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Abstract: We present a study of the scaling properties of the interconnection of n agents
(e.g. vehicles) through an r-lookahead network. These networks are considered as a possible
implementation for vehicle platooning, although we do not make any assumptions on what
the agents represent, and we assume them to be linear time invariant (LTI) discrete time
systems, locally controlled by an LTI controller. In particular, we show that the r-lookahead
topology gives rise to dynamics which can be studied from the roots of polynomials with transfer
functions as their coefficients. Through numerical simulations, we study aspects relating the use
of lookahead measurements and their effect on the value of a time headway constant needed for
the scalability property known as string stability.
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1. INTRODUCTION

The study of unidirectionally interconnected vehicular
agents has been of interest for many years (Middleton
et al, 2010; Knorn et al, 2016; Stüdli et al., 2017; Feng
et al., 2019). Applications can be found in such diverse
areas as irrigation channels (Cantoni et al, 2007), supply
chains (Perea et al, 2000), harmonic oscillators (Yu et al,
2015) and vehicle platooning (Flores et al, 2018; Darbha
et al, 2018).

The unidirectionality and low information flow between
agents is known to enable instances for the amplification
of disturbances along the string of agents. Topologies that
allow to compensate for this phenomenon are said to
achieve String Stability. Many results focus on achieving
string stability for homogeneous agents, (Flores et al,
2018; ?), whilst other results extend the discussion to
heterogeneous agents, (Bian et al, 2019; Rodonyi, 2019).
Most of the results have been derived for the case where the
agents are continuous time systems. Recently, Vargas et al
(2018) considered extensions of String Stability results
for the discrete time case, motivated by the fact that
Cooperative Adaptive Cruise Control Systems (CACC)
rely on wireless communications that can be usually more
easily treated in a discrete time setting.

A possible analysis approach for continuous time inter-
connected agents in a chain is to make use of the Laplace
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transform in the time domain and the Z-transform in the
spatial domain to define a string stability transfer function
as

Γi(s) =
yi(s)

yi−1(s)

where yi is the position of the i-th agent.

In this work, we aim to extend results from Konduri
(2017); Bian et al (2019) where, for the continuous time
case, extending the range of communications and their im-
pact on the needed time headway for string stability were
studied. In both works, the agents considered had fixed
simple dynamics, and it was assumed that the agents had
measurements of the position, velocity and acceleration of
the nearest r predecessors ahead of them. Our contribution
is to perform a first approach to the discrete time case with
general models for the agents (without specifying their
nature a priori), and only assuming that they can measure
the output, and the rate of change of the outputs, of the
r nearest predecessors. The latter is a key departure from
the analysis of continuous time systems in a platooning
setting. We provide formulae for the resulting dynamics
in a general setting of the interconnection and we also
consider the use of a constant time-headway spacing policy
in a platooning setting.

Notation: In this work all matrix entries not explicitly
stated are assumed to be zero and, for simplicity in the
exposition, all transfer functions will have omitted argu-
ments (the frequency domain variable z) unless needed.
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2. PRELIMINARIES

We will consider n agents, which could be vehicles, with
the same frequency domain description given by

Yi = H(Ui +Di), (1)

where Yi is the Laplace transform of the output of the i-
th agent (yi(k)), Di is the Laplace transform of its input
disturbance, H is a transfer function representing the
agent LTI dynamics and Ui is the Laplace transform of
its control action.

For the considered setting, the control signals Ui at every
agent are defined as

U1 =0, (2)

U2 =K(Y1 − Y2 −∆2), (3)

Ui =K

(
i−1∑
k=2

Bk−2Yk−1 +AYi−1 − Yi −∆i

)
, 2 < i ≤ r,

(4)

Ui =

(
r−2∑
k=0

BkYi−k−2 +AYi−1 − Yi −∆i

)
, r < i ≤ n,

(5)

where A and Bi, i = 0, . . . , r − 2, are proper and stable
transfer functions, K is a controller that stabilizes H
in closed loop and ∆i reflects a certain reference policy
or desired inter-agent spacing. Note that ∆i could be a
constant but it could also contain other terms such as the
rate of change of the i-th agent in platooning applications.
In such cases, it would be possible that A and Bi have to
be modified accordingly.

Remark 1. Having A 6= 0 for all z implies that the i-
th agent has available information from its immediate
neighbour with index i− 1. In the platooning setting this
implies that the vehicle senses its distance from the nearest
front neighbour, i.e. its predecessor.

Having Bi 6= 0 for all z implies that the i-th agent also
has information from the agents up to the one with index
i = 1 if i ≤ r or up to the agent with index i−r otherwise.
In a platooning setting this would correspond with the
availability at the i-th agent of the lead vehicle information
if i ≤ r or of the (i − r)-th agent otherwise. The latter
would imply that there exists a limitation on the range
of the inter-agent communications, which is a reasonable
assumption in real applications.

The input of the controller is then a weighted sum of
the outputs of the predecessor within the communication
reach.

We will now consider as an illustrative example the case
r = 2 and ∆i = 0 for all i. That is, the agents possess
information of their two nearest predecessors. Moreover,
since the dynamics are LTI, we will consider zero initial
conditions for the agents, that is yi(0) = 0, for all i.

Now, the dynamics of the agents can be written in matrix
form as

Y = (I −KHG)−1HD, (6)

where Y = [Y1 · · · Yn]
>

, D = [D1 · · · Dn]
>

, I is the n×n
identity matrix and G ∈ Cn×n is given by

G =


0
1 −1
B0 A −1

. . .
. . .

. . .
B0 A −1

 . (7)

Now, in order to obtain closed form expressions for every
element of the matrix (I − KHG)−1HD we can write
(I −KHG)−1 in the following way

(I −KHG)−1 =

[
1 ζ>n−1

−KH(e1 +Be2) KHΦ

]−1
(8)

=

[
1 ζ>n−1

Φ−1(e1 +Be2)
1

KH
Φ−1

]
, (9)

where ζ>n−1 ∈ Rn−1 is a vector of zeros, ek ∈ Rn−1 is a
canonical vector of Rn−1 (only the k-th entry is non zero
and equal to 1) and Φ is the n−1×n−1 lower triangular
matrix

Φ−1 =



T−1

−A
. . .

−B0
. . .

. . .
. . .

. . .
. . .

−B0 −A T−1



−1

, (10)

=


f1,1

f2,1
. . .

...
. . .

. . .
fn−1,1 · · · fn−1,n−2 fn−1,n−1

 , (11)

with T , the usual complementary sensitivity function of
the local closed loops, given by

T =
KH

1 +KH
. (12)

The inverse Φ−1 is also a lower triangular matrix with
constant diagonals, whose elements are given by

fi,j =

{
Fi−j if i ≥ j
0 if i < j,

(13)

and the sequence {Fk} is such that F0 corresponds to the
main diagonal and F1 to the first sub-diagonal, etc. As Φ
only has three non-zero diagonals, it is straightforward to
note that the sequence {Fk} satisfies the recursion

Fk−1 = ATFk−2 +B0TFk−3, (14)

with initial conditions F0 = T and F1 = AT 2. We can
now solve the recursion (14) using any method. Using the
Z-transform we have that

Fk = α1λ
k−1
1 + α2λ

k−1
2 , (15)

where λ1,2 are the roots of λ2 −ATλ−B0T = 0, that is

λ1,2 =
AT ±

√
(AT )2 + 4B0T

2
, (16)

and

α1 + α2 =T, (17)

α1λ1 + α2λ2 =AT 2. (18)

Solving for α1 yields
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α1

√
(AT )2 + 4B0T +

AT 2

2
−
T
√

(AT )2 + 4B0T

2
= AT 2

(19)

and therefore

α1,2 =
T

2
±
AT 2

√
(AT )2 + 4B0T

2((AT )2 + 4B0T )
. (20)

It is to be expected that all the terms with radicals dis-
appear in the final expressions for Fn, since we are just
inverting a matrix with rational functions. However, the
roots of the polynomial describing the recursion given in
(14) contain implicit information about the limiting be-
haviour of Fk/Fk−1, much like for the Fibonacci sequence.
For example, if |λ2| < 1 on the unit circle, we should have

lim
k→∞

∣∣∣∣ FkFk−1

∣∣∣∣ = |λ1| =
|AT +

√
(AT )2 + 4B0T |

2
. (21)

Remark 2. In platooning applications, it is common to
consider the study of the inter-vehicle spacings errors
efi(t) = yi−1(t)− yi(t)− δi, i > 1, where δi is the desired
inter-vehicle spacing. The frequency domain equivalents
can be easily built from the formulae for Y in (6), already
obtained.

Therefore, it is of interest to study the behaviour of Fk and
Fk−1−Fk as k grows large. For platooning applications, it
would be especially important to characterise conditions
for the parameters that will ensure that the sequence of
transfer functions {Fk} is bounded uniformly with k under
certain norms.

3. ARBITRARY COMMUNICATION RANGE

It is well known that having information from the leader
is enough to ensure good scalability in platooning applica-
tions (see for example Seiler et al. (2004)). It would then
make sense, in the case that the communication range
is restricted, to have every agent reaching for the agents
closest to the leader that it can. We consider now the block
matrix

G =

[
G0

G2 G1

]
, (22)

where

G0 =



0
1 −1
B0 A −1
B0 B1 A −1
...

...
. . .

. . .
. . .

B0 B1 · · · Br−1 A −1

 , (23)

is an (r+1)×(r+1) matrix, G1 is the (n−r−1)×(n−r−1)
lower triangular Toeplitz matrix with non zero diagonals
given by the vector (−1, A,Br−2, Br−3, . . . , B0) (that is,
the main diagonal is all −1, the first sub-diagonal is all A,
and so on.) and G2 is given by

G2 =



0 B0 B1 · · · A
...

. . .
. . .

. . .
...

...
. . .

. . . B1

0 · · · · · · 0 B0

0 · · · · · · · · · 0
...

...
0 · · · · · · · · · 0




(n− r − 1 rows). (24)

Fig. 1. A platoon of vehicles with r lookahead communi-
cations.

Analogously to the case r = 2, we must have

(In−KHG)−1 =

=

[
(Ir+1 −KHG0)−1

Θ (In−r−1 −KHG1)−1

]
,

(25)

where

Θ = KH(In−r−1 −KHG1)−1G2(Ir+1 −KHG0)−1.
(26)

In other words, we must study the inverse matrices (Ir+1−
KHG0)−1 and (In−r−1 − KHG1)−1. However, the in-
verse (Ir+1−KHG0)−1 is well known and studied (leader
following schemes in platooning). We must focus in com-
puting and studying the inverse (In−r−1 − KHG1)−1.
Again, analogously to the case r = 2, we can see that there
is a recursion for obtaining the elements of the matrix

(In−r−1 −KHG1)−1 (27)

which is given by (understanding again that this inverse is
a Toeplitz matrix, i.e. has constant diagonals, see (13))

Gk = ATGk−1 +Br−2TGk−2 + · · ·+B0TGk−r, (28)

with initial conditions G1 = T , Gi = (AT )i−1T for i =
2, . . . , r. The characteristic polynomial is then given by

zr −ATzr−1 −Br−2Tzr−2 − · · · −B0T = 0. (29)

Analogous to the case r = 2, we would be interested in
studying the sequence of transfer functions from distur-
bances to inter-vehicle spacings.

4. PLATOONING AND THE CONSTANT TIME
HEADWAY SPACING POLICY

In 1D platooning applications, when the leader state is not
available to the followers, the spacing policy is relaxed,
in order to avoid scalability issues such as string stability.
This is a key compromise between safety and performance,
as the relaxation will decrease the usage of the capacity
of the traffic network. Each follower will keep a desired
distance to its predecessor given by a fixed distance δ
(now assumed to be equal for all agents) plus a distance
proportional to its instantaneous speed, through the use
of a time headway constant h.

For example, in Fig. 1, we can see a graphical represen-
tation of the agents in a platoon configuration. In such
case, the signal ψi represents the measured distance to the
(i − 1)-th agent made by the i-th agent. The signal `i−1
represents the measured distance to the (i − r)-th agent
made by the (i− 1)-th agent.

We will assume that the agents start at rest in the desired
formation (when all the agents have zero velocity) and
have the following control signals in the frequency domain
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U1 = 0, (30)

U2 = K

(
Y1 − Y2 − δ − h

(
Y2 −

Y2
z

))
, (31)

Ui = K

(
η

(
Y1 − Yi − (i− 1)δ − h

i∑
k=2

(
Yk −

Yk
z

))

+ (1− η)

(
Yi−1 − Yi − δ − h

(
Yi −

Yi
z

)))
, (32)

for 3 < i ≤ r, and

Ui =K

(
η

(
Yi−r − Yi − (i− 1)δ − h

i∑
k=i−r

(
Yk −

Yk
z

))

+ (1− η)(Yi−1 − Yi − δ − h
(
Yi −

Yi
z

))
, (33)

for r < i ≤ n, where η ∈ [0, 1] is a design parameter that
weights how relevant are the available measurements in
the control action.

Remark 3. In this case, every follower builds the input
to their controller by comparing their distance to the
immediate predecessor and their distance to either the
leader or the (i − r)-th follower and averaging them
through η. Moreover, the desired spacing between vehicles
corresponds to a constant space δ plus a variable constant
time headway space, proportional to the rate of change
of the output of each agent. It is important to note that
in order for a follower to compare their distance to the
leader/farthest reachable predecessor to the desired inter-
spacing, they must have access to the speed of every
predecessor between them. This requirement increases the
communication network complexity and demands extra
steps for new agents to merge into the platoon, especially
when the agents use different spacing policies.

For simplicity in the exposition, in the following derivation
we will consider that δ = 0. With this, it is possible to write
the control signals as

U2 = K

(
Y1 −

(
1 + h

z − 1

z

)
Y2

)
, (34)

Ui = K

(
ηY1 − ηh

i−2∑
k=2

z − 1

z
Yk

+

(
(1− η)− ηhz − 1

z

)
Yi−1 −

(
1 + h

z − 1

z

)
Yi

)
,

(35)

for 2 < r < i ≤ n, and

Ui = K

(
ηYi−r − ηh

i−2∑
k=i−r−1

z − 1

z
Yk

+

(
(1− η)− ηhz − 1

z

)
Yi−1 −

(
1 + h

z − 1

z

)
Yi

)
,

(36)

Recalling Fig. 1, each agent is using the measurements ψi
and `i in order to build the input to the controller K by
comparing them to the desired inter-vehicle spacings and
the leader-follower spacings. If we consider the transfer
function

W = (1 + h)− h/z, (37)

we have that the current control scheme is equivalent to
the interconnection studied in the previous section with

A =
1− ηW
W

, B0 =
η

W
, Bi = η

1−W
W

, (38)

for i = 1, . . . , r − 2.

Remark 4. For achieving the main goal of platooning,
that is, every agent reaching the speed of the leader,
while maintaining the desired inter-vehicle spacings, it is
required that the product HK possesses two integrators
(see for instance Seiler et al. (2004)). We will assume that
this is indeed the case.

5. CONDITIONS FOR STRING STABILITY

The following Bode-like integral Lemma, taken from Seron
et al. (2012), is key in determining the aspects of the local
closed loops at each agent that could produce disturbance
amplifications.

Lemma 5. Let T be a real rational scalar function of
z ∈ C. Suppose that T (1) = 1 and also that T is stable.
Then ∫ π

0

ln
∣∣T (ejθ)

∣∣ dθ

1− cos(θ)
≥ πT ′(1). �

Lemma 5 can be used to establish that the complementary
sensitivity function T , defined in (12), satisfies ||T ||∞ > 1,
since the product HK possesses two integrators, as stated
in Remark 4 (Vargas et al, 2018).

According to results in Konduri (2017); Bian et al (2019)
the string stability of the r-lookahead interconnection
is completely determined by the spectral radius of the
polynomial in (29). In general we cannot obtain analytical
expressions for the roots of this polynomial, however, we
can make some initial simple observations.

Proposition 6. The interconnected system (6) is string
unstable for any arbitrary but finite communication range
r if ||B0T ||∞ > 1.

Proof. B0T corresponds to the constant term of the
polynomial in (29), which also corresponds to the product
of all the roots of the polynomial (recall Vieta’s formulas).
If there exists any θ ∈ [0, 2π] such that |B0(ejθ)T (ejθ)| >
1, we must have that the product of the roots of the
polynomial is greater than 1 at said frequency, which
implies string instability. 2

Although this result is straightforward, it provides an
initial design restriction of the filters used to interconnect
the agents. In particular, we have that B0 = η/W . Both η
and h can be selected to ensure that ||B0T ||∞ < 1.

6. NUMERICAL EXAMPLES

We will consider a collection of agents modelled by double
integrator dynamics, that is, in (1)

H =
1

(z − 1)2
, (39)

and the control structure and spacing policy (30)-(33) with
local controllers given by
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Fig. 2. Bode plots for |T (ejθ)/W (ejθ)| for varying h ∈ [2, 5]

K =
1.1548(z − 0.7832)

W (z + 0.8306)
=

1.1548(z − 0.7832)

((1 + h)− h/z)(z + 0.8306)
,

(40)

where h is the time headway constant for the used spacing
policy. Since the product HKW has two integrators,
Lemma 5 implies that ||T ||∞ > 1. In particular, for the
data above ||T ||∞ ≈ 1.856.

This selection for the local controllers, with W as a factor
in the denominator, is made by many works that consider a
constant time headway spacing policy. In particular Knorn
et al (2013) computes the infimal value of the constant
h for the continuous time case in order to achieve string
stability of a nearest neighbour communication topology.
The discrete time case was first reported in Vargas et al
(2018). In particular, the infimal value of the time headway
constant for string stability when r = 1, hinf is given by
the largest root of

2h(1 + h)− c = 0, (41)

where c is computed as

c = sup
θ∈(0,π)

{(∣∣T (ejθ)∣∣2 − 1
)
/(1− cos θ)

}
. (42)

For the considered data we have that hinf ≈ 3.3566.

For the time simulations, we will focus on the signals

efi(t) = yi−1(t)− yi(t)− h(yi(t)− yi(t− 1)), (43)

that is, the inter-vehicle errors from the desired spacings.

6.1 Effect of the time headway constant

In Fig. 2 we have the Bode plots of the transfer function
T/W for different values of the time headway constant h.
For r = 1 this is the transfer function that defines the
string stability of the interconnection, as it is straightfor-
ward to note that the polynomial (29) has a single root
at T/W . As computed before we see that for values of h
greater than 3.3566 the magnitude peak of T/W occurs
at θ = 0 and equals unity. Otherwise, the peak is greater
than one and string instability will occur.

In Fig. 3 we see the time response of 50 agents when
r = 1 and the leader travels at 1 unit per sample. For
h = 3.8 > hinf , the inter-vehicle errors ef do not grow
along the platoon. However, the opposite occurs when
h = 2.8 < hinf . Note that Blue corresponds to agents
closer to the leader and Red corresponds to agents farther
away from the leader.

6.2 Effect of increasing the communication range

As given by (16), the eigenvalues of the interconnection
can be obtained explicitly. For η = 0.3 in Fig. 4 we can see

0 50 100 150 200 250 300 350 400

t

-0.5

0

0.5

1

1.5

2

e
fi
(t

)

Inter-vehicle errors

0 50 100 150 200 250 300 350 400

t

-4

-2

0

2

4

e
fi
(t

)

Fig. 3. Inter-vehicle errors for h = 3.8 (top) and h = 2.8
(bottom) with nearest neighbour communication (r =
1)

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 4. Magnitudes of the roots λ1,2 in (16) for r = 2 when
η = 0.3. Blue: h = 1.1, Red: h = 5, Black h = 3.1

the magnitudes of these eigenvalues for different values of
the time headway constant h. We can observe that when
h = 3.1 < hinf both eigenvalues have magnitude less than
1. Therefore, amplification of disturbances should not be
observed.

In Fig. 5 we see the time response of 50 agents for the same
leader trajectory as before when h is fixed at 3.1 < hinf .
For r = 1, as predicted before, the transient amplifies along
the string. For r = 2 and η = 0.3, we have that the platoon
becomes string stable. This highlights the potential for
increasing the platoon performance in the inter-vehicle
spacings, at the cost of increased communication range.

6.3 Effect of varying the parameter η

In Fig. 6 we observe the effect of the parameter η with
fixed h = 3.2 and r = 3 with N = 100. We can see that
increasing η has a negative impact on the string stability
of the platoon. When r → ∞ (that is, when every agent
communicates with the leader) it is known that η > ||T ||−1∞
is sufficient to ensure string stability, even with h = 0, (see
for instance Seiler et al. (2004)). It is unclear what is the
trade-off between η and h when r is finite.

According to results from Bian et al (2019), increasing r
yields smaller necessary values of the time-headway for
string stability. However, this result was obtained with
every follower possessing measurements of the position,
velocity and acceleration of its predecessors. In the current
setting, it is not clear whether this same conclusion is true
and more research is required.
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Fig. 5. Inter-vehicle errors for r = 1 (top) and r = 2
(bottom) with fixed h = 3.1 and η = 0.3.
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Fig. 6. Inter-vehicle errors for η = 0.1 (top) and η = 0.45
(bottom) for fixed range r = 3 and h = 3.2.

7. CONCLUSION

We have studied a platooning problem with limited range
communications, where the agents are modelled by dis-
crete time LTI plants. By using numerical simulations
and a direct method for obtaining the resulting dynamics
of the interconnected system we have demonstrated that
increasing the forward communication range of an agent
may allow for the relaxation of the necessary time headway
constant value for string stability. More work is needed to
characterize the relationship between the increase in the
range and the control scheme parameters. We noted that
if the parameters are not selected properly, the range in-
crease may deteriorate the string stability property. Future
works will be directed at understanding this and related
issues.
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