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Abstract: Secret sharing schemes have been studied intensively for the last 20 years, and
these schemes have a number of real-world applications. There are a number of approaches
to the construction of secret sharing schemes. One of them is based on codes of forward error
correction (FEC). In fact, every linear code can be used to construct secret sharing schemes. For
instance original Shamir secret sharing scheme is based on erasure decoding of Reed-Solomon
codes. One of the main drawbacks of secret sharing schemes based on FEC is a dependence
between number of users (participants) and field size of FEC. In this paper we propose a new
scheme of secret sharing based on iterative decoding of LDPC codes in terms of supercodes
decoding concept. In this scheme a field size can be made arbitrary and independent on the
number of participants.

Keywords: LDPC codes, iterative decoding, supercodes decoding, secret sharing, quasi-cyclic
LDPC codes, signal-noise ratio.

1. INTRODUCTION

Secret-sharing schemes are a technique which is used in
many modern cryptographic protocols. A secret-sharing
scheme consists of a dealer D who has some secret S, a set
of n parties (users), and a collection A of subsets of parties
called the access structure. A secret-sharing scheme for A
is a method by which the dealer distributes shares to the
parties such that:

• Any subset in A can reconstruct S
• Any subset not in A cannot reveal any partial infor-

mation on the S.

Originally motivated by the problem of secure information
storage, secret-sharing schemes have found a number of
other applications in cryptography and distributed com-
puting: Byzantine agreement M. Ben-Or, et al. [1988],
secure computations D. Chaum, et al. [1988],R. Cramer,
et al. [2000], threshold cryptography Y. Desmedt et al.
[1992], access control M. Naor. [1998] and attribute-based
encryption V. Goyal, et al. [2006]–B. Waters. [2008].

Secret-sharing schemes were introduced by BlakleyG. R.
Blakley. [1979] and Shamir A. Shamir. [1979] for the
threshold case, i.e. for the case where the subsets that can
reconstruct the secret are all the sets whose cardinality is
at least a certain threshold: if n is a number of parties,
k < n is a threshold and secret S is shared into the n
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subsets of A: A = {A1,A2, . . . ,An}, then in order to
reconstruct S any subset of A with cardinality at least
k is required and any subset of A with smaller cardinality:
{Ai1 ,Ai2 , . . . ,Ait}, t < k, 0 < ij ≤ n does not allow
reconstruct S.

Secret-sharing schemes for general access structures were
introduced and constructed by Ito, Saito, and Nishizeki
in paper M. Ito et al. [1993]. More efficient schemes
were presented in J. Benaloh et al. [1990]. In this paper
Benaloh and Leichter proved that if an access structure
can be described by a small monotone formula then it
has an efficient perfect secret-sharing scheme. This was
generalized by Karchmer and Wigderson M. Karchmer
et al. [1993] who showed that if an access structure can
be described by a small monotone span program then it
has an efficient scheme (a special case of this construction
appeared before in E. F. Brickell. [1989]).

There are several approaches of constructing secret sharing
schemes. One of them is based on FEC. In fact the first
Shamir’s scheme is FEC based. The relationship between
Shamir’s secret sharing scheme and the Reed-Solomon
codes was pointed out by McEliece and Sarwate in 1981
R.J. McEliece et al. [1981]. Ather this paper was published,
several authors have considered the construction of secret
sharing schemes using linear FEC. On of the most impor-
tant papers among them was written by Massey where
he utilised linear codes for secret sharing and pointed out
the relationship between the access structure and the code-
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words of minimal weight of the dual code of the underlying
code J.L. Massey [1993], J.L. Massey [1995].

In this paper we consider another approach of secret
sharing. It will be based on Quasi-Cyclic Low-Density
Parity-Check Codes (QC-LDPC) with iterative decoding
algorithm. Both codes and decoding rule were suggested
by Gallager in Gallager [1963]. These linear block codes
are defined by their parity-check matrice H characterized
by a relatively small number of ones in their rows and
columns.

Some classes of LDPC codes are used in cryptography, e.
g. in McEliece codes-based asymmetric key cryptosystem
McEliece [1978]. Usually these codes is applied to reduce
key size in public-key cryptosystem M. Baldi et al. [2007].

In this paper we use QC-LDPC codes with decoding
based on supercodes to construct threshold secret-sharing
scheme. The main idea of this scheme is to apply decoding
based on supercodes to recover common secret.

The paper is organized as follows: in 2 we introduce most
common scheme of secret sharing and describe the main
idea of threshold scheme. In section 3 we consider main
definitions and notation refered to error-correction codes,
that will be used later. In 4 we present the most common
scheme of supercodes decoding that was first considered
in Abramov et al. [2014]. In section 5 we consider the
most common design of QC-LDPC Codes and in 6 we
describe the decoding of these codes based on the main
principles of supercodes decoding. Finally, in 7 we present
our new secret-sharing scheme based on QC-LDPC codes
with supercodes decoding.

2. SECRET SHARING SCHEMES

In this section we will give the most general description of
secret sharing schemes.

Suppose that there are n participants in the sharing of a
secret.

We will say that set (coalition) Ao ∈ {1, 2, . . . , n} = [n]
of participants is permitted if these participants, having
united, can gain access to the secret. All other coalitions
that are not permitted are called forbidden.

The access structure of the secret sharing scheme will be
called the pair (∆,Γ), where the set of allowed sets is Γ,
and ∆ is the set of forbidden coalitions.

One of the main participants in the secret sharing scheme
is the dealer. The dealer’s task is to calculate the shares
of the secret and distribute them among the participants.

Let S0 denote the finite nonempty set of all possible secret
values with the corresponding random variable η taking
the value on the Cartesian product of the sets S1 × S2 ×
. . .×Sn and with the distribution function P on it, where
the sets Si are finite, ηi are the corresponding random
variables on Si, and si ∈ Si is the value of ηi . Dealer uses
(η1, . . . , ηn) as a set of fractions of the secret s0 ∈ S0. After
choosing the secret s0 with probability p(s0), the dealer
sends the participants the secret fractions s1, s2, . . . , sn
with the probability Ps0(s1, s2, . . . , sn), namely, for the i-
th participant, the secret fractions will be si. Then the
coalition of participants Ao receives a collection (si, i ∈

Ao). In order for the secret sharing scheme to implement
the access structure (∆,Γ), we must ensure that all allowed
coalitions can restore the secret. Formally, this can be
written as follows:

P (η = s0|ηi = si, i ∈ Ao) ∈ {0, 1},∀Ao ∈ Γ

Let us note that each of the participants receives his share
si and does not have information about the values of
other shares, but he knows all the sets Si, as well as both
probability distributions p(s0) and Ps0(s1, . . . , sn).

Let us introduce the concepts of perfect secret-sharing
schemes. A perfect secret-sharing scheme is such a scheme
in which forbidden sets do not receive any additional
information to the available a priori about the possible
value of the secret. This can be formalized as follows:

P (η = s0|ηi = si, i ∈ B) = P (η = s0),∀B ∈ Γ.

Let us consider a class of perfect schemes, namely thresh-
old schemes. We will call scheme (∆,Γ) a (k, n)-threshold
scheme if any A ∈ [n], |A| > k− 1 is in Γ and any B ∈ [n],
|B| < k is in ∆.

Such schemes include, for example, the Shamir scheme and
the Blackley scheme. Such secret sharing schemes are used
to construct threshold cryptosystems. In a threshold cryp-
tosystem, a message can be decrypted by a specific coali-
tion of participants, between which the secret is shared.
The group of participants has a common public encryption
key, and the decryption key is divided between them using
a scheme. A particular case of such a system is a thresh-
old signature scheme. Threshold cryptography is used to
store a secret key, for example, in the governmentatl and
military areas, and it is also used in cloud environments
and electronic voting schemes.

But in practice, threshold schemes are not enough in
some cases, since the permitted sets can be arbitrary.
One solution is to issue several keys to one participant,
but such a solution is inefficient. In 2010, A. Abramov
proposed the construction of a general-purpose secret
sharing system, based on error-correcting codes in which
the access structure can be arbitrary, with only one key
being given to each participant.

3. FEC - PRELIMINARIES

Let us introduce some notation and definitions devoted to
error-correcting codes that we will use in the paper.

Let us consider field F2 of two elements 0 and 1 and
modulo 2 operation. If V is a vector space of length n-
tuples over F2 (V = Fn2 ), then any k-dimensional subspace
C ⊂ V is called linear (n, k) code. Each code C can be
described either by it’s generator matrix G (with size k×n)
constructed by any basis of C:

G =
(
gT1 ,g

T
2 , . . . ,g

T
k

)T
,

where gi, i = 1..k form basis of C, or by it’s parity-check
matrix H (with size (n− k)× n) constructed by basis hi,
i = 1..n− k of orthogonal to C space C⊥:

H =
(
hT1 ,h

T
2 , . . . ,h

T
n−k

)T
.

In terms of either generator or parity-check matrix we can
give to equivalent definitions of code C:

C = {c ∈ V : c = uG,∀u ∈ F k2 } = {c ∈ V : cHT = 0}.
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Let us consider arbitraty (n, k) code A ⊂ V . If A′ ⊂ V :
A ⊂ A′ then code A′ is called supercode of code A. It is
obvious that A′ is a linear (n, k′) code where k′ > k.

The concept of error-correcting (n, k) code is inextricably
linked to two functions: encoding and decoding.

The encoding ψ(u) maps all possible vectors u =
(u1, u2, . . . uk) ∈ F k2 to elements of A: ψ : F k2 7→ A by
the rule: ψ(u) = uG.

The decoding function (algorithm) ξ = ψ−1 is an invertion
of ψ in some set of vectors R = {y = f(c, e) : c ∈ A, e ∈
E} which is called correctable vectors: ξ(y) = u for y ∈ R.
In this notation R may not be in V . E is some subset of
R which is called a set of correctable patterns of errors
and f(x, e) is a some function which depends on channel
of information transmission, for instance f(x, e) = −2x +
1+e, where e is a random variable distributed according to
the normal distribution law N(0, σ2). This function f(x, e)
is corresponded to channel with Additive White Gaussian
Noise (AWGN) with BPSK manipulation.

Any channel is decribed by two sets: a set X of inputs
(transmitted codewords), a set Y of outputs (received
words) and conditional probability function p(x ∈ X |y ∈
Y) to have input x for given output y. The simpliest
decoding function ξ = ψ−1 can be described as follows:

ξ(y) = argmax
x∈X

p(x|y).

This decoding rule is known as maximum-likelihood (ML)
and it gives an optimal solution x but has an exponential
complexity O(|A|). In the next section we describe an idea
of supercodes decoding of any code A which has almost
the same performance (in terms of cardinality of E) but
the complexity is significantly smaller (but in general still
remains exponential).

4. DECODING BASED ON SUPERCODES

The first paper where supercode decoding was considered
is Barg et al. [1999]. The complexity and the perfor-
mance of this algorithm were also studied. It was also
shown that asymptotic complexity of supercode decoding
is exponentially smaller than the complexity of all other
methods known. At the same time this algorithm performs
complete minimum-distance decoding for almost all long
linear codes. This algorithm develops the ideas of covering-
set decoding and split syndrome decoding. Here we only
describe the main idea of this algorithm that will be
sufficient to obtain LDPC decoding based on supercodes.

Let us consider linear (n, k) code A ⊂ V . Let us also
consider a set of supercodes Ai ⊂ V : A ⊂ Ai. We will
assume that any code Ai has simplier decoding ξAi than
decoding ξA of code A. This assumption is rather natural,
since each code Ai have less redundant symbols (smaller
syndrome size) thus can be decoded by Viterbi algorithm
on code trellis with smaller number of states than in
original code A. Moreover, we will also suppose that each
decoder ξAi

produces a list of codewords Li.

Now let us describe supercodes decoding itself. The input
of the algorithm is as follows:

• System of supercodes Ai, i = 1..s

• Received from channel vector y

The output of the algorithm is a either such x: HxT = 0
or denial of decoding.

The decoding steps are as follows:

• Form a list Li, Li = ξAi
(y), i = 1..s.

• Find an intersection L = ∩Li
• If L = ∅, then return denial of decoding
• Else find x = argmaxx∈L p(x|y) and return x.

In fact lists Li are not required to include codewords
of Ai themselves. Instead of codewords of supercode Ai
list Li can include only some distribution on X that was
calculated from initial distribution obtained from channel
(in the case of soft values of y) by decoding algorithm ξAi .
For instance well-known belief-propagation (BP) decoder
of LDPC codes or BCJR decoder for codes on trellis can
produce output distribution on X after several decoding
iterations. The main issue in this case is to calculate L =
∩Li. We will show that for LDPC codes this calculation
is equivalent to vertical step of BP decoder for generalized
LDPC codes.

5. QUASI-CYCLIC LDPC CODES

In this section we will give a brief introduction to quasi-
cyclic LDPC codes that will be the main part of our secret
sharing scheme. First of all let us define arbitrary quasi-
cyclic codes.

Definition 1. Linear code A of length n is a quasi-cyclic
(QC) if there is some integer n0 such that every right/left
cyclic shift of any codeword c ∈ A in n0 places is again a
codeword of A: xn0mc mod (xn − 1) ∈ A for any m ∈ N.

If n = n0p then both basis matrices G and H can be
constructed by p× p circulant blocks.

Definition 2. Square matrix D is called circulant matrix in
all their rows (columns) di, i > 1 are distinct cyclic shifts
of first row (column) d1. Thus, this matrix are completely
defined by it’s first row (column).

Now let us define quasi-cyclic LDPC codes.

Definition 3. A linear code A of length n is called (reg-
ular) Quasi-Cyclic Low-Density Parity-Check Code (QC-
LDPC) if:

• A is a quasi-cyclic.
• H can be represented as follows:

H =

D11 D12 . . .D1n0

D21 D22 . . .D2n0

. . . . . . . . .
Dl1 Dl2 . . .Dln0

 ,

where Dij are p × p circulant matrices with row
(column) weights wij , wij << p, 1 < l < n0 << p.

The main feature of QC-LDPC codes is that the total
number of ones p

∑
i,j

wij in H must be significantly smaller

than the total number of elements ln0p
2 in H. In the most

common cases 1 ≤ wij ≤ 3.

If numbers of unities in each column and row of H are
constants: l and n0 then QC-LDPC code is called (l, n0)-
regular.
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”Sparseness” of H allows to implement low-complexity
iterative decoding for recovering codewords of A from
received noisy data. In the next section we will describe a
main idea of well-known BP decoding of QC-LDPC codes.

6. SOFT DECODING OF LDPC CODES BASED ON
SUPERCODES

Let us consider some arbitrary LDPC code A of length n
with parity-check matrix H with size m× n. Each row of
H will be denoted by ci and will be considered by a set of
indices j, 1 ≤ j ≤ n such that hij = 1. In fact, each row ci
is a single parity-check code (SPC) of length wt(ci) = ni
such that (ci,v) = 0 mod 2 for any v ∈ A. We will call
ci as a check node.

With each code symbol (we also call it variable node)
vi, i ∈ [n] we will assign set Ci = {(ci1 , . . . , cit) :
hi1i, hi2i, . . . hiti = 1} of SPC codes, connected with
symbol vi. At the same manner we denote a set Vj =
{(i1, . . . , ik) : hji1 , hji2 , . . . , hji1 = 1} of symbols that are
connected with j-th check-node cj , j ∈ [m].

Let us describe a general class of decoding algorithms for
LDPC codes. These algorithms are called message passing
algorithms, and are iterative algorithms. The reason for
their name is that at each round of the algorithms mes-
sages are passed from variable nodes to check nodes, and
from check nodes back to variable nodes. The messages
from variable nodes to check nodes are computed based
on the observed value of the message node and some of
the messages passed from the neighboring check nodes
to that variable node. An important aspect is that the
message that is sent from a variable node vi to a check
node cj ∈ Ci must not take into account the message sent
in the previous round from cj to vi ∈ Vj . The same is true
for messages passed from check nodes to variable nodes.

One important subclass of message passing algorithms
is the belief propagation algorithm. This algorithm is
present in Gallager’s work Gallager [1963]. The messages
passed between variable and check nodes in this algorithm
are probabilities, or beliefs. More precisely, the message
mvi 7→cj passed from a variable node vi to a check node cj ∈
Ci in l-th iteration is the probability that vi has a certain
value given the observed value yi of that variable node,
and all the values connected to vi in the prior round l− 1
from check nodes from Ci/cj : mvi 7→cj = Pr(vi|yi, Ci, l−1).
On the other hand, the message mcj 7→vi passed from cj to
vi ∈ Vj is the probability that cj has a certain value given
all the messages passed to cj in the previous round l − 1
from Vj/i.

It is easy to derive formulas for these probabilities under
independence assumption. It is sometimes advantageous
to work with likelihoods, or sometimes even log-likelihoods

ln Pr(xi=0)
Pr(xi=1) instead of probabilities. In this case the decod-

ing algorithm is as follows:

(1) If l = 0 then m
(l)
vi 7→cj = yi, where yi are log-likelihoods

received from channel, i ∈ [n], j ∈ [m], goto 3.

(2) If l > 0, then m
(l)
vi 7→cj = yi+

∑
cj′∈Ci/cj

m
(l−1)
cj′ 7→vi , i ∈ [n],

j ∈ [m]

0 0.2 0.4 0.6 0.8 1 1.2
10−5

10−4

10−3

10−2

10−1

100

SNR

F
E

R

BP
Supercodes based decoding

Fig. 1. Decoding of (9, 15)-regular QC-LDPC codes of
length n = 1920

(3) m
(l)
cj 7→vi = ln

1+
∏

v
i′∈Vj/i

tanh
m

(l)
v
i′ 7→cj
2

1−
∏

v
i′∈Vj/i

tanh
m

(l)
v
i′ 7→cj
2

, i ∈ [n], j ∈ [m]

(4) r
(l)
i = yi +

∑
cj′∈Ci

m
(l−1)
cj′ 7→vi , i ∈ [n].

(5) If r
(l)
i < 0 then xi = 1 else xi = 0, i ∈ [n].

(6) If HxT = 0 then return x and exit. Else goto 7.
(7) l := l + 1.
(8) If l > lmax (predefined maximal number of itera-

tions), return denial of decoding. Else goto 2.

This decoding algorithm can be obviously represented
in terms of supercodes decoding under assumption that
instead of decoding of SPC codes cj in stage (3) and
updating information from variable nodes to check nodes
in stages (1) and (2) algorithm decodes a sequence of
supercodes Aj such that VAj = [n], i. e. supercode Aj
consists of such SPC codes ct that ∪Vct = [n]. In this case
at stage (3) any messagemAj 7→v updates all log-likelihoods
of received word y.

Let us assume that parity-check matrix H of LDPC code
is represented as:

H =

H1

H2

. . .
Ht


and each Hi is a parity-check matrix of supercode Ai. For
instance, if we consider QC-LDPC code then each block
row (Di1Di2 . . .Din0

) can be suggested as parity-check
matrix Hi of supercode Ai. In this case the supercodes-
based decoding of QC-LDPC codes can be described as in
Alg. 1.

Decoder 1 threats LDPC code as a generalized LDPC with
constituent codes themselves being LDPC. Simulation re-
sults for (9, 15)-regular QC-LDPC codes for both original
and proposed decoders are presented in Fig. 1.
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Input: A1, A2, . . . , At — supercodes
y = (y1, y2, . . . , yn) — log-likelihoods, received from
the channel,
r′ = A(A, r, Iin) — iterative decoding algorithm of
code A where, r — input log-likelihoods , r′ —
output log-likelihoods, Iin is the number of iterations,
Imax = IinIout — total number of decoding iterations
Output: L — output log-likelihoods after decoding.
/* Initialization */
L← y

for i = 1, t do
Li ← 0

end

for j = 1, Iout do
for i = 1, t do

r← L− Li

r′ ← A(Ai, r, Iin)
L′i ← r′ − r

end

for i = 1, t do
Li ← L′i

end

L←
t∑
i=1

Li + y

end
return L

Algorithm 1: Proposed Decoder

In this picture solid line corresponds to traditional BP
decoding of LDPC code, and dashed one corresponds to
supercodes decoding. The total number of iterations is 50
(Iin = 5 and Iout = 10 for supercodes decoding). The
communication channel is AWGN with BPSK manipula-
tion. Simulation shows the same performance as usual BP
decoding.

7. SECRET-SHARING SCHEME BASED ON LDPC
CODES

Before we are going to describe secret sharing scheme
based on LDPC codes, we now can give a main idea
of one. In the supercodes decoding scheme a number s
of supercodes Ai, = 1..s can be made arbitrary. Let us
suppose that codeword x of code A is a secret. If we
assume that both communication channels between dealer
and participants, and between participants are noiseless,
then dealer can generate such noise vector e that in order
to decode received sequence y = f(x, e) any subset of
l < s supercodes Aij , j = 1..l is necessary and sufficient: it
means that x can be recovered from any set of l1 ≥ l
supercodes and can not be recovered from any set of
supercodes with cardinality smaller than l. Thus each of
participants have a pair (y, Ai) and only coalition of l or
more participants can recover x from y.

Let us suppose some LDPC code A with parity-check
matrix H in the form:

H =

H1

H2

. . .
Ht

 .

Let us also assume that there are l ≤ U ≤ t users in
the secret sharing scheme. The common secret, distributed

between these users is a codeword x of LDPC code with
parity-check matrix H. Since all codes Ai with parity-
check matrices Hi are supercodes of A then xHT

i = 0
for all i = 1..t. But since codes Ai have rates higher than
rate of A then these codes can correct less errors than code
A. This fact is a basis of the secret sharing scheme.

Let us suppose that dealer can generate Additive White
Gaussian Noise (AWGN) with arbitrary variance σ and
zero mean: N(0, σ). Let us also suppose that for a given
code A dealer knows variance σcrit that allows to decode
any coalition of supercodes A1, A2, . . . , Al of cardinality
l with error probability smaller than Pe, where Pe is
small enough. Moreover, let us also assume that dealer
also knows noise variance σs > σcrit such that for any
coalition of supercodes A1, A2, . . . , Al′ , l

′ < l probability
of error close to 1−Pe. The values σs, σcrit can be obtained,
from instance, using Density Evolution (DE) technique,
described in Luby et al. [2001]. In this case the secret
sharing scheme can be described as follows:

• Secret generation.
· Encode vector u by generator matrix G of QC-

LDPC code: x = uG
· Add noise to modulated x: y = 2x−1+η, where
η ∼ N(0, σcrit).
· Calculate log-likelihoods: L = 2y

σ2
crit

• Secret sharing
· Dealer sends to each user 1 ≤ i ≤ U a pair

(Hi,L). In the case of QC-LDPC codes instead
of sending whole matrix Hi dealer can only send
a sequence di1, . . ., din0 of the first rows of cir-
culants Di1,Di2, . . . ,Din0 thus reducing lengths
of keys.

• Secret recovering
· If there are any coalition of k ≥ l users
i1, i2, . . . ik, then construct a parity-check matrix
Hc:

Hc =

Hi1
Hi2
. . .
Hik


and decode the corresponding code by Alg. 1 to
recover x from L

This scheme guarantees that codeword x will be recovered
from L by any coalition of users that includes not less
than l members with probability not less than 1− Pe but
if the number of users in coalition smaller than l then
the probability of x to be recovered is at most Pe for any
predefined Pe.

8. CONCLUSION

In this paper we propose a new scheme of secret sharing
based on iterative decoding of LDPC codes in terms of
supercodes decoding concept. This scheme can be gener-
alized for an arbitrary number of users in the case when
we allow to supercodes being intersected. This scheme is
field size and secret length independent.
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