
Deterministic vs stochastic formulations
and qualitative analysis of a recent tumour

growth model

Alessandro Borri ∗ Pasquale Palumbo ∗∗,∗∗∗ Federico Papa ∗∗∗

∗ CNR-IASI Biomathematics Laboratory,
National Research Council of Italy,
L.go A. Gemelli 8, Rome, Italy

∗∗Department of Biotechnology and Biosciences,
University of Milano-Bicocca,

Piazza della Scienza 2, 20126 Milan, Italy
∗∗∗ CNR-IASI, National Research Council of Italy,

Via dei Taurini 19, Rome, Italy
(e-mails: alessandro.borri@iasi.cnr.it, pasquale.palumbo@unimib.it

federico.papa@iasi.cnr.it)

Abstract: Mathematical modeling and control have recently played a pivotal role in the
understanding of tumour growth and in treatment planning, with a special emphasis in the
search for personalized therapies. In this note a recent tumour growth model is investigated. The
model entails the proliferating and necrotic tumour cells dynamics, as well as the administered
drug level. Inspired by a recent reaction-rate characterization of the model, the approach is
further deepened with respect to cells and drug molecules copy numbers, hence resulting relevant
under the double facet of the deterministic and stochastic frameworks. With regards to the
deterministic model, the qualitative behavior analysis is carried out under the basic assumption
of a baseline drug delivery: results are encouraging, since they show which parameter space
regions allow effective control law results. Stochastic simulations are carried out by properly
exploiting parameter values taken from the available experimental literature, and are consistent
with the average value evolution inferred from the deterministic approach, paving the way to
further stochastic investigation oriented to frameworks involving a reduced copy number.
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1. INTRODUCTION

Mathematical models of tumour growth and treatment
offer a fundamental tool for studying the effects of different
drugs on the tumour dynamics and for designing efficient
personalized therapies. One success story in the field comes
from Hahnfeldt et al. (1999), a minimally parameterized
and low-dimensional mathematical model describing the
vascular phase of tumour growth. Since then, different
theoretical and application results have been achieved,
dealing with closed- and open-loop administration of anti-
angiogenic drugs (see, e.g. Cacace et al. (2018b,a); Drexler
et al. (2017c); Ledzewicz and Schättler (2008); Sápi et al.
(2016)), possibly in combination with chemotherapy (see,
e.g. d’Onofrio et al. (2009); Ledzewicz et al. (2011)).

Beyond the Hahnfeldt model, recent modeling approaches
accounted also for dead tumour volume dynamics and
the drug pharmacodynamics. The former feature is still
matter of investigation since necrotic regions may pro-
vide pro- or antitumour effects, Wang and Lin (2008);
Proskuryakov and Gabai (2010), and mathematical models
aiming to incorporate dead cells dynamics may suggest
a novel biological insight to the medical community. The
drug pharmacodynamics is another facet deserving inves-

tigation, since experiments have shown how a trivially
linear effect of the administered drug has a reduced range
of validity. Within this framework, recent results can be
found in Drexler et al. (2019, 2017a,b). Although tumour
growth models arise from a mechanism-based approach,
a nice characterization of such a family of models bases
on the formalism of Chemical Reaction Networks (CRN)
that allows to derive the Ordinary Differential Equation
(ODE) system from standard (i.e. mass action law) or
non-standard (i.e. Michaelis-Menten saturating functions)
reaction rate laws.

Inspired by the aforementioned approach, here we exploit
the CRN associated to the tumour growth model in a
stochastic framework, dealing with tumour cells and drug
molecules copy number. To this end we consider the Chem-
ical Master Equations (CME) broadly accepted as the
most effective tool to capture copy number fluctuations
as well as to explain how noise impacts and propagates
through CRNs, especially in cases of low copy numbers.
CMEs provide the copy number average value dynamics
from a first-order approximation of the nonlinear propen-
sities, van Kampen (2007). Finally, the usual mechanism-
based model is derived by properly accounting for volumes
and concentrations.
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The contribution of this note is twofold. On the one
hand, we generalize the CRN-based approach suggested by
Drexler et al. (2019) in a way that allows both determinis-
tic and stochastic characterization of the model, depending
on the final purpose of the mathematical investigation.
Any chosen model can be solidly anchored to the formula-
tion of Drexler et al. (2019) by scaling the model param-
eters, so that numerical simulations can be carried out in
a meaningful way by exploiting the experimental values
from the literature. Stochastic simulations are carried out
according to the τ -leap approximation of the Gillespie
algorithm, Gillespie (2001), and show the substantially
trivial impact of noise in the tumour growth dynamics,
at least for the chosen setting of model parameters.

On the other hand, a qualitative analysis of the determin-
istic model is carried out, providing a fruitful information
concerning the effectiveness of a constant control law.
Indeed, we prove that there exists a unique asymptotically
stable equilibrium point, corresponding to a healthy com-
plete eradication of the tumour, whose stability is tightly
related to both model parameters and drug administra-
tion.

2. MODEL FORMULATION: DETERMINISTIC VS
STOCHASTIC APPROACH

Following the chemical reaction formalism adopted in
Drexler et al. (2019), we provide both a deterministic
and a stochastic representation of a growing tumour cell
population under chemotherapeutic treatment. In order
to make the two models directly comparable, we use the
same state variables for both formulations. In particular,
we opt for countable state variables, i.e. number of tumour
cells and drug molecules, which represent a more natural
setting for the stochastic formulation.

The simpler deterministic formulation can be preferred in
some applications to have an idea of the average behaviour
of the system; indeed, in some cases, the deterministic
model can be a good approximation of the 1-st order mo-
ments of the stochastic formulation. However, correlations
between variables and their fluctuations are nullified by the
deterministic approach, so that a stochastic formulation is
required if we are interested in following such a behaviour
of the system dynamics, see van Kampen (2007). In the
following we will denote with X a species, with n its copy
number and with [X] its copy number concentration.

The fictional chemical species involved in the chemical
reactions are X1, the proliferating tumour cells, X2, the
dead tumour cells, and X3, the drug molecules. As done
in Drexler et al. (2019), we describe by means of the
following chemical reactions some physiological aspects of
the tumour, as well as its interaction with drugs used to
inhibit its growth:

R1 : X1 → 2X1, (cell proliferation)
R2 : X1 → X2, (cell necrosis)
R3 : X2 → ∅, (washout of dead cells)
R4 : X3 → ∅, (drug clearance)
R5 : X1 +X3 → X2, (drug action)
R6 : ∅ → X3. (drug administration)

(1)

The deterministic formulation can be given introducing
for each reaction Ri, i = 1, . . . , 6, a flux νi, providing the

concentration of the produced metabolite through Ri per
unit time. The quantity νi indicates how fast the related
reaction is working and its expression strictly depends on
the concentrations of the reactants of Ri, as well as on
the kinetics assumed to represent the reaction mechanism.
More in details, it is

νi = kifi([X1], [X2], [X3]), i = 1, . . . , 6,

where ki is the reaction rate constant and fi is a proper
function of the concentrations [Xj ], j = 1, 2, 3, related to
the reactants Xj involved into the reaction Ri.

The simplest and most used kinetic mechanisms are given
by (i) the mass-action law, where fi is given by the
product of the reactant concentrations to the power of
their stoichiometric coefficients, and by (ii) the Michaelis-
Menten law (MM), exploiting a sigmoidal function. Both
kinetic laws are used in the model formulation and, in
particular, according to Drexler et al. (2019) we choose
mass-action laws for νi, i = 1, 2, 3, whilst MM laws for
νi, i = 4, 5. The different choice made for νi, i = 4, 5, is
motivated by the need for a more realistic pharmacody-
namics/pharmacokinetics modelling, as it is explained in
Drexler et al. (2017b). Conversely, ν6 does not depend on
chemical species: it is the administration rate that the user
can manipulate, i.e. it is the input of the system. More in
details, we have:

ν1 =k1[X1], ν2 =k2[X1], ν3 =k3[X2], ν6 =k6,
ν4 =k4[X3]/(K4+[X3]), ν5 =k5[X1][X3]/(K5+[X3]).

(2)

We note that the dimensions of the reaction rate constants
ki, i = 1, . . . , 6, are not uniform. They obviously depend
on the chosen reaction kinetics since the dimension of νi
is a concentration per time unit.

The deterministic formulation of the chemical reaction
system (1) is given by the ODE

d[X]

dt
= Sv([X]), (3)

where S is the related stoichiometry matrix, [X] is the
vector of the metabolite concentrations ([X1], [X2], [X3])T ,
while v is the flux vector (ν1, . . . , ν6)T . In order to make
the deterministic model directly comparable with the
stochastic one, we express the dynamical system (3) in
terms of number of tumour cells/drug molecules. This is
done with a little abuse of notation, since we provide a
continuous description in terms of ODEs of copy numbers,
which are intrinsically discrete state variables. Denoting
by nj the number of cells/molecules of the species Xj

and by V the volume of the reaction system (it can
be interpreted as the ideal reaction chamber around the
tumour mass), the species concentrations can be expressed
as [Xj ] = nj/V , j = 1, 2, 3. So, accounting for the flux
expressions given in (2), the deterministic ODE system
(3) can be rewritten in terms of the variables nj as

dn1
dt

= (k1 − k2)n1 − k5n1
n3

M5 + n3
,

dn2
dt

= k2n1 − k3n2 + k5n1
n3

M5 + n3
,

dn3
dt

= −ρ n3
M4 + n3

− k5n1
n3

M5 + n3
+ r,

(4)

where ρ = V k4, r = V k6 and Mj = V Kj , j = 4, 5. Note
that the scaled flux r is the drug administration rate (given
in number of molecules per time unit), i.e. the input of the
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system, and, in principle, it can be a time varying function
r(t) dependent on the chosen administration regimen. We
finally note that the measurement units of the model
parameters of system (4) are: time−1 (in particular we use
day−1) for kj , j = 1, 2, 3, 5; number of cells/molecules for
Mj , j = 4, 5 (Kj , j = 4, 5, are concentrations); number
of molecules per time unit for ρ (k4 is a concentration per
time unit).

To introduce the stochastic formulation consider the state
variables n1(t), n2(t), n3(t) at a given time t as random
variables. In particular, n(t) = (n1(t), n2(t), n3(t))T is a
continuous time Markov chain, assuming values in a dis-
crete (countable) set. To completely define the stochastic
process n(t), we need to assign the reaction parameters ci
that identify the probabilities of reactions Ri, i = 1, . . . , 6,
to occur in an infinitesimal time interval. More in details,
the fundamental hypothesis underlying the stochastic for-
mulation is that the probability at time t (to first order in
dt) that a particular combination of the reactant molecules
of Ri will react in (t, t+ dt) is given by cidt. Moreover, in-
troducing the propensities ai, i = 1, . . . , 6, the probability
in t that a generic reaction step Ri will happen in (t, t+dt)
in the reaction volume V is given by

aidt = hicidt, (5)

where hi is a function of reactant cell/molecule copy num-
bers nj(t) available for one occurrence of Ri at time t. So,
the probabilities aidt completely identify the stochastic
process n(t) = (n1(t), n2(t), n3(t))T and its grand proba-
bility function P (η1, η2, η3; t), which gives the probability
of being in the state (n1(t) = η1, n2(t) = η2, n3(t) = η3)
at time t in the reaction volume V .

The stochastic formulation of the reaction system (1)
consists in the chemical master equation that rules the
dynamical behaviour of P (η1, η2, η3; t). The choice of hi,
i = 1, . . . , 6, is a modelling problem similar to the choice
of the functions fi for the fluxes of the deterministic
approach, and again different (kinetic) laws can be adopted
to identify such functions. In particular, we choose for hi
the same function types adopted for fi, but expressing now
hi in terms of cell/molecule copy numbers. Therefore, we
assume the following expressions for the propensities ai:

a1 =c1n1, a2 =c2n1, a3 =c3n2, a6 =c6,
a4 =c4n3/(H4+n3), a5 =c5n1n3/(H5+n3).

(6)

Denoting by δi the i-th column of S and by η=(η1,η2,η3)T

the current value of n(t), the CME is given by

∂P (η; t)

∂t
=−

6∑
i=1

(ai(η)P (η; t)+ai(η−δi)P (η − δi; t)) . (7)

The CME given in (7) cannot be solved either analytically
or numerically, because of the combinatorial explosion
of the possible state values. However, there exist exact
(directly derived from the fundamental hypothesis (5)) or
approximated methods for simulating the time behaviour
of single realizations of the stochastic process n(t). For
instance, the exact algorithm proposed in Gillespie (1976)
or the τ -leap approximation proposed by the same author
in Gillespie (2001).

Because of the aforementioned curse of dimensionality,
typical of CMEs, one usually resorts to inferring infor-
mation on the stochastic process by computing first- and

second-order moments, exploiting a moment closure tech-
nique in order to write the moment equations in closed
form, see Singh and Hespanha (2011). Within this frame-
work, it can be shown, see van Kampen (2007), that by
applying the first-order approximation to the nonlinear
propensities, the first-order moment obeys to

dE{n(t)}
dt

= Sa (E{n(t)}) , (8)

so that, in our case, we obtain

dE{n1}
dt

= (c1−c2)E{n1}−c5E{n1}
E{n3}

H5+E{n3}
,

dE{n2}
dt

= c2E{n1}−c3E{n2}+c5E{n1}
E{n3}

H5+E{n3}
,

dE{n3}
dt

=−c4
E{n3}

H4+E{n3}
−c5E{n1}

E{n3}
H5+E{n3}

+c6.

(9)

It is worth to notice that only two propensities are nonlin-
ear and that system (4) has the same structure of system
(9), meaning that the deterministic model is actually an
approximation of the 1-st order moment of the stochas-
tic formulation provided that the same set of the model
parameters is chosen, namely:

ci =ki, i=1,2,3,5, c4 =ρ, c6 =r, Hi =Mi, i=4,5. (10)

The parameter setting of both formulations can be related
to the parameter estimates given in Drexler et al. (2019).
Indeed, the deterministic model (4) can be rewritten in
terms of the physically measurable quantities considered
in that paper, i.e. tumour volumes or the drug level, simply
scaling the model parameters by means of suitable factors.
The state variables considered in Drexler et al. (2019) are
x1, the proliferating tumour volume (mm3), x2, the dead
tumour volume (mm3), x3, the drug level (mg of drug per
kg of body weight). Such variables can be expressed in
terms of cells/molecules copy numbers, i.e.

x1 = n1Vc, x2 = n2Vc, x3 = n3α, (11)

where Vc is the average cell volume of the considered
tumour cell line and α = m/M , where m is the molecular
mass of the drug and M is the body mass of the pa-
tient. Substituting the relations (11) into the deterministic
dynamical system (4), we can easily obtain the model
equations given in Drexler et al. (2019), below reported
with the same notation for the ease of the reader:

ẋ1 = (a− n)x1 − bx1
x3

ED50 + x3
,

ẋ2 = nx1 − wx2 + bx1
x3

ED50 + x3
,

ẋ3 = −c x3
KB + x3

− bkx1
x3

ED50 + x3
+ u,

(12)

where the following relations exist between the model
parameters of the two formulations:

a=k1, n=k2, ω=k3, c=αρ, b=k5,
bk =(α/Vc)k5, KB =αM4, ED50 =αM5, u=αr.

(13)

The stochastic model (7) behavior has been compared to
the deterministic ODE system (4). The model parameters
in Eqs. (4) are set according to relations (10), (13) and to
the nominal values of the parameters given in Drexler et al.
(2019) (related to breast cancer cells in mice, treated with
Pegylated Liposomal Doxorubicin drug). The cell volume
Vc is fixed to 1.76 · 10−6 mm3 according to Wagner et al.
(2011). The coefficient α is computed according to the
relation α = Vcbk/b. So we set α = 6.5 · 10−12 mg/kg. The
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administration rates c6 and r are set to the same constant
value that has been chosen in the interval (βρ, ρ), where
β is given by Eq. (23). Note that the chosen values of the
model parameters and of the constant administration rate
guarantee the existence of a unique asymptotically stable
equilibrium (see Figure 1 of Section 3).

Regards to the stochastic simulation, the random paths
are obtained exploiting the τ -leap simulation algorithm
(see Gillespie (2001)). Results (not reported here) reveal
that the first-order approximation very well resemble the
first-order moment dynamics, and that the impact of
noise fluctuations seems negligible according to the chosen
parameter values and to the tumour dimension.

3. QUALITATIVE ANALYSIS OF THE MODEL

In this section we analyze the equilibrium points of the
time-invariant deterministic model, i.e. of system (4) with
r(t) = r̄, and their stability properties. Note that all the
reported results are obviously valid for the dynamical sys-
tem (9), related to the 1-st order moment approximation
of the stochastic formulation, but also for the physically
relevant formulation given in Drexler et al. (2019), after a
proper parameter scaling.

We first prove that the solution of the ODE (4) is always
non-negative for non-negative initial conditions n(0) ≥ 0
and non-negative input r ≥ 0. To this end, consider the n3
dynamics: it could become negative if, and only if, there
exists a time instant t such that n3(t) = 0 with ṅ3(t) < 0.
But this is not possible since, if n3(t) = 0, then

ṅ3(t)=−ρ n3(t)

M4+n3(t)
−k5n1(t)

n3(t)

M5+n3(t)
+r=r≥0. (14)

Analogously, n1 would become negative if, and only if,
there exists a time instant t such that n1(t) = 0 with
ṅ1(t) < 0. But this is not possible since, if n1(t) = 0, then

ṅ1(t) = (k1 − k2)n1(t)− k5n1(t)
n3(t)

M5 + n3(t)
= 0 (15)

and, finally, n2 would become negative if, and only if, there
exists a time instant t such that n2(t) = 0 with ṅ2(t) < 0.
But this is not possible since, if n2(t) = 0, then

ṅ2(t) = k2n1(t) + k5n1(t)
n3(t)

M5 + n3(t)
≥ 0, (16)

because we have previously shown that n1, n3 ≥ 0.

Let us now find the equilibria of the time-invariant system.
Denoting by E = (n∗1, n

∗
2, n
∗
3) a generic equilibrium point

of system (4) with r(t) = r̄, we have that E must satisfy
the following algebraic equations coming from ṅ = 0:(

k1 − k2 − k5
n∗3

M5 + n∗3

)
n∗1 = 0,

k2n
∗
1 − k3n∗2 + k5n

∗
1

n∗3
M5 + n∗3

= 0,

−ρ n∗3
M4 + n∗3

− k5n∗1
n∗3

M5 + n∗3
+ r̄ = 0.

(17)

From the first equation of the algebraic system (17) we get

i) n∗1 = 0, or ii) k5
n∗3

M5 + n∗3
= k1 − k2. (18)

By substituting i) in the remaining algebraic equations of
system (17), we get the first equilibrium point

E1 =

(
0, 0, M4

r̄

ρ− r̄

)
, (19)

that is non-negative, and then physically relevant, only
under the condition on the administration rate

r̄ < ρ. (20)

Conversely, from ii) we obtain

n∗3 =
M5(k1 − k2)

k5 − k1 + k2
, (21)

which is strictly positive only when k1 − k2 > 0 and
k5 > k1−k2 or identically zero when k1 = k2. So, under the
parameter conditions k1 > k2, k5 > k1 − k2, substituting
the expression of n∗3 given by (21) in the last two equations
of (17), we obtain the second equilibrium point

E2 =

(
r̄ − βρ
k1 − k2

,
k1
k3

r̄ − βρ
k1 − k2

,
M5(k1 − k2)

k5 − k1 + k2

)
, (22)

where β =
M5(k1 − k2)

M4(k5 − k1 + k2) +M5(k1 − k2)
, (23)

that is non-negative under the further condition on the
administration rate

r̄ ≥ βρ. (24)

We note that the conditions on the model parameters
required for the existence of E2 imply β < 1, see Eq. (23).
We also notice that, when r̄ = βρ, it is E1 = E2 (this
equivalence can be easily verified by substituting r̄ = βρ
in both equilibria (19) and (22)).

Finally, under the singular parameter condition k1 = k2
we have n∗3 = 0 from Eq. (21), and then, from the last two
equations of system (17), we get the following family of
equilibria

f =

{(
z,
k1
k3
z, 0

)
: z ≥ 0

}
, with r̄ = 0. (25)

Table 1 summarizes these results. Note that, in case k1 >
k2 and k5 > k1 − k2, the interval (βρ, ρ) is well defined
since it is β < 1.

Region of the param space Administration rate Equilibria

k1 < k2
0 ≤ r̄ < ρ E1

r̄ ≥ ρ @
r̄ = 0 f(⊃ {E1})

k1 = k2 0 < r̄ < ρ E1

r̄ ≥ ρ @

k1 > k2

k5 ≤ k1 − k2
0 ≤ r̄ < ρ E1

r̄ ≥ ρ @

k5 > k1 − k2

0 ≤ r̄ < βρ E1

r̄ = βρ E1 ≡ E2

βρ < r̄ < ρ E1, E2

r̄ ≥ ρ E2

Table 1. Existence of the equilibria of (4).

3.1 Local stability of E1

The stability properties of E1 are summarized by Theorem
1. We remind that the existence of E1 does not depend on
the values of the model parameters but depends on the
size of the administration rate, i.e. r̄ ∈ [0, ρ).

Theorem 1. Regards to E1 stability, it is:
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(1) if k1 < k2, then E1 is locally asymptotically stable
∀r̄ ∈ [0, ρ);

(2) if k1 = k2, then E1 is locally asymptotically stable
∀r̄ ∈ (0, ρ);

(3) if k1 > k2, then
(a) if k5 ≤ k1 − k2, then E1 is unstable ∀r̄ ∈ [0, ρ);
(b) if k5 > k1 − k2, then E1 is unstable for r̄ ∈

[0, βρ) while is locally asymptotically stable for
r̄ ∈ (βρ, ρ).

Proof 1. The proof of Theorem 1 is given by computing
the Jacobian of the time-invariant system for the equilib-
rium point E1 and then studying the sign of the related
eigenvalues. So, from system (4) with r(t) = r̄, after
computations, we obtain the following eigenvalues

λ1 = k1 − k2 − k5
M4r̄

M5(ρ− r̄) +M4r̄
,

λ2 = −k3, λ3 = − (ρ− r̄)2

ρM4
.

(26)

Eigenvalues λ2, λ3 are strictly negative, since it is required
r̄ ∈ [0, ρ) for the existence of E1. So, the local stability of
E1 only depends on the sign of λ1. Points (1) and (2) of the
theorem can be easily proved noting that: if k1 < k2 then
it is λ1 < 0 for any administration rate in [0, ρ); otherwise,
if k1 = k2 then it is λ1 < 0 for r̄ ∈ (0, ρ).

In order to prove point (3), rewrite the first eigenvalue as

λ1 =
M5(ρ− r̄)(k1 − k2)− (k5 − k1 + k2)M4r̄

M5(ρ− r̄) +M4r̄
. (27)

The denominator is straightforwardly positive. Moreover,
when k1 > k2, the first term of the numerator is also
positive. This means that, in case k5 ≤ k1−k2, it is λ1 > 0
for any administration rate in [0, ρ), so proving point (3a).
Conversely, in case k5 > k1 − k2, we get

λ1>0⇐⇒ r̄ ∈ [0, βρ), λ1<0⇐⇒ r̄ ∈ (βρ, ρ). (28)

Relations (28) complete the proof of point (3b).

3.2 Local stability of E2

The stability properties of E2 are summarized by Theorem
2. We recall that E2 can exist only in the region of the
parameter space identified by k1 > k2, k5 > k1 − k2,
depending on the value of the administration rate, i.e.
when r̄ ≥ βρ, where β is given by Eq. (23). So, the
following result is valid only in the region given above and
shows how the stability of E2 depends on r̄.

Theorem 2. The local stability of E2 only depends on the
value of the constant administration rate r̄. In particular:

E2 is unstable ∀r̄ > βρ. (29)

Proof 2. The proof of Theorem 2 is given by computing
the Jacobian at the equilibrium point E2. After computa-
tions, the characteristic polynomial of J |E2 is given by:

pJ|E2
(λ) =

(
λ2 − (k5 − k1 + k2)2

k5M5(k1 − k2)
(γρ− r̄)λ

− (k5 − k1 + k2)2

k5M5
(r̄ − βρ)

)
(λ+ k3). (30)

where γ =
M5(M5 −M4)(k1 − k2)2

(M4(k5 − k1 + k2) +M5(k1 − k2))2
. (31)

The eigenvalues λ1, λ2, λ3 of J |E2
are the roots of pJ|E2

(λ),
i.e. they satisfy the equation

pJ|E2
(λ) = (λ− λ1)(λ− λ2)(λ− λ3) = 0. (32)

So, comparing Eqs. (30) and (32) we easily get

λ1 + λ2 =
(k5 − k1 + k2)2

k5M5(k1 − k2)
(γρ− r̄),

λ1λ2 = − (k5 − k1 + k2)2

k5M5
(r̄ − βρ), λ3 = −k3.

(33)

At this point, it is important to note that the conditions
k1 > k2 and k5 > k1−k2, required for the existence of E2,
imply the following inequalities:

γ < β2 < β < 1. (34)

Since E2 is defined only when r̄ ≥ βρ, (34) guarantees also
that γρ− r̄ < 0. In summary, sum and product of the first
two eigenvalues given by Eq. (33) are characterized by

λ1 + λ2 < 0, λ1λ2 ≤ 0. (35)

The second inequality given above implies that one eigen-
value is always negative while the other one is non-
negative. So, assuming it is λ2 < 0, from the expression of
λ1λ2 given by Eq. (33), we have that:

λ1 > 0 for any r̄ > βρ, (36)

which completes the proof of the theorem.

4. DISCUSSION

The qualitative behavior derived for the deterministic
model (4) can be directly applied to system (9), which
approximates the dynamics of the 1-st order moment of
the stochastic formulation, and to the deterministic system
given in Drexler et al. (2019), by suitably scaling the model
parameters using respectively (10) and (13).

Remark 1. With regard to the model in Drexler et al.
(2019), we need to warn the reader of some little differences
due to the presence of two different rate constants, i.e.
b and bk, emerging from the drug action rates of ẋi,
i = 1, 2, 3. In more detail, the constants bk (in ẋ3)
and b (in ẋ1, ẋ2) have different dimensions and values
and they appear when we transform system (3) into the
equivalent formulation in terms of the more physically
relevant variables xj , j = 1, 2, 3 (see Section 2). So, in
case of the model given in Drexler et al. (2019), the
parameter k5, distinguishing between the different cases
in the equilibrium framework of Table 1 and between the
different stability properties of E1 in Theorem 1, must be
substituted by the parameter b (and not by bk). Moreover,
the expressions of n∗1 and n∗2 of E2 must be suitably
multiplied by the scaling factor b/bk.

Figure 1 is given in order to collect and summarize the
existence and stability properties. As a preliminary com-
ment, we stress that E2 is of no interest, since there is
no model parameter combination (including the constant
control law) providing asymptotic stability. On the other
hand, with regards to the E1, it consists of a healthy
condition where the tumour is completely eradicated under
a baseline infusion, and the qualitative behavior analysis
has shown that it can be stabilized by means of a constant
control. We can formally divide the parameter space in
three regions (see the upper panel in Figure 1). Region S1

provides asymptotic stability for any value of the control
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Fig. 1. Existence and stability of E1, upper panel, and
E2, lower panel, as functions of r̄. Shaded regions
and black crosses evidence where the equilibria do
not exist. Solid blue line: stability; dashed blue line:
instability; blue points: nothing can be said according
to the linearization.

infusion r < ρ. This is an optimistic case where physio-
logical cell necrosis is able to defeat tumour proliferation
even without a control action. Reasonably this case may
be associated to the initial spreading of the tumour, where
an exogenous chemotherapy could be of some help just
in enhancing the tumour eradication. For higher values of
r > ρ the existence of the equilibrium point is lost because
there would be an unbounded accumulation of the drug
(with a corresponding eradication of tumour), eventually
leading to a loss of meaningfulness of the model.

Region S2, instead, refers to a case where there is no set
of the control parameter ensuring stability. The strength
of the positive net balance between tumour proliferation
and necrosis is too high with respect to the strength of
the exogenous chemotherapy, and the drug is not able to
stabilize the growth, no matter what is the drug adminis-
tration rate. In this case, of course, chemotherapy would
provide only side effects, and would not be recommended.

Finally, region S3 investigation tells us that, for a suffi-
ciently high rate of drug administration, the equilibrium
point E1 can be stabilized: in this case a tradeoff between
drug-induced tumour eradication and chemotherapy side
effects could be found getting closer to lower bound of the
stability range, i.e. r → βρ.
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