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Abstract:

A fast data-driven extension of the velocity-based quasi-linear parameter-varying model predictive
control (QLMPC) approach is proposed for scenarios where first principles models are not available or are
computationally too expensive. We use tools from the recently proposed Koopman operator framework
to identify a quasi-linear parameter-varying model (in input/output and state-space form) by choosing the
observables from physical insight. An online update strategy to adapt to changes in the plant dynamics
is also proposed. The approach is validated experimentally on a strongly nonlinear 3-degree-of-freedom
Control Moment Gyroscope, showing remarkable tracking performance.
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1. INTRODUCTION

Model Predictive Control (MPC) is one of the most widely used
control strategies thanks to its versatility, easy extension to mul-
tiple input-multiple output systems, and capability to explicitly
consider constraints. On the other hand, its main drawback is
the complex computations (when compared to other strategies)
entailed by the online solution of an optimization problem. This
becomes a problem for complex nonlinear systems, in which
case a non-convex optimization problem needs to be solved. To
tackle this issue, several algorithms have been proposed which
solve an approximate problem, enabling its implementation for
system with fast dynamics. One such algorithm, referred to
as quasi-Linear Model Predictive Control (QLMPC) has been
proposed in (Cisneros et al., 2016), where a nonlinear system is
modeled as a quasi-Linear Parameter Varying (QLPV) system.
When compared to other state-of-the-art methods, e.g. Diehl
et al. (2005), qLMPC shows to have comparable numerical
and closed-loop performance (Cisneros and Werner (2017)). An
extension of the qLMPC approach to plant models in input-
output form was presented in (Cisneros and Werner, 2019). An
efficient method for obtaining a qLPV model via a velocity
algorithm is proposed in (Cisneros and Werner, 2020).

For scenarios where first principles models cannot be com-
puted in a practical manner, or are otherwise too complex for
a meaningful implementation of the control law, data-driven
techniques represent a promising alternative. One such line of
research, relevant for this paper, is based on the work of Koop-
man (Koopman, 1931). These techniques are gaining consider-
able attention within the control (especially MPC) community,
evident from a number of recent results such as in (Korda and
Mezi¢, 2018a), (Abraham et al., 2017), (Kaiser et al., 2018),
(Korda et al., 2018), (Arbabi et al., 2018), (Proctor et al., 2016),
(Hanke et al., 2018) and others. A survey on Koopman operator
theory can be found in (Budisi¢ et al., 2012). A survey oriented
towards control can be found in (Kaiser et al., 2020). The idea
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at the core of most of these works is to approximate a nonlinear
system with a higher dimensional lifted linear system such that
the state predictions can be obtained by propagating a higher
dimensional linear system forward in time. As a consequence,
instead of a non-convex optimization problem, a quadratic pro-
gram can be posed for the higher dimensional linear system. To
keep the size of the optimization problem from growing with
the dimension of the lifted space, it is often posed in the so-
called dense formulation (for example in (Korda and Mezi¢,
2018a)). Extensions using reproducing kernel methods can be
found in (Williams et al., 2014). Other data-driven approaches
are e.g. (Kadali et al., 2001), where a predictive control law
is derived by data-driven subspace identification, making it
suitable only for linear systems.

We propose an alternative approach in this paper, building
on the results in (Cisneros et al., 2016) and (Cisneros and
Werner, 2020), and using Koopman-based identification tech-
niques simply to obtain a velocity-based qLPV model. The
identification process can be seen as applying the extended
Dynamic Mode Decomposition (eDMD, Williams et al. (2015))
algorithm with the addition of recovering a qLPV model at the
end. We present our results both for the case when the identified
qLPV model is in state-space form, as well as for the case where
it is in input-output form. We present experimental results on
a complex nonlinear MIMO plant - a Control Moment Gyro-
scope (CMQG) - to demonstrate the practicality of the proposed
approach. By choosing appropriate observables a priori based
on physical insight, we show that excellent control performance
can be achieved with a relatively small number of observables.
Motivated by the ideas behind recursive least squares estima-
tion (Hsia, 1977), applied to the Dynamic Mode Decomposi-
tion (DMD) algorithm in (Zhang et al., 2019) and (Peitz and
Klus, 2018), we propose a slightly modified approach where the
model is updated whenever novel dynamics are encountered.
This differs from the approach of online learning presented in
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(Li et al., 2017) where the library of observables is updated
online.

This paper is organized as follows: Section 2 gives a brief
overview of the Koopman operator theory. In Section 3 the
algorithm for computing an approximate Koopman operator
is derived. Section 4 presents how to obtain a velocity-based
state space and input-output model, respectively, that can be
used in an qLMPC scheme, given an approximate Koopman
operator. Section 5 briefly introduces the qLMPC scheme.
Section 6 details the experimental implementation and presents
the results of the controller applied to a Control Moment
Gyroscope. We end in section 7 with conclusions and outlook.

Notation

The notation Co(a,b) with a,b € R" is used to denote the
convex hull obtained from a convex combination of a,b, i.e.
Co(a,b) = Aa+ (1 —A)b,A €0,1]. The backward time-shift

operator is denoted by g~ .

2. KOOPMAN BASED IDENTIFICATION OF
DYNAMICAL SYSTEMS

Consider a system whose dynamics are governed by the
discrete-time non-linear model

X1 = f (e, ) o
where x; € R”, u; € R™ and the map f : R” x R™ — R" propa-
gates the state forward in time. The discrete-time dynamics can
be embedded in a lifted system by defining a new state z; € R'=
withn, =n+mas zx = [x] u!]” This new extended system is

defined by
Zepl = |:xk+l:| _ |:f(xkauk):| :F(Zk) ()

g ok, )
where F : R — R"z,

Remark: As is elaborated in Proctor et al. (2018), g(xx,u)
is defined depending on the particular application. We wish
to discover the dynamics in (1) which is characterized by the
projected map £ : R" — R" defined by £ = [I O]F. The choice
of g(xi,uy) is therefore irrelevant for our purpose, since we are
not interested in discovering a model of the control law being
applied.

Let H denote the infinite dimensional Hilbert space of ob-
servables chosen here as the space of locally square integrable
functions. So, for a compact Z C R™, an element y € H is a
map y: Z — R.

The Koopman operator K : H — H is then defined for the
dynamical system (1) by the relation

K(y)=wyoF

We will be interested in the finite dimensional approximation

of the Koopman operator by choosing a finite set of observables
l’lw . . . .

{yi},r,. With a view on approximating (3), we want to find a

matrix K € R™*"v as an approximation of the the Koopman

operator K such that Vz; € R" :

Yy eH. 3)

Vi (2kt1) Kyt Kz ... Kipy, w1 (2x)
V(241 Ky Kn ... Ky, | | v2()

: = : : . : : S
ll’/z,,,(Zk«H) Knv,l KnV,Z K”W"W ‘I/nw(zk)
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Let us stack the observables to obtain ¥ € H"v as a map
¥: Z — R" defined as ¥(z) = [y1(z) ¥2(2) - ¥, (2)]". Note
that the finite dimensional approximation K asymptotically
approaches the exact infinite dimensional operator K as the
dimension ny, of the image space of ¥ approaches infinity by
stacking more and more linearly independent observables (in
the sense of the inner product on #) y; to ¥ (Korda and Mezic,
2018b).

Consider equation (4) as a prediction equation for the observ-
ables. We can, by an appropriate choice of basis functions, ob-
tain an expression for the prediction of the state itself. Recalling

that z = [xT uT] T, define the observable vector

T(Z) = [xT u” Vitmi1(2) - WnW(Z)]T- )

Using equation (4), an approximation of the model (1) is given
by (Williams et al. (2015))

Xi+1 %klP([zﬂ)’ ©)

where K = [I, O] K. Note that, as expected, the system dynam-
ics are linear in a lifted space spanned by the basis functions.
In this way, non-linearities can be captured by an appropriate
choice of W(-). This means that these functions play a cru-
cial role in the accuracy of the approximated model, so their
choice must be made with care. We select the basis functions
by picking some or all of the nonlinear functions that appear
in the underlying dynamical model, i.e. the R.H.S of (1). Even
though this usually does not lead to an exact finite dimensional
representation of the Koopman operator, we use a finite dimen-
sional approximation and show in experiments that this leads
to excellent results. Alternatively, polynomial, Fourier, radial
or any other standard basis functions could be used, keeping
in mind that the number of necessary basis functions using
these bases might be considerably higher and it may not yield
satisfactory results.

3. ONLINE COMPUTATION OF APPROXIMATE
KOOPMAN OPERATORS

Assume that a data-set Z = {zi,zf},-:()’l,.,p is collected, where
z; and zi+ are consecutive data points. Note that the data-set Z
needs not correspond to a single trajectory, i.e. the data pairs
need not be consecutive to one another. The collected data can
be stacked column-wise in data matrices D, DT € R *P as

D=[¥(20) ¥(a1) - ¥(zp)], D" =[P(z5) W(zy) - ¥(zp)]

note that D7 is just the time-shifted version of D. The opti-
mization problem is thus

min %HD*—KDH% (7
where ||X||r = /Trace(XTX) is the Frobenius norm. The
problem can be solved analytically by solving

KDD" =D D’
K =AG’
where we have defined (as introduced by Williams et al. (2015))
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1 1 &
G=—-DD' =~ Y W(z,)¥(z,)"
P P&
1 +nT 1 c T
A=—_DD"' ==Y W(z,:1)¥(zp)
P P&

3.1 Recursive computation

Based on the well known recursive least squares algorithm
(Hsia, 1977), we use an online update similar to the one pro-
posed in (Peitz and Klus, 2018). However, an online solution
of (7) using the definition above would require the storage and
update of the data vectors DT, D which could result in mem-
ory management issues. Furthermore, the computation would
become increasingly demanding with the growing number of
stored data points P. Alternatively, only G, A and P can be
stored and adding a data point at time step k can be done
according to

PT=P+1
Gt — P% (PT = 1)G+P(z)P(z)") ®)
At = p% ((P* = DA+¥ ()% ()"

where T denotes the updated variables. Using these definitions,
the Koopman operator can be updated online with consistent
and relatively low computational complexity, regardless of the
number of data points that have been added to the data set Z. In
comparison to the online update proposed in (Peitz and Klus,
2018), we perform the update step only when the current model
fails to match with observed data; this is discussed next.

3.2 Koopman operator update

Although as seen in the previous section, adding new informa-
tion to the model (in the form of data pairs {zx_1,2}) involves
only little computational burden, doing so at every time step
is not advisable, as adding e.g. steady-state data-points would
result in significant new information having little influence on
updating the model (the weight 1/P of any new data point
would make the effect negligible for large values of P). For
this reason, incoming state and input data need to be analyzed
in some way to determine if they represent new information not
included in the model. There are several ways to do this, the
one chosen here is motivated by the one presented in Slavakis
and Theodoridis (2008) in the context of kernel based learning
with projections. The principle at the core is to ”learn” only if
the current model disagrees (more than a certain threshold) with
the observation.

Assume that state and input at the previous 4+ 1 time instants
are stored in a vector

T T
¢ = [xk—l Up—q -
a decision whether to add the data pair {z;_1,2;} to the model
is made by comparing the maximum prediction error of the
approximated system (6) within this time window; if this value

is greater than a threshold, the data point is added, i.e. add data
point if

T
Xk—h—2 “kfh*2]

R¥(zi—p1)
X R ( [K‘P(Zkhl)
Uk—
X—h+1
- : >v o (9)
: 5 K¥(..)
X .
e (R[]
L Up—1 J oo
where | - || is the vector infinity norm ! . Note that any other

norm may be used instead, however this choice offers the
advantage that it is independent of % and it enables the use of
physical insight to determine a suitable v (i.e. an admissible
error tolerance in physical units).

4. OBTAINING A QUASI-LPV MODEL FROM
KOOPMAN OPERATOR

In the discussion that follows, the Multivariable Mean Value
Theorem (MMVT) as formulated in Zemouche et al. (2005), is
used; this result can be regarded as a discrete-time version of
the velocity-based linearization (Leith and Leithead (1998)).

Lemma 1. (Multivariable Mean Value Theorem). Let g : R” —
RY, assume that g is differentiable on Co(a,b), then there exist
constant vectors ¢; € Co(a,b), ¢; #a, ¢; b i=1,...,q such
that:

where e;(i) is the i column of ;.

Given the approximate dynamic equations with truncated

Koopman operator (6), using Lemma 1 (assuming the basis

functions are differentiable) yields a velocity-based linearized

dynamic equation:

5 0¥ 5 0¥

A1 ~K —| Aq+K —

ox |; 4 du

where ¥ € Co(xy,X+1), @ € Co(uy, ugy1) which can in practice
not be computed, therefore an approximation is made so that

5 ¥

K —

du

Auk

£

Axy +

. ¥
Akar] ~K 7
X

Auk

Xtk Xtk
A(pr) B(py)

T T}

where p = H[x" u”]" and H is a selection matrix. Finally
(10) is augmented with the (non-incremental) state giving the
dynamic equation

|~ oAt o] (B0 e

4.1 Input-Output Koopman-based model

(10)

Even though the goal of this framework is to obtain a data-
driven model with as little a priori knowledge of the system
as possible, in practice one strong assumption is made, namely
that the state is known and measurable (given that the state is
part of the observable functions, cf. (5)). This imposition might
prove prohibitive for high order systems where it is impractical
to assume even knowledge of the number of states, let alone
being able to measure them. In this section we propose to tackle

! If the states have different physical units, they can be normalized; otherwise
a different bound v, one for each physical unit can be used
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this issue using the input-output framework, and a new relaxed
assumption is made that the order of the system is known.
Assume the input-output behavior of the system is given by

Virt = FOr e q7). (12)
Note that (12) is a general discrete-time input-output model for
a system governed by differential-algebraic equations. In this
case, a state can be defined by using time-shifted outputs and
inputs as

Xp = [ylf Yig .- Vi—n, Uk—1 .- uk—nu] (13)

where y € R and n = ny+n, is the assumed order of the system.
This approach is commonly used in the input-output literature
in order to use Lyapunov-like arguments to establish stability of
input-output models (see e.g. Ali et al. (2010)). Using the state
vector (13), the same definition of the basis functions (5) can
be used and the Koopman operator can equally be computed
recursively via (8). Analogous to Eq.(6), an approximation of
system (12) is given by

Vir1 = Kio® (x, ug.) (14)

where Kjo = [I; 0]K. A velocity-based model, following the
discussion on the previous section is readily obtained by

Vit AP [ B(px)
~ + Au 15
{A"kﬂ} {0 Alpd)| [An] T (B A 1Y
where in contrast to the previously presented state-space for-
mulation (11), the new definitions are used
A ., 0¥
A(p) = Kio e
X U
Remark 1. In the input-output case, the same prediction equa-
tion (11) can be used in order to predict the full state (13).

However, that would entail carrying out pointless computations
to predict future values of backward-shifted inputs and outputs.

. . 0¥
B(pe) = Kio — -

XUk

5. PREDICTIVE CONTROLLER

We consider a finite horizon optimal controller which, at each
sampling instant k minimizes the cost function
N—1

Je=Y Uexri; Augyi) +  (xiiw)
i=0

(16)

where § (xin) = xp, yTxepw is the terminal cost function, here
chosen quadratic, and the usual stage cost in tracking MPC is
used

((e,ii) = eT Qe + Au” RAu (17)
with e = x — r representing the deviation of the state from the
reference. The matrices 7,Q € R!*/ are positive semi-definite
and R € R™*™ is positive-definite.

The optimization problem can thus be defined as
minJi (e, Au)
u

S.t.

eq.(11) . (18)
ukH:uk,l—i—ZAukHEU j=[0 N-—1]

Xperj € X ;::0[0 N—1]

where U and X are the sets of admissible inputs and states,
respectively.

Given a parameter (in this case state/input) dependent state
space model in the form of (11) we can make use of the

qLMPC algorithm [11], or MPC for quasi-LPV systems. This
is an algorithm which solves, at each sampling time, typically a
single quadratic program by freezing the scheduling trajectory
Pr= [ka ka+1 .. .kaJrN7J to the forward shifted previous one,
essentially turning the quasi-LPV model (11) into a Linear
Time-Varying (LTV) model. The procedure is shown as Algo-
rithm 1

Algorithm 1 gLMPC
Given: plant model, Q, R N

1: k<0

2: Define PO =1y @ H[x] ul |7

3: repeat

4: [+0

5 repeat

6: Solve (18) using Plk to obtain U,f

7 Predict state sequence given Pi and U,f
8: Define Pf{*l =H(X',U"

9: l+1+1
10: until stop criterion

11: Apply u; to the system
12: Define PY, | = H(X/,U})
13: k< k+1

14: until end

6. EXPERIMENTAL RESULT: KOOPMAN-QLMPC FOR A
CONTROL MOMENT GYROSCOPE

A Control Moment Gyroscope (CMG) is a mechanical device
which consists of a flywheel mounted on a 3-degree-of-freedom
gimbal. The flywheel and the first gimbal, bodies A and B in
Figure 1, are actuated whereas the two outermost gimbals (C
and D) are not, they can however be controlled by exploiting the
gyroscopic effect. The goal is thus to track reference trajectories
for the outer two gimbals, using the torque of the flywheel
and the torque of the motor actuating the innermost gimbal as
control variables. The state vector is

x:[ez 0; O, 91 92 93 94]

where the state of the flywheel’s position, 0y, is neglected as it
has no impact on the dynamic behavior of the system, and is
furthermore a diverging free integrator (given that the flywheel
is perpetually spinning during operation).

This plant has strong nonlinear dynamics and a full model is
considerably complex, see e.g. Hoffmann and Werner (2015),
making it a good candidate for the Koopman framework. The
CMG used for the experiments presented in this paper is the
Model 750 from Educational Control Products (ECP).

6.1 Selection of basis functions

Given that a model for the CMG is available, a first meaningful
approach is to select a few of the nonlinearities directly from
the equations of motion to be used as basis functions. For
this, all Coriolis terms (before inverting the inertia matrix) are
considered i.e.
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Fig. 1. 3-DOF Control Moment Gyroscope plant(left) and its
CAD model(right))

lP] = [)CT LtT 02039294 829293 52839394 826193
C2C391 94 CzC%SQQ% C2$2932 C39394 S%C39394 C%C39394

82539194 S291 92 C39294 S303942 C%C39294 S2C26293 (19)

S3C%C3 94% C2C3 91 92 S$283 61 93 $283Co 932 S3C3 93 64

2 . . 2 o o 2 o o o o T
CQC39293 52C2C36264 S3C2C39394 039293]

where the short-hand notations ¢; = cos(6;) and s; = sin(6;),
i = 2,3 are used. This yields a truncated Koopman operator of
dimension K; € R3**34_ where the subindex is used to denote its
correspondence to W;. In order to explore the potential of the
approach in cases when the nonlinear model is not available,
a second set of basis functions is proposed, in which physical
intuition is used: as it is expected that the contribution of the
flywheel dominates the other Coriolis terms, only products of
0, with the rest of the velocities are considered; these products
are then multiplied by trigonometric functions of the angles 6,
and 03 (since, again from physical intuition it is clear that the
rotations 6; and 64 do not have an effect on the dynamics) so
that

le = [XT uT 0291 92 Czél 93 Czél 94 C391 92 0391 93
C3 91 94 Szé] 92 8291 93 5291 94 839] 92 S3 91 93 S3 91 94] T .
(20)

yielding K, € R21*21,

6.2 Computation and update of the Koopman operator

The Koopman operator is computed recursively using the pro-
cedure described in Section 3. Before starting the predictive
controller, a short open-loop experiment? is performed using
chirp test signals to start the Koopman algorithm and give a
meaningful initial model to the MPC algorithm. For this train-
ing experiment, the parameter v from (9) is set to v = 0.001 to
encourage extracting information from it. When the controller
is active, the factor is set to v = 0.0025 to avoid adding too
many data points, which could render the model resistant to
future updates.

2 Before every experiment, both open- and closed-loop, a PI controller is used
for 15s to bring the flywheel up to speed, with brakes applied on all DOF to
give an initial condition for the closed-loop experiments of @ (15) = 40rad/s,
6;(15),0;(15) = 0, i = 2,3,4. At ¢ = 15s control authority is switched to the
proposed controller.

6.3 Predictive Controller

A predictive controller according to Algorithm 1, using a model
in the form of (11) determined as described in Section 5 is used
to control the CMG. For this, a sampling time of 7y = 0.01s is
used. This sampling time is also used for the sampling/update
of the Koopman operator, so that both tasks (model up-
date/control) are performed sequentially. For the predictive
controller, a horizon of N = 30 is chosen and the tuning pa-
rameters are Q = diag(1, 120, 120,0.01,5,2,2,0,0,0,0,0,0,0),
T =100, R = diag(3000,750) and the constraints on the inputs
are |71| < 0.5Nm, |72| < 2Nm.

Closed-loop results are shown in Figures 2 and 3, for the case
where W and W, are used, respectively. Each plot shows two
experiments: one performed starting with the model after the
training experiment (deemed first iteration), and a second one
starting with the model after the first closed-loop experiment
(deemed second iteration), in order to evaluate if performance
improves after each iteration of a repetitive task. As expected, in
both cases this is indeed the case, showing also that the second
experiment needs to add fewer data points to the model, as there
is less new information.

45 m
0

83[°]

|
N
(&)
4
—d

Fig. 2. Closed-loop experiment using Kj. Reference (----- ),
first iteration ( ), second iteration ( ). The bottom
plot shows when data is added to the model for both
iterations.

Comparing both controllers, the one based on K has better per-
formance, particularly regarding cross-coupling at t = 27s and
t = 37s, which is again expected given that the basis functions
more closely resemble the equations of motion. It is however
worth mentioning that both reference and tuning were selected
to encourage an aggressive response as can be seen by the fact
that inputs are driven into saturation (Figure 4); it is therefore
remarkable that even with relatively simple basis functions,
namely W», the controller displays exceptional tracking perfor-
mance.

6.4 Input-Output Controller

Results of the Input-Output version of the presented approach
(Section 4.1) are presented next. For this, the output is defined
as y(k) = [6,(k) 63(k) 64(k) (k)] where @ = 8y, and
the state vector as x; = [yx Yk—1]. The basis function used are
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63[°]

84[°]

model

Fig. 3. Closed-loop experiment using K>. Reference (----- ),
first iteration ( ), second iteration ( ). The bottom
plot shows when data is added to the model for both
iterations.

the discretized version of W5 using finite differences by replac-
ing @y (k)6;(k) with [ (k)6;(k) @6;(k—1)], i = 2,3 result-
ing in Kjp € R¥3*33 clearly a disadvantage of this approach is
that it often leads to more basis functions. The tuning matri-
ces corresponding to the outputs are discretized so that Q =
diag(1,120,120,0.01,50000,20000,20000,0,0,0,0,0) (using
the approximation 8% = A8%/T? with T, = 0.01). The result
of the experiment is shown in Figure 5, where compared to
its state-space counterpart in Figure 3 it can be seen that the
performance is comparable, with comparatively slower rise-
time but noticeably less cross-coupling.

Video footage of an experiment can be seen in https:
//youtu.be/rDsuW6lncBY, a comparison with a gain-
scheduled LPV controller in https://youtu.be/4a_
dvWiBXO0c.

7. CONCLUSIONS & OUTLOOK

A data-driven nonlinear model predictive control approach is
proposed based on the Koopman operator framework. The
model used in the gLMPC algorithm can be updated online
with low computational burden. The proposed scheme has been
validated experimentally on a highly nonlinear MIMO system -
a Control Moment Gyroscope with three degrees of freedom
with satisfactory results. In contrast to other approaches in
the literature, the method presented here extends the idea of
using Koopman operators in conjunction with MPC by not
using the identified linear Koopman model directly, but by

0.5

74 [Nm]

0

] e N——————————.—

I

Fig. 4. Control inputs for the first iteration experiment using K.
All experiments look qualitatively the same.

converting it into a qLPV model of typically much lower
order via velocity linearization. Furthermore, we propose to
exploit a priori knowledge about the plant when constructing
the observables.
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