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Abstract: This paper is concerned with the synchronization of heterogeneous agents interacting
over a dynamical network, where the edge dynamics are heterogeneous, modeling the nonuniform
communication environment between the agents. Novel synchronization conditions are obtained
from a phasic perspective by utilizing a newly formulated small phase theorem. These conditions
have lower conservatism compared to gain-based conditions and generalize positive real and
negative imaginary type conditions. They scale well with the size of the network and reveal the
trade-off between the phases of node dynamics and edge dynamics.

1. INTRODUCTION

1.1 Background

Networks with dynamical nodes and static edges have been
the focus of many studies over a long period of time. See
Lin (1974); Moylan and Hill (1978); Araposthatis et al.
(1981); Olfati-Saber et al. (2007), to name just a few. More
recently, general networks containing both node and edge
dynamics have attracted considerable attention (Bürger
et al., 2014; Khong et al., 2016; Nepusz and Vicsek, 2012;
Pates and Vinnicombe, 2017; Wang et al., 2017) due to an
increasing awareness that edge dynamics are often equally
important to node dynamics in the study of complex
networks.

Among many important problems in dynamical networks,
synchronization appears to have gained a lot of popularity
in the past decades. Generally speaking, synchorinization
seeks to make the outputs of multiple agents converge to
a common trajectory over time (Li et al., 2010; Wieland
et al., 2011; Khong et al., 2016). An important special case
of synchronization is consensus, which is also known as
the agreement or rendezvous problem; see, for example,
Jadbabaie et al. (2003); Lin et al. (2006); Olfati-Saber
et al. (2007); Ren and Beard (2008); Lestas and Vinni-
combe (2010); Trentelman et al. (2013). The synchroniza-
tion problem is ubiquitous in various engineering appli-
cations such at power systems and multi-robot systems.
In most applications, both agent and edge dynamics are
multivariable systems.
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It is widely recognized that the synchronization problem
can be transformed into a feedback stability problem on
a disagreement subspace (Ren and Beard, 2008), to which
numerous approaches can be applied. For instance, Li et al.
(2010) proposed an observer-based synchronization proto-
col for homogeneous LTI agents over a directed network.
The authors obtained a distributed synchronization condi-
tion by casting the problem into a simultaneous stabiliza-
tion problem. In Wieland et al. (2011), an internal model
requirement has been proposed for output synchronization
of heterogeneous LTI agents over a time-varing directed
network.

As one of the most used results in stability analysis, the
small gain theorem appears as a natural tool in studying
the synchronization problem. However, applying the small
gain theorem could lead to undesirable conservativeness,
especially when the gains of the agents are very large or
subject to a big amount of uncertainties. Researchers have
been seeking alternatives beyond the small gain (Lestas
and Vinnicombe, 2010; Khong et al., 2016). In particular,
there have been conditions for synchronization based on
positive realness or negative imaginariness of the dynamics
(Bürger et al., 2014; Fujimori et al., 2011; Wang et al.,
2015), which effectively bring in a phasic perspective into
the analysis of synchronization. One motivation of study-
ing the synchronization problem from phasic perspective
comes from applications, in particular from power net-
works and unmanned system networks. One can observe
that individual agents in these networks, such as gener-
ators, loads, UAVs, and UGVs, often have similar phase
properties regardless of their physical sizes. In recent work
Chen et al. (2019), the authors studied phase bounded
systems by virtue of a newly defined phase response of
MIMO LTI systems. In addition, a small phase theorem
was devised therein, which serves as a counterpart to the
small gain theorem. It would be very interesting to see
what these new developments in MIMO phase have to offer
in solving the synchronization problem.
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In this paper, the synchronization of networks with both
node and edge dynamics will be considered from a phasic
perspective. We will show that in studying the synchro-
nization problem, understanding the phases of the agents
and edges is not only closer to our physical intuition but
also helps the solution tremendously. We assume semi-
stable agents and extend the small phase theorem in Chen
et al. (2019) to accommodate such systems. Synchroniza-
tion conditions will be explored when heterogeneous agents
interact over heterogenous edges, which model the nonuni-
form communication dynamics between agents.

The rest of this paper is organized as follows. Some prelim-
inaries are introduced in the remaining of this section. The
synchronization problem is formulated in Section 2. Matrix
phases and their properties are introduced in Section 3,
followed by the frequecncy-wise semi-sectorial systems and
the small phase theorem in Section 4. Section 5 presents
synchronization conditions in terms of phases of node
dynamics and edge dynamics. A numerical example is
simulated in Section 6. Section 7 concludes this paper with
some remarks.

Notation: Denote by R and C the sets of real and complex
numbers. Let R = R ∪ {−∞,∞} and C = C ∪ {∞}.
Denote by C+ and C+

the open and closed right-half plane,
respectively. The Kronecker product of two matrices A and
B is denoted by A⊗B. We use 1 to denote the vector with
all its entries equal to 1, while the size of the vector is to be
understood from the context. The symbol diag{·} denotes
the diagonal operation.

1.2 Preliminaries

Consider an undirected graph G = (V, E) which consists
of a set of nodes V = {1, . . . , n} and a set of edges
E = {e1, . . . , el}. We use ek = (i, j) to denote the edge
connecting node i and node j. A weighted graph is one
with each of its edges associated with a weight. Let the
weight of edge (i, j) be aij . Then, the Laplacian matrix
L = [lij ] of such a weighted graph is defined as

lij =

{
−aij , i 6= j,∑n
j=1,j 6=i aij , i = j.

(1)

Conventionally, aij are taken to be positive real numbers,
making L an n×n constant matrix. Since all the rows of L
sum up to 0, L has a zero eigenvalue with a corresponding
eigenvector being 1n. Moreover, when the graph is con-
nected, 0 is a simple eigenvalue and L is an irreducible
matrix, i.e., L is not similar via a permutation to a block
diagonal matrix (Horn and Johnson, 1990). See Merris
(1994) for a survey on Laplacian matrices.

In later developments of this paper, we will also encounter
weighted graphs with stable dynamical weights Aij(s),
which in general can be multivariable transfer functions.
Let the dimension of Aij(s) be m×m. Then, the Laplacian
matrix as in (1) becomes a dynamical Laplacian L(s) of
dimension nm× nm.

There is a useful factorization of L(s). For a graph G,
we can assign an arbitrary direction to each edge, i.e., for
each edge ek ∈ E , denote one endpoint as the head and the
other as the tail. Then, the incidence matrix E ∈ Rn×l is
defined as

[E]ik =


1, if i is the head node of ek,

−1, if i is the tail node of ek,

0, otherwise.

An important property of the incidence matrix is E′1 = 0.
Let W (s)= diag{W1(s),W2(s), . . . ,Wl(s)} denote a block
diagonal transfer matrix with diagonal blocks given by
the dynamic edge weights, i.e., Wk(s) = Aij(s), for ek =
(i, j). Then, the dynamical Laplacian L(s) can be factor-
ized as

L(s) = (E ⊗ Im)W (s)(E′ ⊗ Im).

Note that L(jω) has m zero eigenvalues with correspond-
ing eigenvectors being 1n⊗x for all ω ∈ R, where x ∈ Cm is
an arbitrary nonzero vector. If G is connected and W (jω)
is nonsingular, then L(jω) has exactly m zero eigenvalues.

2. PROBLEM FORMULATION

Suppose there are n agents. Each agent is a dynamical
system, whose dynamics are given by

yi(s) = Pi(s)ui(s) (2)

where Pi(s) is an m × m semi-stable LTI system in the
sense that its poles are all in the closed left half plane,
ui(t), yi(t) ∈ Rm represent the input and output of agent
i, respectively. Assume that all the agents share exactly the
same poles on the imaginary axis that generate some com-
mon persistent modes. Denote by jΩ+ = {0, jω1, . . . , jωq}
the common poles on the nonnegative imaginary axis,
where ω1, . . . , ωq are distinct positive frequencies. Then,
by symmetry, {−jω1, . . . ,−jωq} are also poles of all the
agents. We assume that the residue matrix at each of them
is nonsingular. If jω0 ∈ jΩ+ is a pole of any element
of Pi, then it is also assumed that jω0 is a simple pole.
Apart from these poles, the agents do not have any other
poles on the imaginary axis. The agents can be signifi-
cantly heterogeneous. They can have different magnitudes
and phases. What we mean by magnitudes and phases of
a MIMO system will be clarified later. They may have
different orders.

The agents exchange information with their neighbors over
an undirected graph G = (V, E) through the following
synchronization protocol:

ui(s) =
∑

(i,j)=ek∈E

Wk(s)(yj(s)− yi(s)), i ∈ V, (3)

where Wk(s) is an m×m stable transfer matrix. The edge
dynamics Wk(s) are nonuniform, modeling communication
imperfections in each interconnection edge. We assume
that the graph is connected.

The multi-agent system (2)-(3) is said to achieve synchro-
nization if |yi(t)−yj(t)| → 0 as t→∞ for all i, j ∈ V, i 6= j.
In particular, if all agents have only one common pole at
the origin, synchronization simply means consensus. If all
agents have common pairs of complex poles on the imagi-
nary axis, synchronization means synchronous oscillation.

Let

P (s) = diag{P1(s), . . . , Pn(s)},
u(t) = [u1(t)′ · · · un(t)′]′,

y(t) = [y1(t)′ · · · yn(t)′]′.
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Such synchronization dynamics can be casted into a feed-
back block diagram (Wang et al., 2017), as shown in Fig. 1,
where E is the incidence matrix of graph G.

-
P1(s)

. . .
Pn(s)

E′ ⊗ Im

�
W1(s)

. . .
Wl(s)

E ⊗ Im

u(t) y(t)

−

Figure 1. The block diagram of synchronization problem.

It is widely recognized that synchronization can be trans-
formed to a feedback stability problem on a disagreement
subspace (Ren and Beard, 2008). Clearly, applying the
small gain theorem with diagonal multiplier will yield
certain sufficient conditions for synchronization. The issue
is that such conditions may be rather conservative when
the gains of the agents vary to a large extent. There have
also been conditions based on positive realness or negative
imaginariness of the agents, which effectively bring in a
phasic perspective into the analysis of synchronization
(Bürger et al., 2014; Fujimori et al., 2011; Wang et al.,
2015). Roughly speaking, positive realness and negative
imaginariness can be considered as qualitative descriptions
of phase information. Recently, a more delicate phase
analysis of LTI MIMO systems has been conducted in
Chen et al. (2019), opening up the quantitative studies
on system phases. In particular, a small phase theorem
has been formulated, complementary to the small gain
theorem.

The purpose of this paper is to add to the understandings
of synchronization by utilizing the newest development of
phase analysis. We will explore synchronization conditions
from the phasic perspective.

3. PHASES OF COMPLEX MATRICES

The numerical range, also called field of values, of a matrix
C ∈ Cn×n is defined as W (C) = {x∗Cx : x ∈ Cn, ‖x‖ =
1}, which, as a subset of C, is compact and convex, and
contains the spectrum of C (Horn and Johnson, 1991).

If 0 is not in the interior of W (C), then W (C) is contained
in a closed half complex plane due to its convexity. In this
case, C is said to be a semi-sectorial matrix. Furthermore,
if 0 /∈W (C), then C is said to be sectorial. A semi-sectorial
matrix is possibly singular.

Lemma 1. (Furtado and Johnson (2003)). Let C ∈ Cn×n
be a singular semi-sectorial matrix. Then there exists a
unitary matrix U such that

U∗CU =

[
0n−r

Ĉ

]
, (4)

where r = rank(C) and Ĉ is nonsingular semi-sectorial.

For a semi-sectorial C with rank r, we define r phases of
C, denoted to be φ(C) = φ1(C) ≥ · · · ≥ φr(C) = φ(C), as

φi(C) = sup
M:dimM=i

inf
x∈M,x∗Cx 6=0

∠x∗Cx,

= inf
N :dimN=n−i+1

sup
x∈N ,x∗Cx 6=0

∠x∗Cx,
(5)

such that φ(C) − φ(C) ≤ π and γ(C) =
φ(C)+φ(C)

2 ,
called the phase center, lies in (−π, π]. Define φ(C) =
[φ1(C) · · · φr(C)]. As in the scalar case, we do not define
the phases of a zero matrix. For notational convenience,
let φ(0n) = −∞, φ(0n) = +∞.

A graphic interpretation of the matrix phases is illustrated
in Fig. 2. The two angles from the positive real axis to each
of the two supporting rays of W (C) are φ(C) and φ(C)
respectively. The other phases of C lie in between.

�𝜙𝜙 𝐶𝐶
𝜙𝜙 𝐶𝐶0 Re

Im

𝑊𝑊 𝐶𝐶

Figure 2. Geometric interpretation of φ(C) and φ(C).

The matrix phases defined above have a number of nice
properties, see (Wang et al., 2020) for more details. Here
we briefly introduce several of them which will play im-
portant roles in later developments.

The phases of a principle submatrix of a semi-sectorial
matrix satisfy the following property.

Lemma 2. (Furtado and Johnson (2003)). Let C ∈ Cn×n
be a nonzero semi-sectorial matrix and C̃ be a nonzero
principal submatrix of C. Then C̃ is semi-sectorial and

φ(C) ≤ φ(C̃) ≤ φ(C̃) ≤ φ(C).

The next lemma involves the product of a semi-sectorial
matrix and a sectorial matrix.

Lemma 3. Let A,B ∈ Cn×n be semi-sectorial and secto-
rial matrices, respectively, and λ(AB) be a nonzero eigen-
value of AB. If ∠λ(AB) takes value in (γ(A) + γ(B) −
π, γ(A) + γ(B) + π], then

φ(A) + φ(B) ≤ ∠λ(AB) ≤ φ(A) + φ(B).

Another important property concerns the phases of the
Kronecker product of two semi-sectorial matrices.

Lemma 4. LetA ∈ Cn×n andB ∈ Cm×m be nonzero semi-
sectorial matrices. If φ(A) + φ(B) − φ(A) − φ(B) ≤ π,
then A ⊗ B is semi-sectorial and its phases are given by
φi(A) + φj(B), 1 ≤ i ≤ rank(A), 1 ≤ j ≤ rank(B).

4. SMALL PHASE THEOREM

In this section, we will study the feedback stability of
a class of semi-stable systems: the frequency-wise semi-
sectorial systems.
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4.1 Frequency-wise semi-sectorial systems

Definition 1. Let G be an m × m real rational proper
system. It is said to be frequency-wise semi-sectorial if the
following conditions are satisfied:

(1) G has no pole in C+.
(2) G(s) is semi-sectorial for all s ∈ C+.

Let jΩ+ be the set of poles of G on the nonnegative
imaginary-axis. In this paper, we assume, for the sake of
simplicity, that each pole jω0 ∈ jΩ+ of any element of G
is at most a simple pole. In this case, the reason for the
term “frequency-wise semi-sectorial” can be seen from the
following lemma.

Lemma 5. Let G be an m×m real rational proper system.
Then G is frequency-wise semi-sectorial if and only if

(i) G has no pole in C+.
(ii) G(jω) is semi-sectorial for all ω ∈ [0,∞]\Ω+.
(iii) For each pole jω0 ∈ jΩ+, the residue matrix K0 =

lims→jω0(s − jω0)G(s) satisfies [φ(K0), φ(K0)] ⊂
(−π, π).

We also define the frequency-wise sectorial systems.

Definition 2. Let G be an m × m real rational proper
stable system, i.e., G ∈ RHm×m∞ . Then G is frequency-
wise sectorial if G(jω) is sectorial for all ω ∈ [0,∞].

We define

φ(G) = sup
ω∈[0,+∞]\Ω+

φ(G(jω)),

φ(G) = inf
ω∈[0,+∞]\Ω+

φ(G(jω))

as the maximum and minimum phase of G(s) over the
entire positive frequency, respectively. Moreover, the H∞
phase sector, also called Φ∞ sector, of G is defined to be

Φ∞(G) = [φ(G), φ(G)],

which serves as the counterpart to the H∞ norm of G.

Note that frequency-wise semi-sectorial systems generalize
the well-known notion of positive real systems (Anderson
and Vongpanitlerd, 1973; Kottenstette et al., 2014). A
real rational proper transfer matrix G is positive real
if it is analytic in C+ and G∗(s) + G(s) ≥ 0 for all
s ∈ C+. Furthermore, G is strongly positive real if it is
analytic and bounded in C+ and G∗(s) +G(s) > 0 for all

s ∈ C+
. In the language of phase, G is positive real if it is

frequency-wise semi-sectorial and Φ∞(G) ⊂ [−π2 , π2 ], and
G is strongly positive real if it is frequency-wise sectorial
and Φ∞(G) ⊂ (−π2 , π2 ).

4.2 Small phase theorem

Suppose G and H are m×m real rational proper transfer
function matrices. The feedback interconnection of G and
H, as depicted in Fig. 3, is said to be stable if the Gang
of Four matrix

G#H =

[
(I +HG)−1 (I +HG)−1H
G(I +HG)−1 G(I +HG)−1H

]
is proper and stable, i.e., G#H ∈ RH2m×2m

∞ .

Theorem 1. (Small phase theorem). LetG be a frequency-
wise semi-sectorial system with jΩ+ the set of poles on the

- m - G

?
� m�H

6
y1 y2

w1

w2

u1

u2

−

Figure 4: A standard feedback system.

�
G

K

�

-

�

z w

y u

Figure 5: A generalized feedback system.

𝑃1 𝑊1

…
𝑃2

𝑃3

𝑊2
𝑊3

Figure 6: A dynamical network.
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�L

6

u y

−

Figure 7: A feedback system representing the consensus dynamics of a multi-agent system.

Figure 3. A standard feedback system.

nonnegative imaginary axis and H be a frequency-wise
sectorial system. Then G#H is stable if

φ(G(jω)) + φ(H(jω)) < π,

φ(G(jω)) + φ(H(jω)) > −π (6)

for all ω ∈ [0,∞]\Ω+.

The small phase theorem generalizes the passivity theorem
(Liu and Yao, 2016; Vidyasagar, 1981), which states that
the feedback system shown in Fig. 3 is stable ifG is positive
real and H is strongly positive real.

Note that the small phase theorem is necessary in the
following sense. Let G ∈ RHm×m∞ be a frequency-wise
sectorial system, h ∈ RH∞ be a scalar strongly positive
real transfer function, and define a cone of systems

C(h) = {H ∈ RHm×m∞ : φ(H(jω)) < π/2 + ∠h(jω),

φ(H(jω)) > −π/2− ∠h(jω) for all ω ∈ [0,∞]}.
Then, G#H is stable for all H ∈ C(h) if and only if
φ(G(jω)) ≤ π/2−∠h(jω) and φ(G(jω)) ≥ −π/2+∠h(jω)
for all ω ∈ [0,∞].

5. MAIN RESULTS

It is widely known that a synchronization problem can
be transformed to a stability problem. By exploiting the
above small phase theorem, we have the following result.

Theorem 2. Suppose P (s) is frequency-wise semi-sectorial
and W (s) is frequency-wise sectorial. Then the multi-agent
system (2)-(3) achieves synchronization if

max
i
φ(Pi(jω)) + max

k
φ(Wk(jω)) < π,

min
i
φ(Pi(jω)) + min

k
φ(Wk(jω)) > −π

for all ω ∈ [0,∞]\Ω+.

The above theorem guarantees the output synchronization
of a heterogeneous multi-agent system with nonuniform
dynamical edges by imposing only local phase conditions.
Importantly, these conditions are independent of the net-
work topology. Such a result would generalize positive real
and negative imaginary type conditions. Specifically, there
is no requirement that Pi(jω) be positive real or negative
imaginary across all frequencies; they may be, for instance,
positive real at some frequencies and negative imaginary
at others.

Note that the conditions in Theorem 2 scale well with the
size of the network. In particular, when a new agent joins
the network or a new communication link is established,
the information about the new entry simply needs to be
contrasted with the outcome of the phase analysis previ-
ously conducted for the original network with n agents and
l links. In other words, re-performing a centralized phase
analysis involving all nodes is not necessary.
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6. SIMULATIONS

Now we consider an undirected network with four nodes
and five edges, as shown in Fig. 4. Each agent is a 2 × 2
frequency-wise semi-sectorial system with imaginary-axis
poles {0,±j1}. Each edge is a 2×2 frequency-wise sectorial
system. The transfer matrices of the agents are given in
equation (7) and those of edges are given in the following.

W1 =

0.4s2 + 1.3s + 0.9

s2 + 7s + 10

0.5s2 + 1.8s + 1.3

s2 + 7s + 10

0.5s2 + 1.8s + 1.3

s2 + 7s + 10

0.7s2 + 3.2s + 2.5

s2 + 7s + 10

 ,

W2 =

 2.7s2 + 11s + 7

s2 + 9s + 18

1.1s2 + 4.9s + 3

s2 + 9s + 18

1.1s2 + 4.9s + 3

s2 + 9s + 18

0.6s2 + 3.4s + 2

s2 + 9s + 18

 ,

W3 =

2.6s2 + 4.5s + 1.9

2s2 + 12s + 10

2s2 + 3.8s + 1.6

2s2 + 12s + 10

2s2 + 3.8s + 1.6

2s2 + 12s + 10

2.1s2 + 6s + 2.7

2s2 + 12s + 10

 ,

W4 =

0.6s2 + 3.8s + 3.3

2s2 + 17s + 30

0.8s2 + 4.9s + 4.1

2s2 + 17s + 30

0.8s2 + 4.9s + 4.1

2s2 + 17s + 30

2.7s2 + 27.2s + 25

2s2 + 17s + 30

 ,

W5 =

1.7s2 + 15.8s + 18

2s2 + 27s + 70

2s2 + 20.1s + 20.4

2s2 + 27s + 70

2s2 + 20.1s + 20.4

2s2 + 27s + 70

2.7s2 + 27.2s + 25

2s2 + 27s + 70

 .

The phase response plots of the agents P and the edges
W are shown in Fig. 5 and Fig. 6, respectively. The
maximum and minimum phases of the agent dynamics
and edge dynamics at each frequency can be read from
these figures. It can be easily verified that the conditions
in Theorem 2 are satisfied. Therefore, the agents achieve
synchronization, as shown in Fig. 7.

1

42

3

𝑒"

𝑒#

𝑒$ 𝑒%

𝑒&

Figure 4. An example network.
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Figure 5. Phase response plots of the agents.
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Figure 6. Phase response plots of the edges.
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(a) Trajectories of the first outputs of the agents.
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(b) Trajectories of the second outputs of the agents.

Figure 7. Trajectories of the outputs of the agents.

7. CONCLUSIONS

In this paper, we have studied synchronization of hetero-
geneous agents with nonuniform communication dynamics
via the small phase theorem. We have obtained synchro-
nization conditions with good scalability, which also reveal
the trade-off between the phases of node dynamics and
edge dynamics.
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