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Abstract: Different applications can be represented as systems controlled by pulse inputs,
which are of short duration within the sampling period. Despite the vast development of
control strategies for discrete systems and some others for impulsive ones, the generalization
for pulse-controlled systems has not been widely studied. Here, an offset-free control approach
for pulse systems is presented for the first time. This strategy aims to compensate for the offset
problem caused by a plant-model mismatch or constant disturbances. It consists of an augmented
model with an integrating state, an estimator to capture the mismatch, and a model predictive
control (MPC) formulation that includes the estimated mismatch in the prediction model and
the target calculation to achieve the objective. In addition, the strategy is tested for type 1
diabetes treatment, where physiological variations constantly change the insulin requirements
of patients which, if not compensated, can lead hypoglycemia and hyperglycemia episodes. The
developed method is evaluated in 10 adult virtual patients of the UVA/padova Simulator and it
is compared with a zone MPC (ZMPC). Satisfactory results were obtained by achieving a time
in normoglycemia range of 93% in a simulation scenario without meal announcement and 30%
of parameter variations.

Keywords: Control by pulses, model predictive control, offset-free control, type 1 diabetes
mellitus, artificial pancreas.

1. INTRODUCTION

Control systems with pulse inputs describe systems in
which a discontinuous control action has an amplitude
with non-negligible duration, but remains null a significant
part of the sampling time. Therefore, the system has two
stages in a period: a forced response while the input is
operating and a free response while the input is zero.
A special case of pulse systems are those with impulsive
inputs which have been mostly studied for applications
such as drug scheduling (Rivadeneira and Moog (2015)).

However, given the technological advances in medical
devices, which allow a more intensive control of the disease
by means of the input application every certain minutes,
the treatment is better modeled as a pulse controlled
system. This is the case of the well-known Artificial
Pancreas for type 1 diabetes mellitus (T1DM) treatment.
Artificial pancreas consists of a continuous glucose monitor
(CGM), a continuous insulin infusion pump (some pumps
on the market allow insulin infusion every 5-15 minutes),
and a control strategy to calculate the appropriate dose
according to glucose measurements (Fathi et al. (2018)).
Then, in a predefined sampled period for the pump,
insulin injection occurs with certain duration but without
covering the entire period, i.e., the input act as a pulse.
Therefore, a control strategy that considers pulse inputs
results closer to reality than a strategy that assumes
discrete inputs, that is, a constant input throughout the
sampling time.

For the specific case of impulsive systems, different control
strategies have been addressed. Among these, a feedback
control was proposed in Rivadeneira and Gonzlez (2018),
an MPC strategy for tracking sets was formulated by
Sopasakis et al. (2015), an MPC strategy with artificial
variables that allow tracking of sets by means of the im-
pulsive system equilibriums was developed in Rivadeneira
et al. (2015, 2018), and an offset-free MPC formulation
was introduced by Villa-Tamayo et al. (2020), which was
based on the offset-free MPC strategy for discrete-time
systems (Pannocchia and Rawlings (2003); Maeder et al.
(2009); Pannocchia (2015)) to compensate the effect of a
plant-model mismatch. For systems with pulse inputs, a
first approach to an MPC strategy was presented by Abuin
et al. (2019).

Here, the offset-free MPC formulation for systems with
pulse inputs is presented for the first time in literature.
This, as a generalization to the works developed for im-
pulsive and discrete systems. The main characteristics of
the strategy here proposed are: (i) the use of a zone MPC
strategy with artificial equilibrium variables (ZMPC-AV)
which provides an enlarge domain of attraction, (ii) an
augmented system with a disturbance model to compen-
sate for the effect of parametric variations of the plant that
lead to a plant-model mismatch, (iii) the incorporation of
the estimation of the mismatch in the MPC constraints,
(iv) the calculation of the pulse control action including
its equilibrium characterization.
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The proposed control strategy is evaluated in T1DM
treatment where is intended to maintain blood glucose
(BG) concentration in a target range. In this research field,
one of the most studied control strategies is MPC, which
has show satisfactory results in clinical and simulation
trials (Dassau et al. (2013); Pinsker et al. (2016)). Here,
the model used for the prediction is the one developed in
Ruan et al. (2017), whose parameters have been identified
from the UVA/Padova simulator (Man et al. (2014)). With
the aim of showing the benefits of the offset-free strategy, a
comparison of the ZMPC-AV (Abuin et al. (2019)) and the
offset-free ZMPC-AV (ZMPC-AV-OF) is carried out when
there is a plant-model mismatch caused by variations in
the parameters. In real life, these variations occur in the
patient due to physical activity, stress, hormonal changes,
among others (Fathi et al. (2018)). Satisfactory results
are obtained by compensating the effect of parametric
variations in BG levels, by steering glycemia to the target
and eliminating hypoglycemia events.

The outline of the paper is as follows: Section II presents
the description of systems with pulse inputs, in Section III
the offset-free MPC formulation is developed, in Section
IV the results of the application of the proposed strategy
to T1DM treatment are presented, and in Section V
conclusions and perspectives are discussed.

2. SYSTEM WITH PULSE INPUTS

Consider the state space representation of a continuous
affine linear system:

ẋ(t) = Ax(t) +Buu(t) +Brr(t) + E,
y(t) = Cx(t),

(1)

where x ∈ X ⊂ Rnx , u ∈ U ⊂ Rnu , and r ∈ R ⊆ Rnr

are the constrained state, constraint control inputs, and
disturbances, respectively. Matrix E is a constant term.

As the interest consist of systems with pulse inputs, let
the control input u be the signal of form:

u(t) =

{
u(kT ), t ∈ [kT, kT + ∆T ]
0, t ∈ [kT + ∆T, (k + 1)T ]

(2)

Where T is a fix time period, and ∆T represents the
duration of the input signal inside period T (the pulse
width in T ). Then, by assuming a constant disturbance
in each sampling period (r(t) = r(KT )), the solution
φ(t, x(kT ), u(·), r(·)) of (1) for t ∈ [kT, (k + 1)T ] is:

φ(t, x(kT ), u(·), r(·)) = eA(t−kT )x(kT )+∫ t

kT

eA(t−ζ)Buu(ζ)dζ +

∫ t

kT

eA(t−ζ)dζBrr(kT )+

∫ t

kT

eA(t−ζ)dζE.

(3)

In Fig. 1 an illustrative example shows the forced evolution
of the system during the input pulse ∆T , and the free
response of the system during the remaining time of the
period T − ∆T . Next, the idea is to characterize the

Fig. 1. State evolution of the system when applying pulse
inputs of duration ∆T in a period T .

state by sampling it at times kT (x((k + 1)T ) = φ((k +
1)T, x(kT ), u(·), r(·))) and kT + ∆T (x((k+ 1)T + ∆T ) =
φ((k + 1)T + ∆T, x(kT + ∆T ), u(·), r(·))). This, with the
aim of applying control strategies that have been widely
developed for discrete systems (Abuin et al. (2019)).

1. Sampled state at times kT : Since matrices A, Bu, Br,
E are assumed time-invariant, the integrals in (3) can be
considered in time [0 T ]. Then, the sampled state is given
by:

x((k + 1)T ) = eATx(kT ) +

∫ T

0

eA(T−ζ)Buu(ζ − kT )dζ

+

∫ T

0

eA(T−ζ)dζBrr(kT ) +

∫ T

0

eA(T−ζ)dζE.

(4)
In addition, the input effect over the state can be rewritten
by following the form of u in (2):∫ T

0

eA(T−ζ)Buu(ζ − kT )dζ =

∫ ∆T

0

eA(T−ζ)dζBuu(kT )

= eA(T−∆T )

∫ ∆T

0

eA(∆T−ζ)dζBuu(kT )

= eA(T−∆T )B∆T
u u(kT ).

(5)
Then, by denoting each integral term in (4) as Ad = eAT ,

Bd1u = eA(T−∆T )B∆T
u , Bdr =

∫ T
0
eA(T−ζ)dζBr, and Ed =∫ T

0
eA(T−ζ)dζE; and the state, input, and disturbance at

times kT as x•(k), u•(k), and r•(k), respectively; the
sampled expression is:

x•(k + 1) = Adx•(k) +Bd1u u
•(k) +Bdr r

•(k) + Ed. (6)

2. Sampled state at times kT +∆T : By following a similar
procedure the state is sampled at times when the free
response starts:
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x((k + 1)T + ∆T ) = eATx(kT + ∆T )

+

∫ ∆T

0

eA(T−ζ)dζBuu((k + 1)T )

+

∫ T

0

eA(T−ζ)dζBrr(kT ) +

∫ T

0

eA(T−ζ)dζE.

(7)

which can be rewritten as:

x◦(k + 1) = Adx◦(k) +Bd2u u
◦(k) +Bdr r

◦(k) + Ed, (8)

with Ad = eAT , Bd2u =
∫∆T

0
eA(T−ζ)dζBu = B∆T

u , Bdr =∫ T
0
eA(T−ζ)dζBr, and Ed =

∫ T
0
eA(T−ζ)dζE; and the state,

input, and disturbance at times kT+∆T denoted by x◦(k),
u◦(k), and r◦(k), respectively. Note that u◦(k+1) = u•(k).

Lastly, note that the system has not an equilibrium point
because of the combination of both forced and free re-
sponses caused by the pulse input. Then, an extended
equilibrium set is described given by the equilibrium of
systems (6), (8), and by including the continuous-time
evolution between each point:

os(x
•
s, u
•
s) = {φ(t, x•s, u

•
s(t)), t ∈ [kT, (k + 1)T ], k ∈ N},

which must be feasible. Therefore, the equilibrium sets are:

X•s = {x•s ∈ X : ∃u•s ∈ U such that
x•s = Adx•s +Bd1u u

•
s + Ed, os(x

•
s, u
•
s) ∈ X},

X◦s = {x◦s ∈ X : ∃u◦s ∈ U such that
x◦s = Adx◦s +Bd2u u

◦
s + Ed}.

(9)

Despite both subsystems (6), (8) are required to character-
ize the equilibrium region, sampled model (6) is enough to
be used in the control strategy, since it takes into account
the forced and free response between the sampling times.

3. OFFSET-FREE MPC STRATEGY

The control objective is to drive the system to a nonempty
target set by means of pulse control actions while satisfying
constraints and compensating a plant-model mismatch. To
that purpose, the offset-free ZMPC previously developed
for discrete systems (Maeder et al. (2009); Pannocchia and
Rawlings (2003); Pannocchia (2015)) and for impulsive
systems (Villa Tamayo et al. (2019)) is here generalized
to the pulse scheme. The idea of this strategy is to obtain
some information about the mismatch and provide it to
the ZMPC so that it corrects its prediction model and
target.

To that end, the nominal model of the plant is augmented
with a model that takes into account the disturbances in
the form of an integrating state. Denote x̃• = [x• d•]

′

as the augmented state, where disturbance d ∈ Rnd has
associated matrices Bd ∈ Rnx×nd and Cd ∈ Rny×nd . Then,
the extended system and output of the model with pulse
input has the form:

x̃•(k + 1) = Ãdx̃•(k) + B̃d1u u
•(k) + B̃dr r

•(k) + Ẽd,

ỹ(k) = C̃x̃•(k),
(10)

where Ãd =

[
Ad Bdd
0 I

]
, B̃d1u =

[
Bd1u

0

]
, B̃dr =

[
Bdr
0

]
, Ẽd =[

Ed

0

]
, C̃ = [C Cd], and Bdd , eATBd.

To consider the mismatch in the optimization problem, the
state and disturbance have to be estimated. To that end,
it is necessary to select matrices Bd and Cd to ensure that
the augmented model is observable. This is guarantee if
and only if

rank


C̃

C̃Ãd

...

C̃Ãd
nx+nd−1

 = nx + nd, (11)

and then, an estimator for the state and disturbance is
designed in the form:

ˆ̃x•(k + 1) = Ãd ˆ̃x•(k) + B̃d1u u
•(k) + B̃dr r

•(k) + Ẽd

+L(y(k)− C̃ ˆ̃x•(k)).
(12)

where matrix L is chosen so that the estimator is stable.
Here, the Kalman filter algorithm is used to obtain the
estimation.

The control strategy selected to achieve the objectives is
the one developed to steer the state to an equilibrium
set using artificial/intermediary steady state variables
(ZMPC-AV, zone MPC with artificial variables). This
MPC formulation was developed for impulsive systems by
Rivadeneira et al. (2018), ad extended to pulse systems by
Abuin et al. (2019). The cost function of the problem VN =
Vdyn(x;u, xa, ua) + Vf (X•Tars , UTars ;xa, ua), is composed
by two sections: (i) the dynamic cost, Vdyn(x;u, xa, ua) =∑N−1
j=0 ‖x(j) − xa‖2Q +

∑N−1
j=0 ‖u(j) − ua‖2R, which steers

the state to the artificial equilibrium inside (X•s , U
•
s ),

and (ii) the terminal cost, Vf (X•Tars , UTars ;xa, ua) =
P (distX•Tar

s
(xa)+distUTar

s
(ua)), which forces the artificial

variables to an equilibrium that maintains the output y(t)
in the target set Y Tar = CX•Tars , where distZ(x) denotes
the distance from a point x to set Z.

Then, given the current estimate of the augmented state
ˆ̃x•, the optimization problem that solves the offset-free
ZMPC-AV (ZMPC-AV-OF) with pulse input every time k
is:

min
u,xa,ua

VN (x,X•Tars , UTars ;u, xa, ua)

s.t. x•(0) = x̂•(k), d•(0) = d̂•(k),
x•(j + 1) = Adx•(j) +Bd1u u

•(j) +Bdr r
•(j)

+Bddd
•(j) + Ed,

d•(j + 1) = d•(j),
u•(j) ∈ U, x•(j) ∈ X,
x•(N) = xa,
ya = Cxa + Cdd

•(j),
xa = Adxa +Bd1u ua +Bddd

• + Ed

(13)

where the first element of solution sequence u0 =
{u•0(0;x), u•0(1;x), . . . , u•0(N − 1;x)} is applied to the
plant every time k. The constraint x•(N) = xa in (13)
forces the state at the end of the horizon to reach the
artificial equilibrium xa, and note that the plant-model
mismatch is taken into account in the prediction model and
in the calculation of the artificial variables in constraints
xa = Adxa + Bd1u ua + Bddd

• + Ed and ya = Cxa + Cdd
•.

This strategy was theoretically demonstrated for impulsive
systems in Villa-Tamayo et al. (2020).
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4. APPLICATION TO T1DM TREATMENT

In this Section, the proposed control strategy is applied in
the context of Artificial Pancreas for T1DM treatment.
The purpose of the treatment is to maintain BG con-
centration in a safe zone known as normoglycemia (BG
∈ [70 − 140] mg/dl at fasting period, BG ∈ [70 − 180]
mg/dl at postprandial period), and avoid hyperglycemia
(BG > 180mg/dl) and hypoglycemia (BG < 70 mg/dl)
events. Therefore, the target set, is established inside nor-
moglycemia zone as Y Tar = {y : 90 ≤ y ≤ 110}. In
addition, a sampling time of T = 5 min is used and the
duration for insulin boluses is established as ∆T = 1 min.

The model used to describe glucose, insulin, and carbohy-
drate dynamics is the one developed in Ruan et al. (2017).
It has the continuous affine linear form (1) and consists of
five state variables which are: x1, the glycemia (mg/dl);
x2 and x3, the delivery rates of insulin in the blood and
interstitial space compartments, respectively (U/min); and
x4 and x5, the delivery rates of carbohydrates in the stom-
ach and duodenum compartments, respectively (g/min).
The inputs are u, the exogenous insulin (U/min), and
r, the carbohydrates intake due to meals (g/min). The
corresponding matrices of the model are given by:

A =



−θ0 −θ1 0 θ2 0

0
−1

θ4

1

θ4
0 0

0 0
−1

θ4
0 0

0 0 0
−1

θ5

1

θ5

0 0 0 0
−1

θ5


Bu =


0
0
1

θ4
0
0

Br =


0
0
0
0
1

θ5



E = [θ3 0 0 0 0]
′
, and C = [1 0 0 0 0]. Each parameter of

the model has a physiological meaning whose description
can be seen in Table 1. Constraint set for state is set as
X = {x : [0 0 0] ≤ x ≤ [500 10 10]} and for the control
action as U = {u : 0 ≤ u ≤ 7.5}. Note that X is only
defined for the controllable part of the system since state
variables x4, x5 only depend on disturbance r.

One of the biggest challenges in T1DM treatment contin-
ues to be the physiological variations in patients. These
variations may be due to physical activity, stress, hor-
monal changes, among others (Fathi et al. (2018)); and
lead to an alteration in insulin requirements which if not
compensated can cause hyperglycemia or hypoglycemia
events. To simulate the variations in plant (the patient)
the three parameters identified in a sensitivity tests as
the most influential in BG dynamics (Villa Tamayo et al.
(2019)) are changed: θ0 the hepatic autoregulation, θ1

Table 1. Model Parameters

Parameter Description Units

θ0 Hepatic auto-regulation 1/min
θ1 Insulin sensitivity mg/dl/U
θ2 Carbohydrate bioavailability mg/dl/g
θ3 Endogenous glucose production at

zero-insulin level
mg/dl/min

θ4 Time-to-maximum of effective in-
sulin concentration

min

θ5 Time-to-maximum appearance
rate of glucose

min

00:00 3:00 6:00 9:00 12:00 15:00
Time (h)

0

1

2

3

4

E
xo

ge
no

us
 in

su
lin

 (
U

/m
in

)

iZMPC-AV / no mismatch
iZMPC-AV / 30% variations
iZMPC-AV-OF / 30% variations

14:00 14:30 15:00
Time (h)

0

0.1

0.2

E
xo

ge
no

us
 in

su
lin

 (
U

)

Fig. 2. Glycemia evolution and exogenous insulin for adult
patient number 6.

insulin sensitivity, and θ3 endogenous glucose production
at zero-insulin level. These parameters are varied so that
hypoglycemia is induced in patient: θ0, θ1 are increased
a 30% and θ3 reduced the same percentage. Additionally,
meals are considered as unknown disturbances, so the term
Brr(t) is not added in the prediction model.

Fig. 2 shows a comparison of the BG evolution and exoge-
nous insulin when both strategies ZMPC-AV and offset-
free ZMPC-AV (ZMPC-AV-OF) are applied. The Fig.
illustrates results for adult patient number 6, whose pa-
rameters were identified from the UVA/Padova simulator,
and a scenario of one meal of 60g at 5:00h. This in order
to visualize postprandial and fasting evolution. The initial
condition is set as 120mg/dl. The black line represents
the nominal behavior when there is no mismatch and the
ZMPC-AV is used. It is observed that, after postprandial
time, BG concentration achieves the target set by applying
the required basal. When there is a plant-model mismatch
and the same control strategy is applied (blue line), the
ZMPC-AV fails to adequately regulate glycemia, there are
episodes of hypoglycemia and at steady state glycemia
does not achieve the target zone i.e., there is an offset.
In contrast, when there is a mismatch and the ZMPC-
AV-OF is applied, insulin doses are corrected (the basal
is reduced compared to the ZMPC-AV) and glycemia is
steered to the target avoiding hypoglycemia events.

In Fig. 3, population results in 10 virtual adults identified
from the UVA/Padova simulator are shown. The simula-
tion scenario consists of 36 hours during which five meals
are provided to each patient: 15g at 6:00h, 50g at 9:00h,
80g at 12:00h, 20g at 17:00, and 60g at 21:00; then a
fasting period can be observed. Solid blue line represents
the population median when applying the ZMPC-AV and
dotted black line the median with the ZMPC-AV-OF.
Shaded areas are the interquartile range of population.
Given the plant-model mismatch with variations of 30%
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Fig. 3. Glycemia evolution and exogenous insulin in 10
virtual adult patients when applying control strate-
gies with pulse inputs and there is a plant-model
mismatch. Solid blue (ZMPC-AV) and dotted black
(ZMPC-AV-OF) lines represent the median, shaded
areas represent the interquartile range.

in parameters, the offset with the ZMPC-AV is evident,
at steady state the glycemia is steered to a point outside
the target zone, and in the transitory at postprandial
times, there are significant episodes of hypoglycemia. On
contrary, with the ZMPC-AV-OF, the glycemia achieves
the target zone, hypoglycemia events are eliminated, and
the hyperglycemia episodes are well compensated after
meal time.

The performance comparison between both strategies can
be seen in detail in Table 2. It shows the mean BG,
standard deviation (SD), coefficient of variation (CV),

Table 2. Performance Comparison ZMPC-AV
vs ZMPC-AV-OF

Strategy ZMPC-AV ZMPC-AV-OF

Mean BG (mg/dl) 84.8 ± 7.4 123.7 ± 11.6
SD BG (mg/dl) 28.6 ± 5.2 30.4 ± 8.5
CV BG (%) 33.9 ± 6.6 24.3 ± 4.5

Time percentage of BG in each zone (%)

< 54mg/dl 7.1 (20.1) 0 ± 0
< 60mg/dl 20.5 (25.2) 0 ± 0
< 70mg/dl 31.7 ± 15.5 0 (0)
70 − 140mg/dl 60.8 ± 15.0 77.5 (9.8)
70 − 180mg/dl 67.6 ± 15.5 93.2 (4.9)
> 180mg/dl 0 (1.0) 4.5 (4.8)
> 250mg/dl 0 ± 0 0 (0)
> 300mg/dl 0 ± 0 0 ± 0

Number of events in each zone (%)

< 54mg/dl 2 (4) 0 ± 0
< 60mg/dl 4 (3) 0 ± 0
< 70mg/dl 4.2 ± 1.3 0 (0)
> 180mg/dl 0 (0.8) 1.5 ± 0.9
> 250mg/dl 0 ± 0 0 (0)
> 300mg/dl 0 ± 0 0 ± 0

Fig. 4. Glycemia evolution in 10 virtual adult patients
of UVA/Padova simulator when applying the ZMPC-
AV and ZMPC-AV-OF strategies. solid, dotted lines
represent the median, shaded areas represent the
interquartile range.

time percentage of BG in each zone, number of events
in zone and the total daily insulin. The outcome indexes
are reported as mean ± SD for normally distributed data
and as median (interquartile range) otherwise. The pro-
posed ZMPC-AV-OF accomplishes improved control per-
formance in comparison with the ZMPC-AV strategy in
terms of mean BG by raising it and eliminating hypo-
glycemia risk (84.8 ± 7.4 vs. 123.7 ± 11.6), time percent-
age of BG in normoglycemia (67.6% ± 15.5% vs. 93.2%
(4.9%)), and time percentage in hypoglycemia (31.7% ±
15.5% vs. 0% (0%)). Note that, although glycemia levels
increase with the ZMPC-AV-OF, there are no severe hy-
perglycemia events (BG > 250 mg/dl).

Table 3. Performance Comparison ZMPC-AV
vs ZMPC-AV-OF in UVA/Padova simulator

Strategy ZMPC-AV ZMPC-AV-OF

Mean BG (mg/dl) 85.8 ± 4.6 105.0 ± 7.2
SD BG (mg/dl) 13.2 ± 1.6 23.5 ± 8.9
CV BG (%) 15.5 ± 2.0 21.8 ± 6.1

Time percentage of BG in each zone (%)

< 54mg/dl 0 (0) 0 (0)
< 60mg/dl 0 (2.7) 0 (0)
< 70mg/dl 6.1 ± 4.8 0 (3.6)
70 − 140mg/dl 93.6 ± 4.8 87.3 ± 8.7
70 − 180mg/dl 93.9 ± 4.8 97.7 (9.6)
> 180mg/dl 0 ± 0 0 (4.4)
> 250mg/dl 0 ± 0 0 (0)
> 300mg/dl 0 ± 0 0 (0)

Number of events in each zone (%)

< 54mg/dl 0 (0) 0 (0)
< 60mg/dl 0 (1) 0 (0)
< 70mg/dl 1 ± 0 0 (1)
> 180mg/dl 0 ± 0 0 (1)
> 250mg/dl 0 ± 0 0 (0)
> 300mg/dl 0 ± 0 0 (0)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16306



Finally, the strategy is tested for the 10 adult patients
in the UVA/Padova simulator. The simulation scenario
consists of 15 hours, with a meal of 50g at 5:00h, and an
initial condition of 120 mg/dl. Note that, in this case, there
is an inherent plant-model mismatch since the prediction
model (10) is minimal unlike the maximum representation
used in the UVA/Padova simulator (Man et al. (2014)).
Additionally, to emulate the parametric variations, the
simulator allows patient insulin sensitivity to be varied.
Here, this parameter is increased by a factor of 2.5, to
cover a mismatch as in the case where hepatic auto-
regulation and endogenous glucose production are also
varied (parameters with a greater effect on glycemia as
showed in Villa Tamayo et al. (2019)).

The comparison between both strategies ZMPC-AV vs.
ZMPC-AV-OF can be seen in Fig. 4 and Table 3. The
main aspect to notice is the steady state offset obtained
with the ZMPC-AV strategy, and its correction with the
ZMPC-AV-OF. In addition, the improvement in ZMPC-
AV-OF performance can be seen in the transitory of the
system, the time percentage of BG in normoglycemia
(93.9% ± 4.8% vs. 97.7% (9.6%)), and time percentage
in hypoglycemia (6.1% ± 4.8% vs. 0% (3.6%)).

5. CONCLUSION

The problem of designing an offset-free MPC with pulse
inputs to compensate parameter variations that cause a
plant-model mismatch has been addressed in this paper.
The strategy consists of augmenting the system with a
disturbance model to estimate the mismatch and correct
the prediction model, equilibrium and target in the MPC
formulation. In addition, the pulse control scheme is based
on strategies whose inputs act for a certain time without
fully covering the sampling period (as in discrete scheme).
This allows more realistic models for applications such as
Artificial Pancreas.

The offset-free MPC with pulse inputs is applied to T1DM
treatment and compared with an ZMPC-AV formulation
developed in a previous work. Both strategies are tested
under a simulation scenario with unannounced meals and
variations in the plant that induce hypoglycemia. The
ZMPC-AV-OF strategy accomplishes to maintain BG lev-
els in the normoglycemia zone a 93% of time and eliminates
hypoglycemia episodes. For further works, it is intended
to study the compensation of the effect of non-constant
variations in the plant, and if possible, to carry out in-
vitro or animal experiments to validate the quality of the
proposed strategy.
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