively adaptive to
the likelihood difference among the samples when fusing
the measurement. When an increased nonlinearity appears
in the measurement model, the ProgUKF can obtain good
accuracy, however, with a sacrifice on computational effi-
ciency due to the progressive scheme. The proposed HUPF
shows particularly good robustness under low noise level,
where all the other filters lose tracking due to the nonlinear
motion model and the peaky likelihood function. In this
case, approaches based on parametric representations of
the state uncertainty, i.e., the ProgUBF and the RieBF,
prominently suffer from sample degeneration. The conven-
tional particle filter, though deploying much more particles
than the HUBF, also fails because its proposal distribution
disregards the recent observation as discussed in Sec. 2.1.

5.2 Evaluation under Multimodal Uncertainty

We further set the uncertain rotation axis of the system
input wk to follow a multimodal distribution synthesized
by the mixture of von Mises–Fisher distributions on S2
(shown in Fig. 1). The system model is the same as
in (10) and the measurement noise level is fixed to be
the medium one, i.e., Σv = 0.05 × I3×3 . Fig. 3 shows
the comparative evaluation result with competitive fil-
ters of enhanced configurations. Here, the sample size of
the RieBF is raised to be 500 and the conventional PF
deploys 4000 particles. Due to the nonlinearity and the
multimodality, only the proposed HUPF gives functional
tracking performance. Furthermore, increasing the number
of particles of the HUPF gives improved tracking accuracy
with more computational cost, as shown in Fig. 3 (b)-(c).
For illustrating the functionality of the HUPF in this test
case, another system noise is synthesized in the same way
as shown in Fig. 1, however, with a decreased uncertainty
of κθw = 500 and κ = 500 for each of the three von Mises–
Fisher components. Meanwhile, the number of particles
of the PF is increased to 6000 . The number of particles
for the HUPF is kept as 50 . As shown in Fig. 4, samples

4 As the system model here restricts the noise term to be Bingham-
distributed, 5× 105 samples are used for approximating the desired
Bingham system noise distribution.
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Fig. 2. Comparison of the HUPF with existing quaternion filters. The proposed HUPF outperforms the others regarding
accuracy, efficiency, and robustness for large and medium noise.

HUPF-50 ProgUBF-7 RieBF-500 PF-4000

0

0.5

1

1.5

2

2.5

3

3.5

p
o

s
it

io
n

 e
rr

o
r 

(R
M

S
E

)

HUPF-25 HUPF-40 HUPF-50 HUPF-70 HUPF-100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p
o

s
it

io
n

 e
rr

o
r 

(R
M

S
E

)

HUPF-25 HUPF-40 HUPF-50 HUPF-70 HUPF-100

0

1

2

3

4

5

6

ru
n

ti
m

e
 (

s
)

(a) comparative results (b) accuracy (c) runtime

Fig. 3. Evaluation on nonlinear quaternion estimation with multimodal noise. The tracking accuracy of the HUPF is
improved when increasing the number of particles, which causes higher computational costs.

Fig. 4. Demonstration of tracking under multimodal noise.

(yellow dots) from the multimodal system noise are drawn
and propagated in every step. Compared with the con-
ventional particle filtering scheme, the HUPF is designed
to incorporate the current observation and move particles
to the high-likelihood regions, thus giving better tracking
accuracy in a much more efficient manner.

6. CONCLUSION

We proposed a novel stochastic filtering approach for non-
linear quaternion estimation. By applying the unscented
particle filtering scheme, no parametric assumption of the
underlying distribution is required and recent observations
are considered for importance sampling. To handle the
nonlinear structure of the unit quaternion manifold, we
investigated the hyperspherical geometry to deploy the
UKF on the tangent plane w.r.t. to its local basis for ob-
taining particle-wise proposal distributions. The resulting
hyperspherical unscented particle filter has been observed
to evidently improve performance and flexibility for non-
linear quaternion estimation. There is still much potential
to exploit on basis of this work. For instance, the HUPF
can be extended for recursive estimation of 6-DoF poses
within a proper probabilistic inference framework (Li et al.
(2018b, 2019b)). Further, it is appealing to investigate its
performance in real-world scenarios, such as point regis-
tration and visual odometry (Bultmann et al. (2019)).
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