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Abstract: For platoons under the multiple-predecessor following (MPF) topology, commu-
nication delays can compromise both the internal stability and string stability. The most
straightforward solution to guarantee stability is by increasing the time headway. On the other
hand, time headway plays a significant role in road capacity and increasing its value is in
contrast with the idea of platooning. In this study, internal stability and string stability of
platoons suffering from communication delays are investigated and a lower bound for the time
headway is proposed. Using this bound, platoons do not need to massively increase the time
headway in order to compensate for the effects of communications delays. Finally, we evaluate
the proposed lower bound on the time headway and the simulation results demonstrate its
effectiveness.
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1. INTRODUCTION

In transportation, grouping some vehicles (cars or trucks)
into a platoon, in which vehicles are close to each other,
is a method to increase the capacity of roads. By us-
ing platooning, vehicles can brake almost simultaneously,
which results in the improvement of traffic safety, even
when the vehicles are packed tightly. In addition, vehicle
platooning can help to reduce carbon dioxide emissions
and fuel consumption, Alam et al. (2010); Tsugawa (2013).
Internal stability and string stability are the essential
control objectives for a vehicle platoon. Internal stability
refers to the individual stability defined for each vehicle
and describes the ability to converge to given desired
trajectories, Feng et al. (2019). Regarding string stability,
although many definitions have been proposed in the
literature, such as Besselink and Johansson (2017); Ploeg
et al. (2014); Swaroop and Hedrick (1996), all entail the
unique fact that disturbances must not amplify along the
traffic flow.
It is known that the spacing policy, which defines the
distance between two consecutive vehicles, can influence
the ability of a platoon to attenuate the effects of distur-
bances and reach string stability. Two significant classes
for spacing policy exist: Constant Spacing Policy (CSP)
and Constant Time Headway Spacing policy (CTHP). In
CSP, the desired inter-vehicle distance is constant, while
in CTHP, a linear function of speed, with the proportional

gain, named Time headway (h), dictates the desired inter-
vehicle distance. A smaller time headway can increase the
road throughput, but it could be dangerous for the pla-
toon, since it could lead to internal and/or string instabil-
ity and, hence, a collision. On the other hand, an increase
in the time headway value leads to a larger inter-vehicle
distance, which guarantees safety, but as a consequence,
the capacity of the roads is decreased and the fuel con-
sumption is increased; see for example, Nowakowski et al.
(2016). In Xiao and Gao (2011), the minimum acceptable
value for the time headway, in the presence of parasitic
delays and lags is presented. Hence, by selecting a small
time headway, which meets the requirements for string
stability, a higher road throughput and fuel efficiency will
be achieved.
Recently, with technological advancements, vehicles can
receive information and be connected with multiple vehi-
cles in the platoon by using vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communications. The ad-
vantages of multiple connected vehicles have been widely
studied in the literature. In Darbha et al. (2019), a platoon
with a CTHP and time lag is considered, in which each ve-
hicle can obtain information from multiple predecessor ve-
hicles and a lower bound for the time headway, dependent
on the number of connected vehicles, has been provided.
This bound demonstrates that using V2V communications
and increasing the number of connected vehicles, a higher
road capacity can be achieved. In Bian et al. (2019), a
new definition of desired inter-vehicle distance in a platoon
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with CTHP and time lag under MPF topology is proposed
which avoids inconsistencies in the inter-vehicle distance.
Under this definition, a lower bound that guarantees in-
ternal stability and string stability is provided, which
implies that more connected cars can lead to a smaller
time headway.
Despite the advantages of V2V and V2I communications,
wireless communications inevitably introduce time delays
in vehicle platoons and can be a big challenge for control
design, since both the internal and string stability are
compromised in the presence of communication delays.
The effect of delays on platoons has been extensively
studied in the literature. For example, for the kinematic
model, it is shown in Xiangheng Liu et al. (2001) that the
delays coming from communication links can be a cause
of string instability. Also, in Zhang and Orosz (2016), the
effects of information delays on the longitudinal dynamics
of connected vehicles have been investigated. In Dileep
et al. (2019), CTHP is considered and a controller that
guarantees string stability for a platoon which has different
types of delays, actuation, communication and sensor
delay, and each vehicle is connected to one predecessor,
is proposed. Moreover, in Salvi et al. (2017), a controller
which guarantees asymptotic and exponential stability
of the platoons with CTHP and suffering from time-
varying delays, is proposed and it is shown that in the
case of fixed delays, the system will be string stable,
as well. For the dynamic model, in Xu et al. (2018),
a controller for a platoon under the predecessor-leader
following (PLF) topology and CSP is proposed which
guarantees disturbance string stability while having sensor
and communication delay.
However, none of the aforementioned works considered the
effects of time delay on the minimum time headway. The
first work that considered this problem in the scenario of
one vehicle look-ahead is Xiao and Gao (2011). However,
the results in Xiao and Gao (2011) is not an optimal value
for the platoons with MPF topology, because it doesn’t
include the effects of connecting multiple vehicles. On the
other hand, the lower bound proposed for platoons under
MPF topology, such as Bian et al. (2019), doesn’t include
the effects of having communication delays.
For overcoming the problem of string instability in a
platoon, where every vehicle is connected to multiple
preceding vehicles via communication links suffering time
delays, a lower bound on time headway is proposed in this
paper for the case in which the communication delays are
homogeneous. It has been shown that by selecting a larger
time headway value than the lower bound, even in the
presence of delayed information about the states of other
vehicles, the disturbances acting on the lead vehicle do
not propagate along the platoon and the knowledge of this
lower bound allows the platoon to utilize its full potential,
implying that the road capacity is maximized within
the possibilities given by the platoon control system.
Also, the proposed lower bound shows that by increasing
the number of predecessors, a smaller time headway is
achieved, which is in accordance to the results in Bian et al.
(2019). In addition to string stability, the internal stability
of the platoon with MPF topology, in the presence of
delays, is considered by means of Nyquist stability theory.

The remainder of this paper is structured as follows.
Section 2 presents some notations and mathematical pre-
liminaries. Section 3 gives the vehicle model and control
structure. In Section 4, the control law for a platoon with
homogeneous time delays is proposed and the objectives of
the paper are formulated. Section 5 analyzes the internal
stability and string stability of the system and proposes
a lower bound for the time headway. Section 6 shows the
simulation results verifying the suggested time headway.
Finally, in Section 7, we draw conclusions and discuss
future directions.

2. NOTATION AND MATHEMATICAL
PRELIMINARIES

2.1 Notation

Vectors and matrices are denoted by lowercase and upper-
case letters, respectively. Integer and natural numbers sets
are denoted by Z and N, respectively. Z0 , {0, 1, 2, . . .},
Zn0 , {0, 1, 2, . . . , n}, and Nn , {1, 2, . . . , n}. Real and
nonnegative real numbers sets are denoted by R and R+,
respectively. m × n real matrices are denoted by Rm×n.
For any matrix A ∈ Rm×n, (m,n) ∈ N × N, we denote its
transpose by AT and its entries by aij , i ∈ Nm, j ∈ Nn
(i.e., A = [aij ]). The n × n identity matrix is represented
by In.

2.2 Mathematical Preliminaries

Definition 1. We consider the vehicle platoon as a di-
rected graph G(V, E), where V = {v1, v2, ..., vN} is a set of
nodes representing all the following vehicles and E ⊆ V×V
is a set of edges representing the connections between each
pair of following vehicles. The Laplacian matrix associated
with G is defined as L = [lij ], i, j ∈ NN , with

lij =
{
−aij , i 6= j,∑N
k=1 aik, i = j,

(1)

where aij = 1 if (vi, vj) ∈ E and aij = 0, otherwise. Also,
we assume a uni-directional communication structure, i.e.,
vehicles are able to receive information only from their
predecessors, and hence aij = 0 if j > i. Moreover, the
connections between the vehicles and the leader can be
modeled by

P = diag{p11, p22, . . . , pNN}, (2)
where pii = 1 when vehicle i is connected to the leader
and pii = 0, otherwise. Then, a new information topology
matrix can be defined as

Lp := L+ P. (3)
It is easy to see that Lp is a lower triangular matrix.

3. VEHICLE MODEL AND CONTROL STRUCTURE

3.1 Vehicle Model

Consider a platoon of N vehicles with the following longi-
tudinal model, as in, e.g., Ploeg et al. (2014)

ṗi(t) = vi(t),
v̇i(t) = ai(t),
τiȧi(t) + ai(t) = ui(t),

(4)
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where pi(t), vi(t), ai(t) and ui(t) are the position, velocity,
acceleration and control input of ith vehicle, respectively.
The time lag in the powertrain τi > 0 is usually unknown
but may be bounded, i.e., τi ≤ τ∗, where τ∗ ∈ R+.
It is assumed that vehicle i can use information from
multiple predecessor vehicles, as shown in Fig. 1, where
vehicle i, i ∈ ZN3 , is connected to three predecessor
vehicles. For this topology, the desired distance between
vehicle i and the lth vehicle ahead of it is considered as
Bian et al. (2019)

di,i−l(t) =
i∑

k=i−l+1
(hkvk(t) + dk) , (5)

where hk ≥ 0 is the time headway of vehicle k and dk > 0
is the desired standstill gap between vehicle k and k − 1.

Leader1234

Fig. 1. A platoon under MPF topology.

3.2 Control Structure

The following linear feedback controller is used in Bian
et al. (2019), for vehicle i when there are no time-delays:

ui(t) =−
ri∑
l=1

(
kpi

(
pi − pi−l +

i∑
k=i−l+1

(hkvk + dk)
)

+ kvi(vi − vi−l) + kai(ai − ai−l)
)
, (6)

where ri ≤ i is the number of the vehicles directly ahead
of vehicle i that send their information to it. The control
parameters (kpi, kvi, kai) ≥ 0 are tunable gains for feeding
back distance, velocity and acceleration errors between
vehicle i and the lth vehicle ahead.

4. PROBLEM FORMULATION

It is assumed that the controller of vehicle i has access
to the difference between its own states and all the pre-
decessors through wireless communication, which suffers
from a homogeneous time-delay ∆. Then, based on the
controller (6) proposed in Bian et al. (2019), the following
control law is proposed:

ui(t) =−
ri∑
l=1

(
kpi

(
pi(t−∆)− pi−l(t−∆)

+
i∑

k=i−l+1
(hkvk(t−∆) + dk)

)
+ kvi

(
vi(t−∆)− vi−l(t−∆)

)
+ kai

(
ai(t−∆)− ai−l(t−∆)

))
. (7)

The main goal is to coordinate the motion of vehicles
so that they track the desired inter-vehicle distance and

keep the desired velocity while preventing amplification of
disturbances throughout the platoon. The first objective
will be analyzed in terms of internal stability and the
second one in terms of string stability.

5. STABILITY ANALYSIS

First, we define the following errors p̄i(t) = pi(t)− p0(t) +
∑i
k=1 (hkvk(t) + dk),

v̄i(t) = vi(t)− v0(t),
āi(t) = ai(t)− a0(t).

(8)

It is assumed that the lead vehicle moves at a constant
speed, i.e., u0(t) = 0 and a0(t) = 0. From (4), the
dynamics of the error variables can be written as

˙̄pi(t) = v̄i(t) +
∑i
k=1 hkāk(t),

˙̄vi(t) = āi(t),
˙̄ai(t) = − 1

τi
āi(t) + 1

τi
ui(t).

(9)

Using (8) and after some algebraic manipulations, the
control law (7) becomes:

ui(t) =−
ri∑
l=1

(
kpi

(
p̄i(t−∆)− p̄i−l(t−∆)

)
+ kvi

(
v̄i(t−∆)− v̄i−l(t−∆)

)
+ kai

(
āi(t−∆)− āi−l(t−∆)

))
. (10)

By substituting (10) into (9) and defining augmented
errors p̄ = [p̄1, p̄2, . . . , p̄N ]>, v̄ = [v̄1, v̄2, . . . , v̄N ]> and
ā = [ā1, ā2, . . . , āN ]>, the dynamics model of the closed
loop network can be recast as

ξ̇(t) = Aξ(t) +A∆ξ(t−∆),
ξ(t) = Φ(t), t ∈ [−∆, 0], (11)

where ξ = [p̄>, v̄>, ā>]> is the lumped state vector, Φ(·) ∈
C([−∆, 0],Rν) represents the initial state of the system
and A and A∆ ∈ Rν×ν , ν = 3N , are as follows

A =
[0 IN H

0 0 IN
0 0 −T

]
, (12)

A∆ =
[ 0 0 0

0 0 0
−TKpLp −TKvLp −TKaLp

]
, (13)

with
Km = diag{km1, ...kmN}, m ∈ {p, v, a}, (14)

T = diag{1/τ1, ...1/τN}, (15)

and

H =


h1 0 . . . 0
h1 h2 . . . 0
...

...
. . . 0

h1 h2 . . . hN

 . (16)
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5.1 Internal Stability Analysis

In this section, we will find a sufficient condition in which,
the vehicle platoon (11) will be asymptotically stable.
Theorem 1. By selecting the control gains (kpi, kvi, kai)
in order that all the following conditions hold

kpi 6= 0, (17a)
kai − τi(kvi + kpihi) + τi

2kpi 6= 0, (17b)
kvi + kpi(h− τ) ≥ 0, (17c)

the closed loop system (11) is asymptotically stable for
any time delay ∆ that satisfies the following inequality

∆ri(kvi + kpihi) < 1, i ∈ N. (18)

Proof. See Appendix 1.
Remark 1. Note that the condition is sufficient and not
necessary. As a result, there might be delays for which (18)
is not satisfied, but the system is internally stable.
Remark 2. While the conditions seems to be counter-
intuitive, having a large time headway h in a system with
delays may lead to instability. A possible reason is that
the error in the speed difference is amplified. Additionally,
the higher the number of hops that the information is
transferred, the smaller the delay that the network can
tolerate.

5.2 Homogeneous String Stability Analysis

For the string stability analysis, we assume that the
platoon is homogeneous, which means that τi = τ > 0,
ri = r, hi = h, kpi = kp, kvi = kv and kai = ka, ∀i ∈ Zn0 .
Then from (4) and (7) we have

τ
...
p i(t) + p̈i(t) = −

r∑
l=1

(
kp

(
pi(t−∆)− pi−l(t−∆)

+
i∑

k=i−l+1
(hvk(t−∆) + dk)

)
+ kv

(
vi(t−∆)

− vi−l(t−∆)
)

+ ka

(
ai(t−∆)− ai−l(t−∆)

))
, (19)

and

τ
...
p i−1(t) + p̈i−1(t) = −

r∑
l=1

(
kp

(
pi−1(t−∆)

− pi−1−l(t−∆) +
i−1∑
k=i−l

(hvk(t−∆) + dk)
)

+ kv

(
vi−1(t−∆)− vi−1−l(t−∆)

)
+ ka

(
ai−1(t−∆)− ai−1−l(t−∆)

))
. (20)

The time derivative of (19) is

τ
...
v i(t) + v̈i(t) = −

r∑
l=1

(
kp

(
vi(t−∆)− vi−l(t−∆)

+
i∑

k=i−l+1
hak(t−∆)

)
+ kv

(
ai(t−∆)− ai−l(t−∆)

)
+ ka

(
ȧi(t−∆)− ȧi−l(t−∆)

))
. (21)

After defining the spacing error ei = pi − pi−1 + hvi +
di, calculating (19) − (20) + h × (21) and doing some
algebraic manipulations, by taking Laplace transform, we
obtain

Ei(s) =
r∑
l=1

Hl(s)Ei−l(s), (22)

where Ei(s) is the Laplace transformation of ei(t) and
Hl(s) =

kas
2e−∆s + (kv − kph(r − l)) se−∆s + kpe

−∆s

τs3 + s2 + rkas2e−∆s + r (kv + kph) se−∆s + rkpe−∆s .

(23)
It can be shown that for homogeneous platoons, ei/ei−l =
vi/vi−l. In a platoon under the MPF topology, the spacing
error of the vehicles are affected by their multiple predeces-
sors. Therefore, in order to have string stability, in addition
to H1(s), all the string stability functions Hl(s) for l ≤ r
must be examined. Since (23) is identical for all vehicles,
string stability of the platoon can be guaranteed if, Bian
et al. (2019)

‖Hl(jω)‖∞ ≤
1
r
, ∀1 ≤ l ≤ r, (24)

where Hl(jω) can be derived from (23) by substituting
s = jω.
Theorem 2. Consider system (4) with input (7) that is
internally stable. Then, the string stability specification
(24) holds if all the following conditions are satisfied:
kv + kp(h− τ) ≥ 0, (25a)
2τ∆−∆h− τh ≤ 0, (25b)
ka − τ(kv + kph) ≤ 0, (25c)
τ − 2rka∆ ≥ 0, (25d)

1 + 2r
(
ka − τ(kv + kph)

)
+ 2r∆

(
kp(τ − h)− kv

)
≥ 0,
(25e)

r2k2
ph

2(1− (r − l)2) + 2r2kpkvh(1 + r − l)
− 2rkp ≥ 0, 1 ≤ l ≤ r. (25f)

For the region defined by (25), string stability specifica-
tion (24) holds if

h ≥ hmin = 2(τ + ∆)
2rka + 1 . (26)

Proof. See Appendix 2.
Remark 3. Theorem 2 proves the conjecture made in Bian
et al. (2019). As it is shown, the larger the delay ∆, the
larger the minimum time headway h. This comes into
contrast with the internal stability condition obtained
in Theorem 1. Nevertheless, one can tune the triplet of
control gains (kp, kv, ka), such that both conditions can be
satisfied.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15479



50 60 70 80 90 100

-10

-5

0

5

10

15

20
 

Vehicle 1
Vehicle 2
Vehicle 3
Vehicle 4
Vehicle 5

(a) Spacing Error

60 62 64 66 68 70 72 74
1150

1200

1250

1300

1350

1400

1450

1500

Leader
Vehicle 1
Vehicle 2
Vehicle 3
Vehicle 4
Vehicle 5

(b) Position of vehicles

5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(c) String stability transfer functions

Fig. 2. Platoon response, in the presence of sinusoidal disturbance acting on the leader, with h < hmin and r = 3.

6. NUMERICAL RESULTS

In this section, numerical simulations are presented to
verify the results in our theorems. The controller (7) is
considered for a five-vehicle platoon. The model used for
each car is the nominal linear model (4) and the number
of predecessors is r = 3. Vehicle i starts at the point −id
and moves to reach the desired distance as well as the
desired velocity, which is 20 m/s, same as the leader’s
velocity. After 60 seconds, when the platoon reaches to a
stable state, a sinusoidal perturbation u0(t) = A0 sin(ω0t)
acts on the leader for the duration of one cycle ( 2π

ω0
s).

The numerical values for system parameters are given
in Table 1. By selecting control parameters (kp, kv, ka)
as (0.7, 0.5, 0.4), conditions (25) are satisfied and the
minimum value for time headway will be hmin = 0.41 s.
Also, internal stability specification (18) holds. Then, to
verify the proposed criterion for the time headway, we
simulate the platoon in two cases, i.e., when h < hmin
and also when h > hmin.

Table 1. Model Parameters
N r d τ ∆ v0 A0 ω0

5 3 5 m 0.5 s 0.2 s 20 m/s 10 m/s2 1 rad/s

Fig. 2 demonstrates the platoon response after adding the
disturbance in the case of h < hmin. In Fig. 2(a), after
the disturbance, large overshoots for spacing error between
vehicles can be seen, which is a sign of string instability.
Fig. 2(b) is a more accurate analysis of the platoon, that
shows the position of each vehicle. We observe that after
the disturbance, there would be a collision between the
leader and vehicle 1 and also, the space between other
vehicles decreases in an unsafe way. Also, the magnitude-
frequency diagram of Hl(jω) is shown in Fig. 2(c), where
it is shown that the magnitudes surpass 1/r and thus,
(24) doesn’t hold. According to the simulation results, by
considering h < hmin, the platoon will be string unstable.
Fig. 3 depicts the platoon response for h > hmin. It
can be seen from Fig. 3(a), the height of the peaks in
spacing errors after adding the disturbance is lower than
the previous case. Besides, Fig. 3(b) shows that although
the space between the leader and vehicle 1 decreases, there
isn’t any collision between them. Finally, the magnitude-
frequency diagram of Hl(jω) when h > hmin is shown in
Fig. 3(c). As can be seen in the figure, |Hl(jω)| does not
surpass the maximum acceptable value for string stability,

i.e., 1/r, which means (24) holds, and hence the platoon
is string stable.

7. CONCLUSION AND FUTURE DIRECTIONS

7.1 Conclusions

In this paper, we have investigated the internal stability
as well as the string stability conditions for platoons un-
der MPF topology, which are affected by communication
delays. More specifically, we provide a sufficient condition
that guarantees internal stability and, additionally, based
on string stability, we have formulated a lower bound for
the time headway. The simulation results corroborate the
importance of this lower bound.

7.2 Future directions

Part of ongoing work studies the effect of packet drops
in the (internal and string) stability of platoons. Part
of future work includes the analysis of platoons under
MPF topology with bidirectional connectivity. We plan to
investigate the effect of receiving information from vehicles
in the back on time headway. Additionally, we plan to find
conditions that guarantee string stability in platoons with
time-varying heterogeneous delays.
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Appendix A. PROOF OF THEOREM 1

Taking Laplace transform of (11), we have
Ξ(s) = (sI −A−A∆e

−∆s)−1ξ(0). (A.1)

By finding det(sI−A−A∆e
−∆s), the characteristic equa-

tion of (11) will be obtained as (A.2).
After decoupling (A.2) to N subsystems, we define

p′i(s) =s3 + 1
τi
s2 + s2 1

τi
(kairie−∆s)

+s 1
τi
ri (kvi + kpihi) e−∆s + 1

τi
rikpie

−∆s. (A.3)

Note that for ∆ = 0, (A.3) can be written as

p′i(s) = s3 + 1 + kairi
τi

s2 + ri (kvi + kpihi)
τi

s+ rikpi
τi

. (A.4)

It is easy to see that if kpi 6= 0, s = 0 cannot be a solution
to (A.4). Thus, (A.4) can be written as

1 + 1 + kairi
τi

1
s

+ ri (kvi + kpihi)
τi

1
s2 + rikpi

τi

1
s3 = 0, (A.5)

and by invoking the Nyquist stability criterion, one can
find the same conditions for internal stability as the one
given in Bian et al. (2019) via Routh-Hurwitz stability
criterion (omitted due to space limitations).
If the roots of (A.3) lie in the complex left-half plane,
then the system is stable. It is easy to see that s = 0 and
s = −1/τi cannot be the solution to (A.3), if

kpi 6= 0, (A.6a)
kai − τi(kvi + kpihi) + τi

2kpi 6= 0. (A.6b)
Thus, after dividing (A.3) by s3 + 1

τi
s2, the characteristic

equation can be rewritten as

1 + be−∆s

s+ a
+ ce−∆s

s(s+ a) + de−∆s

s2(s+ a) = 0, (A.7)
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where

a = 1
τi
, b = kairi

τi
, c = ri (kvi + kpihi)

τi
, d = rikpi

τi
. (A.8)

Define the open loop transfer function, denoted by G(s),

G(s) = be−∆s

s+ a
+ ce−∆s

s(s+ a) + de−∆s

s2(s+ a) = bs2 + cs+ d

s2(s+ a) e−∆s.

(A.9)
After replacing s by jω in (A.9), we obtain

G(jω) = d− bω2 + jcω

−ω2(jω + a) e
−jω∆. (A.10)

From (A.10), the phase of G(jω) will be

∠G(jω) = −180◦ − tan−1(ω
a

) + tan−1( cω

d− bω2 )− ω∆.
(A.11)

If ∠G(jω) > −180◦ as ω → 0+, then it can be shown
that the Nyquist plot of G(jω) does not encircle the point
−1 + j0 as ω → 0. Hence, we investigate what happens as
ω → 0+. From (A.11), we know that ∠G(j0+) > −180◦ if

tan−1( cω

d− bω2 )− tan−1(ω
a

)− ω∆ > 0. (A.12)

Then, if
tan−1( cω

d− bω2 )− tan−1(ω
a

) > 0 (A.13)

there exist a time delay ∆ such that (A.12) holds. If
cω

d− bω2 −
ω

a
= ω(ac− d+ bω2)

(d− bω2) > 0, (A.14)

then, inequality (A.13) holds. As ω → 0+, then ω > 0,
d− bω2 > 0 and by assuming

kvi + kpi(h− τ) ≥ 0, (A.15)
then ac− d > 0. As a result, inequality (A.14) holds and,
thus, there will be no encirclement around point−1+j0 for
the Nyquist plot. In Fig. A.1, a Nyquist plot is provided for
some given parameters (same as the numerical example),
depicting that as long as (A.6) and (A.15) hold, there is
no encirclement of the point −1 + j0 as ω → 0.
Then, we should investigate if there is any encirclement as
ω 6= 0. After algebraic manipulation, (A.10) becomes

G(jω) = −
(
cω − aω(b− d

ω2 )
)

+ j
(
ac+ ω2(b− d

ω2 )
)

ω(a2 + ω2) e−j∆ω.

By substituting e−j∆ω = cos(∆ω) − j sin(∆ω) and then
defining

Y (ω) , cω−aω(b− d

ω2 ), Z(ω) , ac+ω2(b− d

ω2 ), (A.16)

the imaginary part of G(jω) is as follows

Im{G(jω)} = −Z(ω) cos(∆ω)− Y (ω) sin(∆ω)
ω(a2 + ω2) . (A.17)

Suppose that G(jω) crosses the real line when ω = ω0.
From (A.17), we have

tan(∆ω0) = Z(ω0)
Y (ω0) . (A.18)

Now, we just need to find the conditions for which
Re{G(jω0)} > −1. For the sake of simplicity, we write
Y and Z for Y (ω0) and Z(ω0), respectively. We have

Re{G(jω0)} =− Y cos(∆ω0) + Z sin(∆ω0)
ω0(a2 + ω02)

=−
Y cos(∆ω0)

sin(∆ω0) sin(∆ω0) + Z sin(∆ω0)
ω0(a2 + ω02)

=− (Y 2 + Z2) sin(∆ω0)
(a2 + ω02)Zω0

. (A.19)

Considering (A.15), we have ac − d > 0 and accordingly
Z > 0. Then, using the fact that sin(∆ω) ≤ ∆ω for ω ≥ 0,
we can continue analyzing Re{G(jω0)} as follows

Re{G(jω0)} ≥ −∆(Y 2 + Z2)
(a2 + ω02)Z . (A.20)

Defining

m ,
∆(Y 2 + Z2)
(a2 + ω02)Z , (A.21)

a sufficient condition for stability is having m < 1. By
substituting from (A.16) into (A.21) and simplifying, we
obtain

m = ∆
(
ω2

0(b− d
ω02 )2 + c2

ac+ ω02(b− d
ω02 )

)
. (A.22)

Let X , b− d
ω02 . Then from (A.22) we have that

∆(c2 + ω2
0X

2)
ac+ ω2

0X
< 1. (A.23)

Since ac− d > 0, we can easily deduce that ac+ω2
0X > 0,

and inequality (A.23) can be written as
∆(c2 + ω0

2X2) < ac+ ω0
2X. (A.24)

By multiplying both sides of (A.24) by ∆, and rearranging
we obtain

(∆X)2 − (∆X) + (∆c)2 − a(∆c)
ω02 < 0. (A.25)

Since (A.25) is a quadratic inequality, for having (∆X) ∈
R, we need a positive discriminant, i.e.,

1− 4(∆c)2 − a(∆c)
ω02 > 0, (A.26)

which can be rewritten as

(∆c)2 − a(∆c)− ω0
2

4 < 0. (A.27)

Obviously, if (∆c) lies between the roots of (A.27), then
(A.27) holds, i.e.,

a−
√
a2 + ω02

2 < ∆c < a+
√
a2 + ω02

2 . (A.28)

∣∣sI3N −A−A∆e
−∆s∣∣ =

∣∣∣∣∣∣
sIN −IN −H

0 sIN −IN
TKpLpe−∆s TKvLpe−∆s sIN + T + TKaLpe−∆s

∣∣∣∣∣∣
=
∣∣s3I + s2(T + TKaLpe−∆s) + s(TKvLp + TKpLpH)e−∆s + TKpLpe−∆s∣∣

=
N∏
i=1

(
s3 + s2 1

τi

(
1 + kairie

−∆s)+ s
1
τi
ri (kvi + kpihi) e−∆s + 1

τi
rikpie

−∆s
)
. (A.2)
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Fig. A.1. Nyquist plot for some given parameters.

The left term of (A.28) is negative, while we know that ∆
and c are positive. Then we just need to have

∆c < a+
√
a2 + ω02

2 . (A.29)

Since we do not know ω0 (which changes for different ∆),
we provide a conservative bound, that is, since

a+
√
a2 + ω02

2 > a,

then if ∆c < a, then inequality (A.29) also holds. There-
fore, if

∆ c

a
< 1, (A.30)

then, the Nyquist plot of G(jω) does not encircle the point
−1 + j0 when ω 6= 0. Therefore, there is no encirclement
for all frequencies and the system is stable. By substituting
from (A.8) into (A.30), condition (18) is obtained.

Appendix B. PROOF OF THEOREM 2

The proof of Theorem 2 follows mutatis mutandis that of
Xiao and Gao (2011).
Inequality (24) is equivalent to

max
1≤l≤r

‖Hl(jω)‖2∞ = max
1≤l≤r

sup
ω≥0
|Hl(jω)|2 ≤ 1

r2 . (B.1)

Define
|Hl(jω)|2 ,

Nl
Dl
, (B.2)

where
Nl =(kp − kaω2)2 +

(
kv − kph(r − l)

)2
ω2, (B.3a)

Dl =
(
− ω2 − rkaω2 cos(∆ω)
+ r(kv + kph)ω sin(∆ω) + rkp cos(∆ω)

)2
+
(
− τω3 + rkaω

2 sin(∆ω)
+ r(kv + kph)ω cos(∆ω)− rkp sin(∆ω)

)2
. (B.3b)

After some simplifications, we obtain that the inequality
in (B.1) holds for l ∈ {1, r} if

Dl − r2Nl = M6ω
6 +M5ω

5 +M4ω
4 +M3ω

3 +M2ω
2 ≥ 0,
(B.4)

where
M6 = τ2, (B.5a)
M5 = −2τrka sin(∆ω), (B.5b)

M4 = 1 + 2r
(
ka − τ(kv + kph)

)
cos(∆ω), (B.5c)

M3 = 2r
(
kp(τ − h)− kv

)
sin(∆ω), (B.5d)

M2 = r2k2
ph

2(1− (r − l)2) + 2r2kpkvh(1 + r − l)
− 2rkp cos(∆ω). (B.5e)

Considering the fact that sin(∆ω) ≤ ∆ω for ω ≥ 0 and
cos(∆ω) ≤ 1 and also considering

kp(τ − h)− kv ≤ 0, (B.6)
if

ka − τ(kv + kph) ≤ 0, (B.7)

then we need to have
Dl − r2Nl ≥ ω2(M4ω

4 +M2ω
2 +M0), (B.8)

where
M4 = τ2 − 2τrka∆, (B.9a)

M2 = 1 + 2r
(
ka − τ(kv + kph)

)
+ 2r∆

(
kp(τ − h)− kv

)
,

(B.9b)
M0 = r2k2

ph
2(1− (r − l)2) + 2r2kpkvh(1 + r − l)− 2rkp.

(B.9c)
Having M4,M2,M0 ≥ 0 results in string stability. Hence,
there are three cases as follows

M4 ≥ 0⇐⇒ ka ≤
τ

2r∆ (B.10a)

M2 ≥ 0⇐⇒ kv ≤
1 + 2rka + 2rkp(τ∆−∆h− τh)

2r(τ + ∆)
(B.10b)

M0 ≥ 0⇐⇒ kv ≥
1
rh
− kph

2 , if l = r. (B.10c)

By combining (B.10b) and (B.10c), we obtain
1
rh
− kph

2 ≤ kv ≤
1 + 2rka + 2rkp(τ∆−∆h− τh)

2r(τ + ∆) .

(B.11)
The above inequality implies that

1 + 2rka + 2rkp(τ∆−∆h− τh)
2r(τ + ∆) −

(
1
rh
− kph

2

)
≥ 0.

(B.12)
After some simplifications, we obtain
h(2rka + 1)− 2(τ + ∆) + rhkp(2τ∆−∆h− τh)

2rh(τ + ∆) ≥ 0.

(B.13)
Then, by assuming 2τ∆−∆h− τh ≤ 0 and knowing that
the control gains are positive, obviously we have

h(2rka + 1)− 2(τ + ∆) ≥ 0. (B.14)

Therefore, the lower bound for the time headway can be
obtained as

h ≥ hmin = 2(τ + ∆)
2rka + 1 . (B.15)
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