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Abstract: This paper is concerned with the design of state-feedback controllers for Linear
Parameter Varying (LPV) polynomial continuous-time systems. The vector field presents
polynomial dependence on the states. Two synthesis conditions are proposed, the first one
considers arbitrary rates of variation in the time-varying parameters, while the second one
provides LPV controllers that are constructed based on a smoothed approximation of the
time-varying parameter. The sum of squares matrix decomposition is employed to solve the
proposed conditions. The L2 gain is also considered to give a robustness measure of the proposed
controllers. The results are illustrated with examples from the literature.
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1. INTRODUCTION

Linear parameter varying (LPV) systems can be defined as
dynamic linear systems whose state space representation
depends on an external time-varying parameter (Moham-
madpour and Scherer, 2012). The range of applications is
very wide, one may find the use of LPV formulations to
deal with automotive systems (Fialho and Balas, 2002),
gas-turbine models (Wu and Prajna, 2005) and flight con-
trol (Pfifer et al., 2015), for instance. In the last decades,
several conditions for analysis and synthesis have been
addressed with the use of Lyapunov theory and Linear Ma-
trix Inequalities (LMIs). Because of its relative simplicity,
and the existence of several computational tools dedicated
to solving convex optimization problems, the use of LMIs
quickly became popular (Boyd et al., 1994).

The well known quadratic stability (Horisberger and Be-
langer, 1976; Barmish, 1985) was one of the first ap-
proaches employed to study LPV systems. This method
consists of the use of a Lyapunov function with a constant
matrix that is employed to guarantee robust stability for
the entire domain of the LPV system. Afterward, sev-
eral works developing less conservative LMI conditions
were proposed. The search for Lyapunov functions that
also depend on the time-varying parameter was addressed
in (Chesi et al., 2007). In (Trofino and de Souza, 2001)
the concept of bi-quadratic stability was introduced, the
method is based on a quadratic Lyapunov function on the
states and on the time-varying parameter simultaneously.

⋆ This work was supported by the CEFET-MG and the Brazilian
agency CNPq, grants 425800/2018-0 and 311208/2019-3.

In (Montagner and Peres, 2003) and (Geromel and
Colaneri, 2006), LMI conditions to certificate the asymp-
totic stability for LPV continuous-time systems are pro-
posed. The time-varying parameters are supposed to have
known bounds and their time derivative are modeled in
a way that they belong to a convex polytopic domain,
leading to less conservative results when compared to
the ones obtained with the quadratic approach. On the
other hand, the computational effort to solve these types
of problems becomes greater as the size of the problem
increase, as discussed in (Mozelli and Adriano, 2019).

In (Briat, 2015), conditions to certificate the asymptotic
stability and control design for LPV systems with piece-
wise constant parameters under constant and minimum-
dwell-time are investigated. Subsequently, in (Briat and
Khammash, 2017), stability analysis of LPV systems with
piecewise differentiable parameters is studied. The pro-
posed conditions are based on reformulating the LPV sys-
tem as an equivalent hybrid one, that contains information
about the dynamics of the state of the system and the
parameter trajectories. The obtained conditions general-
ize the quadratic and robust stability approaches in one
single formulation. To obtain tractable finite-dimensional
conditions, the sum of squares (SOS) relaxations are used.

Although LPV systems are extremely important and use-
ful, their reliability decreases by the time they get far from
their linearization point. In this context, polynomial sys-
tems can achieve better results when modeling some physi-
cal processes (Valmórbida et al., 2013). By using Lyapunov
theory and relaxations based on the sum of squares decom-
position, new conditions for stability analysis and synthe-
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sis for this class of system have been studied (Prajna et al.,
2005). In (Ebenbauer and Allgower, 2006), analysis and
synthesis conditions concerned with state-feedback and the
synchronization problem for polynomial continuous-time
systems are exhibited. The solutions are based on the use
of dissipation inequalities and SOS formulation. In (Prajna
et al., 2004), the SOS decomposition was employed to pro-
vide convex conditions for the computation of stabilizing
controllers for nonlinear systems. The method was based
on the search for rational polynomials. It is also important
to mention that in (Valmórbida et al., 2013) the existence
of saturated actuators has been considered in the design
of polynomial control laws for polynomial systems.

Working with LPV continuous-time systems may not be
an easy task due to the derivative of the parameter. Some
of the approaches, for example, make use of the maximum
magnitude of the time derivative to provide stability
certificates or design. Such values can be, sometimes, hard
to obtain. In this context, one of the contributions of this
work is based on the fact that even not knowing the time
derivative limits, LPV controllers can be designed. Besides,
if those functions are not continuous, the biggest part of
the approaches on the literature can not be applied since
such derivatives are not bounded. The one proposed in this
paper works fine even in that case.

A great part of existing results in the control literature
considers the presence of time-varying parameters and the
existence of polynomial dependence in the vector field,
separately. This paper intends to diminish this gap con-
sidering the design of state-feedback stabilizing controllers
for LPV continuous-time systems with polynomial depen-
dency on states. Employing the SOS decomposition, an-
other contribution of this paper is designing controllers for
state polynomial systems with time-varying parameters.
Robust and LPV controllers can be calculated with the
proposed methods.

The notation is standard. I and 0 denote identity matrix
and null matrix of proper dimension, respectively. The
transpose of a matrix U is represented by UT . Rm×n is
the set of real m × n matrices. He(M) = M + MT . If
f(x) is SOS, one may say that f(x) ∈ Σ [x]. A matrix of
degree [0 : q] is composed by polynomial entries of degree
0, 1, . . . , q on the treated variable.

2. PRELIMINARIES

2.1 Problem formulation

Consider the following polynomial LPV system

ẋ = A(α(t), x)x+B(α(t), x)u (1)

where x ∈ R
n is the state vector, u ∈ R

nu is the control
input and α(t) is the vector of time-varying parameters
belonging to the unit simplex. The matrices A ∈ R

n×n

and B ∈ R
n×nu , depend polynomially on the state vector x

and linearly on α(t). The matrices in (1) can be generically
represented as 1

W (α, x) =
N
∑

i=1

αiWi(x), α ∈ ΛN , (2)

1 To simplify the notation the dependence on t will be omitted for
the time-varying parameters.

where Wi(x), i = 1, . . . , N , are the vertices of the polytope
and ΛN is the unit simplex:

ΛN =
{

α ∈ R
N :

N
∑

i=1

αi = 1, αi ≥ 0, i = 1, . . . , N
}

. (3)

The goal is to provide a state-feedback control law
u = K(α, x)x such that the closed-loop system

ẋ = Ã(α, x)x, (4)

with Ã = A(α, x) + B(α, x)K(α, x) is asymptotically
stable.

2.2 Time-varying parameter

As proposed by Cherifi et al. (2019), if a function is at
least piecewise continuous on intervals [t − β, t], then its
mean values can be written as

ξ(t) = β−1

∫ t

t−β

α(τ)dτ, ∀t > 0, (5)

where ξ(t) holds the convex sum properties. Hence, one
can write

ξ̇(t) = β−1(α(t)− α(t− β)). (6)

The benefits of writing the derivative terms in this manner
is that all ξ̇(t) are always finite and bounded for all
t ∈ [−β,+∞]. Besides, for small finite and strictly positive
values of β, ξ(t) can be seen as a smoothed approximation
of α(t), which may lead to smoothed state-feedback gains
for the closed-loop system.

2.3 Sum of Squares

This paper makes use of the sum of squares (SOS) decom-
position to certify the non-negativity of the constraints
arised from the Lyapunov theory. According to Wu and
Prajna (2005), a multivariate polynomial F (x1, . . . , xn)
of degree 2d is SOS if exist polynomials f1(x), . . . , fm(x),
such that

F (x) =
m
∑

i=1

f2

i (x), (7)

and each fi has degree lower or equal to d. It is clear
that (7) is equal or greater than 0, allowing the SOS
decomposition to be used as a non-negativity certificate.
If there exists a SOS decomposition for F (x), then it can
be written as

F (x) = zTQz, (8)

where z is a vector of monomials with degree up to d in
x and Q is a constant positive semi-definite matrix, which
can be decomposed as Q = V TV . To illustrate how a SOS
decomposition can be found, consider the polynomial

F (x1, x2) = 4x4

1
+ 4x3

1
x2 − 7x2

1
x2

2
− 2x1x

3

2
+ 10x4

2
.

Note that 2d = 4, so the vector z can be written as a
function of monomials of degree d = 2, yielding

F (x1, x2) =





x2

1

x1x2

x2

2





T
[

4 2 −5
2 3 −1
−5 −1 10

]





x2

1

x1x2

x2

2



 .

By employing a Cholesky factorization one has Q = V TV
with

V =





2 1 −2.5
0

√
2 0.75

√
2

0 0
√
2.625



 .
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With the matrix V , all fi(x) of (7) can be calculated as
[

f1(x1, x2)
f2(x1, x2)
f3(x1, x2)

]

=





2 1 −2.5
0

√
2 0.75

√
2

0 0
√
2.625









x2

1

x1x2

x2

2



 ,

which leads to

F (x1, x2) = f2

1
(x1, x2) + f2

2
(x1, x2) + f2

3
(x1, x2),

where f1(x1, x2) = 2x2

1
+ x1x2 − 2.5x2

2
,

f2(x1, x2) =
√
2x1x2 + 0.75

√
2x2

2
,

f3(x1, x2) =
√
2.625x2

2
.

3. MAIN RESULTS

3.1 Polynomial state-feedback control law

The first result is based on the existence of a polynomial
matrix K(x) that assures the stability of the closed-loop
system (4). This is the case to be considered when there
is no information about the time-varying parameter α.

Theorem 1. If there exist a constant matrix P = PT > 0,
and a polynomial matrix Z(x) such that

−He(Ai(x)P +Bi(x)Z(x))− ǫI ∈ Σ [x] , (9)

i = 1, . . . , N , then the LPV polynomial system (4) is
asymptotically stable and the polynomial state-feedback
controller is given by

K(x) = Z(x)P−1.

Proof. By replacing Z(x) = K(x)P in (9), one can write

−He([Ai(x) +Bi(x)K(x)]P )− ǫI ∈ Σ [x] , (10)

i = 1, . . . , N . Multiplying (10) by αi, i = 1, . . . , N , and
summing up, one has

−He([A(α, x) +B(α, x)K(x)]P )− ǫI ∈ Σ [x] ,

which leads to

Ã(α, x)P + PÃ(α, x)T < 0. (11)

Multiplying (11) on the left by xTP−1, and on the right
by its transpose, one has

xTP−1Ã(α, x)x+ xT Ã(α, x)TP−1x < 0. (12)

Replacing (4) in (12) yields

ẋTP−1x+ xTP−1ẋ < 0,

or equivalently, V̇ (x) < 0 with

V (x) = xTP−1x.

Moreover, note that V (x) is positive definite, since P > 0
in Theorem 1.

3.2 LPV Polynomial state-feedback control law

In this case, the search is for an LPV polynomial control
law u = K(ξ, x)x, where ξ is a filtered time-varying
parameter.

Theorem 2. If there exist matrices Pi = PT
i > 0, i =

1, . . . , N , and polynomial matrices Zi(x), i = 1, . . . , N ,
such that

−He (Aj(x)Pi +Bj(x)Zi(x)) +
1

β
(Pj − Pk)− ǫI ∈ Σ [x] ,

(13)
i, j, k = 1, . . . , N , then the LPV polynomial system (4)
is asymptotically stable and the LPV polynomial state-
feedback controller is given by

K(ξ, x) = Z(ξ, x)P (ξ)−1.

.

Proof. Multiplying (13) by ξi, i = 1, . . . , N , summing up
and replacing Z(ξ, x) = K(ξ, x)P (ξ) one has

−He (Aj(x)P (ξ) +Bj(x)K(ξ, x)P (ξ))+

1

β
(Pj − Pk)− ǫI ∈ Σ [x] . (14)

Multiplying (14) by αj , j = 1, . . . , N , summing up and
applying the same procedure with ξk, k = 1, . . . , N , and
summing up, yields

−He([A(α, x) +B(α, x)K(ξ, x)]P (ξ))

+
1

β
(P (α)− P (α(t− β))) > 0. (15)

By employing (6), it is possible to write

He([A(α, x) +B(α, x)K(ξ, x)]P (ξ))− Ṗ (ξ) < 0,

which leads to

Ã(α, x)P (ξ) + P (ξ)Ã(α, x)T − Ṗ (ξ) < 0. (16)

Multiplying (16) on the left by xTP (ξ)−1 and on the

right by its transpose, and using the fact that Ṗ (ξ) =

−P (ξ)Ṗ (ξ)−1P (ξ), one has

xT
(

P (ξ)−1Ã(α, x) + Ã(α, x)TP (ξ)−1 + Ṗ (ξ)−1

)

x < 0,

(17)
Replacing (4) in (17) yields

ẋTP (ξ)−1x+ xTP (ξ)−1ẋ+ xT Ṗ (ξ)−1x < 0,

or equivalently, V̇ (x) < 0 with V (x) = xTP (ξ)−1x.
Moreover, note that V (x) is positive definite, since P > 0
in Theorem 2.

3.3 L2-gain

To evaluate the L2-gain associated with the state-feedback
controller, consider the following polynomial LPV system

ẋ = Ã(α, x)x+Bw(α, x)w
y = C(α, x)x+Dw(α, x)w

(18)

where w ∈ Rnw is the input disturbance, y ∈ Rny is the
measured output and Ã(α, x) is the closed-loop matrix
from (4).

Theorem 3. If there exist a constant matrix P = PT > 0
and a polynomial matrix Z(x) such that

−Mi − ǫI ∈ Σ [x] , (19)

i = 1, . . . , N , with

Mi =





He(Ai(x)P +Bi(x)Z(x)) Bwi(x) PCT
i (x)

Bw
T
i (x) −γ2I Dw

T
i (x)

Ci(x)P Dwi(x) −I



 ,

(20)
then, the closed-loop system (18) is asymptotically stable
with a bound to the L2-gain given by γ. Moreover, the
state-feedback control gain is given by

K(x) = Z(x)P−1.

Proof. By replacing Z(x) = K(x)P in (20), yields

Mi =





He([Ai(x) +Bi(x)K(x)]P ) Bwi(x) PCT
i (x)

Bw
T
i (x) −γ2I Dw

T
i (x)

Ci(x)P Dwi(x) −I



 ,
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Multiplying (19) by αi, i = 1, . . . , N , and summing up,
one can write





He(Ã(α, x)P ) Bw(α, x) PCT (α, x)
Bw

T (α, x) −γ2I Dw
T (α, x)

C(α, x)P Dw(α, x) −I



 < 0.

By applying a congruence transformation with




P−1 0 0
0 I 0
0 0 I



 ,

yields




He(P−1Ã(α, x)) Bw(α, x) PCT (α, x)
Bw

T (α, x) −γ2I Dw
T (α, x)

C(α, x)P Dw(α, x) −I



 < 0.

By means of Schur Complement and considering the
system described as in (18), one can compute the L2-gain
condition as

ẋTP−1x+ xTP−1ẋ+ yT y − γ2wTw < 0,

where the Lyapunov function is V (x) = xTP−1x > 0.

In the sequel the L2 gain is established by using the filtered
Lyapunov function.

Theorem 4. If there exist matrices Pi = PT
i > 0 and Zi(x)

such that
−Wi,j,k − ǫI ∈ Σ [x] ,

i, j, k = 1, . . . , N , with

Wi,j,k =





T Bwj(x) PiCj(x)
T

Bw
T
j (x) −γ2I Dw

T
j (x)

Cj(x)Pi Dwj(x) −I



 (21)

and

T = He(Aj(x)Pi +Bj(x)Zi(x))−
1

β
(Pj − Pk),

then, the closed-loop system (18) is asymptotically stable
with a bound to the L2-gain given by γ. Moreover, the
state-feedback control gain is given by

K(ξ, x) = Z(ξ, x)P (ξ)−1.

Proof. Multiplying (21) by ξi, i = 1, . . . , N , summing up
and replacing Z(ξ, x) = K(ξ, x)P (ξ) one has

Wj,k =





T Bwj(x) P (ξ)Cj(x)
T

Bw
T
j (x) −γ2I Dw

T
j (x)

Cj(x)P (ξ) Dwj(x) −I



 < 0

(22)
with

T = He(Aj(x) +Bj(x)K(ξ, x)P (ξ))− 1

β
(Pj − Pk).

Multiplying (22) by αj , j = 1, . . . , N , summing up and
applying the same procedure with ξk, k = 1, . . . , N , and
summing up, yields





Q Bw(α, x) P (ξ)CT (α, x)
Bw

T (α, x) −γ2I Dw
T (α, x)

C(α, x)P (ξ) Dw(α, x) −I



 < 0,

with Q = Ã(α, x)P (ξ)+P (ξ)Ã(α, x)T −Ṗ (ξ). By applying
a congruence transformation with





P (ξ)−1 0 0
0 I 0
0 0 I



 ,

and using Ṗ (ξ) = −P (ξ)Ṗ (ξ)−1P (ξ) it is possible to write




R P (ξ)−1Bw(α, x) CT (α, x)
Bw

T (α, x)P (ξ)−1 −γ2I Dw
T (α, x)

C(α, x) Dw(α, x) −I



 < 0,

where R = P (ξ)−1Ã(α, x)+ Ã(α, x)TP (ξ)−1+ Ṗ (ξ)−1. By
means of the Schur complement, it is possible to get the
L2-gain condition as

V̇ (x) + yT y − γ2wTw < 0, (23)

with V (x) = xTP (ξ)−1x. Note that P (ξ) is positive
definite in Theorem 4, concluding the proof.

4. NUMERICAL EXAMPLES

This section illustrates the results for the design of sta-
bilizing controllers for LPV polynomial continuous-time
systems. The effects of the filtered time-varying parameter
ξ(t) in the control design will be explored. The routines
were implemented in Matlab, version 8.2.0.701 (R2013b)
using SOSTOOLS (Papachristodoulou et al., 2013) and
SeDuMi (Sturm, 1999).

Example 1 Consider the following system, adapted from
Prajna et al. (2004),

ẋ =

[

−x2

1
+ x1 1
θ 0

]

x+

[

0
1

]

u, 0 ≤ θ ≤ 4, (24)

where θ is the varying parameter, but it is not available
online. By using Theorem 1, the state-feedback controller
designed to guarantee the asymptotic stability of the
closed-loop system is K(x) = [ k1 k2 ], where

k1 = −2.964x2

1
+ 0.9868x1 − 7.905,

k2 = −1.586x2

1
+ 0.2698x1 − 3.122.

Consider now that the parameter is available, hence it
can be used to compute the state-feedback gain, as well
its smoothed approximation. The controller designed with
Theorem 2 is

K(ξ, x) = (ξ1Z1(x) + ξ2Z2(x))(ξ1P1 + ξ2P2)
−1,

where Z1(x) = [za zb] and Z2(x) = [zc zd] with

za = −0.3275x2

1
+ 0.2408x1 − 1.185,

zb = −0.4872x2

1
− 0.03752x1 − 0.2317,

zc = −0.2838x2

1
+ 0.2049x1 − 1.111,

zd = −0.4898x2

1
− 0.05427x1 − 0.2652,

P1 =

[

0.2502 −0.3412
−0.3412 0.9918

]

, P2 =

[

0.25 −0.2955
−0.2955 0.8706

]

.

The controller was designed for β = 0.1, which leads to
ξ, a smoothed approximation of α. The influence of β is
depicted in Figure 1.

As expected, the value of β also impacts on the values
of the state-feedback gains. As shown in Figure 2, the
highest β used provides the smoothest behavior for k1 and
k2, where K(ξ, x) = [k1 k2]. However, it is also possible
to notice that the largest magnitude are assumed by k1
and k2 when β = 0.5. It means that more energy is used
to stabilize the system. Consider that the control energy
spent is computed by the function

U =

∫

∞

0

uT (t)u(t)dt, (25)
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Fig. 2. State-feedback gains variation for different β.

where u(t) is the control signal. The values of U for the
employed filtering values (β) are presented in Table 1. It
can be seen that higher values of β spent more control
energy, which is expected since a smooth behavior of the
control signal is obtained.

Table 1. Control energy for different values
of β.

β 0.05 0.1 0.3 0.5

U 1.1958 1.2493 1.5758 1.8388

Example 2 Consider the following polynomial LPV sys-
tem, adapted from Tanaka et al. (2009), with matrices

A(θ, x) =

[

−1 + x1 + x2

1
+ x1x2 − x2

2
1

−1 −1 + θ

]

,

Bu =

[

1
0

]

, Bw =

[

2
2

]

, C =

[

1
2

]T

, Dw = 0,

0 ≤ θ ≤ 4. The goal is designing a state-feedback controller
that minimizes the L2-gain under two different circum-

stances: on the first one, the parameter is not available
online and on the second the parameter is available all the
time, so it can be used to design the controller. In both
cases, it is desired that the stabilization works for arbitrary
rates of variation on the time-varying parameter. For the
first case, Theorem 3 should be used, the state-feedback
gain is designed with a matrix Z(x) with degree [0 : 2].
The L2-gain is given by γ = 2.0133 and 16 variables were
employed to solve the problem. If θ is known through time,
Theorem 4 can be used. The L2-gain is given by γ = 2.0339
and 31 variables were used. The controller was designed for
β = 0.05 and matrices Zi(x) with degree [0 : 2].

Example 3 Consider the nonlinear Lorenz chaotic system
with polynomial dynamic, adapted from Rakhshan et al.
(2018)

A(θ, x) =

[−a a 0
θ −1 −x1

x2 0 −b

]

, C(x) =

[

0.1
0

x1 + x2

]T

Bu =

[

1
0
0

]

, Bw(θ) =

[

1
0

0.1θ

]

, Dw = 0, a = 10, b = 8

3
.

The time-varying parameter is θ ∈ [30, k] and, according
to Alam and Ahmed (2017), in the absence of control,
the system is chaotic when θ ∈ [27.9, 99.6]. The results,
provided by Theorems 3 and 4, are presented in Table 2.
Both approaches are formulated with matrices Z of degree
[0 : 4] on the states x1 and x2 and [0] on x3. One
may see that when k grows, the L2 gain also increases.
Although Theorem 4 design LPV polynomial stabilizing
controllers it presents greater values of γ when compared
with Theorem 3. This is because the controller provided
by Theorem 4 depends upon a smoothed approximation
of the time-varying parameter. Theorems 3 and 4 used 52
and 103 variables to solve the problem, respectively.

Table 2. L2-Gain γ when considering Theo-
rem 3 and Theorem 4 for different values of k.

k Theorem 3 Theorem 4 (β = 0.05)

35 24.98 27.71
40 26.00 30.62
45 28.76 32.06

By using Theorem 1, it is possible design a state-feedback
controller considering a matrix Z with degree gZ = [0 : 4]
on the states. The parameter variation and the phase
portrait of the open-loop (chaotic behavior) and closed-
loop (considering four different initial conditions) system
are depicted in Figure 3.

5. CONCLUSION

New conditions for the synthesis of state-feedback con-
trollers for LPV polynomial continuous-time systems are
presented. Two approaches, based on the sum of squares
decomposition, have been developed: the first one is based
on a fixed robust state-feedback gain, providing stabi-
lization for arbitrary fast variations of the time-varying
parameter. The second one is an LPV controller, mak-
ing use of a smoothed approximation of the real time-
varying parameter and providing stabilization not only for
arbitrary fast variation but also for piecewise continuous
behavior of the time-varying parameters. Both conditions
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Fig. 3. Response to initial condition and θ behavior.

are extended to compute controllers that minimize the L2-
gain from the input disturbance to the output of the sys-
tem. It is important to emphasize the fact that the control
strategies proposed in this article can handle the existence
of time-varying parameters and polynomial dependency in
the vector field simultaneously. Future works include the
use of Lyapunov matrices that depend polynomially on the
state vector x.
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