
Agile Latency Estimation for a Real-time
Service-oriented Software Architecture

Alexandru Kampmann ∗ Armin Mokhtarian ∗ Jan Rogalski ∗

Stefan Kowalewski ∗ Bassam Alrifaee ∗

∗RWTH Aachen University - Chair for Embedded Software,
Ahornstrasse 55, 52074 Aachen, Germany (e-mail: {kampmann,

mokhtarian, rogalski, kowalewski, alrifaee}@embedded.rwth-aachen.de)

Abstract: This paper presents our testbed and software pipeline for automatic latency
estimation for a service-oriented software architecture (SOA). This type of architecture consists
of modular services that are dynamically combined at runtime to form a functioning system.
As different service combinations become possible at runtime, agile approaches for testing the
resulting systems become necessary. Besides other factors, latencies are of particular interest
for the implementation of control systems. Our agile approach automatically generates dummy
services, including interfaces and tasks for internal processing, based on a service description
in a human-readable format. Services are then automatically distributed to the computers of
our testbed, which are connected through Ethernet. We empirically obtain latency estimates
for processing and communication steps for a given composition of services. In this paper we
describe our data format, abstractions about internal run-time behavior of services and the
code generation pipeline. The evaluation presents latency estimates that we are able to obtain
through our testbed that resembles the sense-plan-act paradigm.

Keywords: Networked systems, Systems with time-delays, Supervision and testing, Distributed
control and estimation, Complex systems, Decentralized control, Diagnosis

1. INTRODUCTION

The implementation of complex control systems, such as
highly automated vehicles, is based on new technologies,
paradigms and architectures. This becomes evident in
the automotive domain, where existing communication,
compute and software architectures are starting to reach
their limits, as described by Broy et al. (2007a) and
Farcas et al. (2010). Prevalent communication architec-
tures built on CAN or LIN are not suitable for trans-
porting high bandwidth camera and LIDAR data. The
compute platforms, mostly based on microcontrollers, are
not suitable for running automation algorithms with high
computation demand. Prevalent software architectures are
not updatable and do not provide the flexibility required
to keep up with the short development- and technology
life cycles of aforementioned technologies. As a result,
Ethernet, Linux-based Electronic Control Units (ECUs)
and Service-oriented Architectures (SOA) become mean
for implementation of such systems, e.g. through the intro-
duction of the upcoming AUTOSAR Adaptive Platform.
As described by Kugele et al. (2017), SOA architectures
are characterized by modular services that are integrated
at runtime to achieve a desired functional behavior. In con-
trast to today’s function-oriented architectures, services do
have hard-coded assumptions about services they interact
with. Instead, they are dynamically assembled at runtime

? This research is accomplished within the project “UNICARagil”
(FKZ EM2ADIS002). We acknowledge the financial support for
the project by the Federal Ministry of Education and Research of
Germany (BMBF).

based on the quality of service they provide. This opens
the possibility to update the software architecture and to
dynamically reconfigure the system for different modes of
operation.

Although these trends open up new possibilities, the intro-
duced flexibility also poses a challenge for testing and val-
idation of the resulting architectures. Up to now, systems
are developed following the V-model and the architecture
is fixed at some point during the engineering process. In
many cases, the obtained validation result remains valid
as the system is not expected to undergo changes in
the future. In SOA approaches, a potentially large set of
system variants become possible at runtime and have to
be tested and validated. Dynamically adapting the soft-
ware architecture at runtime impacts many different fac-
tors, ranging from memory consumption, computation and
communication resources. Latencies, which occur due to
internal service processing and communication overhead,
also directly impact the performance of control systems.
For example, improper consideration of latencies in control
schemes can lead to instabilities. Estimating latencies in
the system not only helps to improve control quality, but
also to achieve a deterministic system behavior, which
is especially important in safety-critical applications. In
concepts such as Logical Execution Time (LET), latency
estimates are systematically considered in order to achieve
a predictable and deterministic system behavior (see Far-
cas et al. (2005)).

This paper presents our framework for agile latency esti-
mation for Ethernet-based SOA. Based on XML descrip-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 5869



tions of the computation nodes and the services running
on them, we automatically generate and execute tests that
empirically estimate latencies. With the help of our auto-
mated testing pipeline, we can assess latencies for different
system instances in an agile manner. Beside communica-
tion latencies, we also measure timing of our SOA im-
plementation for assisting the future development process.
Our concept is implemented in a testbed that is comprised
of multiple computers that can be automatically setup to
execute specified test cases.

The remainder of this paper is structured as follows.
Section 2 covers existing work on this topic. We provide
background to the concept for service-orientation that
this work is based upon in Section 3. Our concept for
agile latency estimation is presented in Section 4. Results
obtained through our work are presented in Section 5.
Section 6 concludes the paper and hints at potential future
extensions.

2. RELATED WORK

This paper is based on our previous work on automotive
SOA as introduced by Kampmann et al. (2019a,b). Al-
though our previous work is focused on the automotive
domain, the concepts are also applicable for the imple-
mentation of control systems in other domains. SOAs, in
particular in the automotive domain, have previously been
studied by Kugele et al. (2017), Broy et al. (2007b) and
Bocchi et al. (2008), among others. A positive case-study
on the implementation of an automotive SOA based on
the Data Distribution Service (DDS) has been conducted
by Kugele et al. (2018). There is a rich body of work
on latency estimation and testbeds for various applica-
tions, see Saad et al. (2009) for a vehicle swarm testbed,
or Stubbs et al. (2006) for a hovercraft testbed. To the
best of our knowledge, no previous work has presented a
latency estimation framework for control systems that are
implemented using a SOA.

3. BACKGROUND

This paper is based on our previous work, which introduces
a concept for SOA (see Kampmann et al. (2019a)). We will
now briefly introduce the main building blocks of our ar-
chitecture. At the core of our concept are modular services
Si = (Ri, Gi) ∈ S with typed interfaces, tasks for internal
processing and a simple life cycle model. Interfaces re-
quired by Si are requirements Ri, and interfaces provided
by Si to other services are guarantees Gi. Guarantees and
requirements are mapped to a unique element in the set of
interface types T. Each interface τi = (Ii, Di, Qi, Pi) ∈ T
has a fixed identifier Ii and consists of data type definitions
for Data Di, Quality Qi and Parameter Pi. Every require-
ment and guarantee is mapped to an element in the set of
interface types by TG with TG : {(i, j) | gji ∈ Gi} → T and

TR with TR : {(i, j) | rji ∈ Ri} → T.

The connection of interfaces between different services is
determined dynamically, and services are designed to make
no hard-coded assumptions about the particular service
they are connected with during runtime. This enables
a run-time integrated, modular architecture. Hence, this
requires a designated system component for instantiating

the architecture at runtime. For this purpose, we have
introduced the Orchestrator as the architecture controller.
The Orchestrator O = (Q, E ,A,R) is a state transition
system consisting of states Q, a set of events E , a set of
actions A and transition relation R ⊆ Q×E ×G ×A×Q
with the set of predicate logic guard conditions G. In state
q ∈ Q, the Orchestrator transitions to state q′ and executes
action a upon event e ∈ E if the guard condition g is true,
i.e. (q, e, a, g, q′) ∈ R. The actions that the Orchestrator
can invoke upon the architecture relevant for this work are
the establishment of connections between interfaces and
the control of the life cycle states of services.

We use a simple task model for computation within
services. Tasks are methods that read an input interface,
perform a particular computation, and write an output
interface. Each requirement can be read by any task
and each guarantee is written by exactly one task. A
service may consist of more than one task. We distinguish
between periodic and conditional tasks. Periodic tasks are
regularly executed according to a user-specified frequency.
Additionally, the user can specify the absolute starting
point of the first execution of a periodic tasks, and all
future task activations will be aligned to the induced time
grid. This allows to control the relative phase-shift of
multiple periodic tasks, e.g. in order to achieve alternating
task activations. We synchronize time across ECUs using
the Precision Time Protocol (PTP) introduced by Eidson
and Lee (2002). Conditional tasks subscribe to one or more
input interfaces and are triggered as long as there is data
in any of the subscribed input interfaces.

Services follow a simple life cycle model that is controlled
by the Orchestrator. They are either in steady states
stopped and started or transient states starting and stop-
ping. The tasks of a service are scheduled only in the
started state.

Our service framework is implemented in C++ and is built
upon the Data Distribution Service (DDS) (see Pardo-
Castellote (2003)), which is used for data exchange be-
tween services and the Orchestrator. DDS is a middleware
specification for decentralized, real-time communication in
distributed systems and is standardized by the Object
Management Group (OMG). It is based upon the User
Datagram Protocol (UDP) and supports both publish-
subscribe and request-reply communication patterns.

4. AGILE LATENCY ESTIMATION

This chapter presents our approach for latency estimation.
We will first describe our approach on a conceptual level
and then provide further implementation details.

Our approach for agile latency estimation is depicted in
Fig. 1. First, a particular test-case consisting of services,
connections between services and their placement on a
particular ECU is defined using XML (1). Services are
specified by their interfaces and tasks for internal process-
ing. Based on the XML-based test specification, we au-
tomatically generate services (2, 3) that exchange dummy
data (4) while capturing timestamps for latency estimation
at various points in our architecture. Timing information
is then automatically collected (5) and various latency
measures are automatically computed (6). The flexibility

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5870



XML 
Test-case Code 

Generation

Distribute Code
to Testbench

Execute 
& Time

Collect
Timing 

Data from
ECUs

Obtain latency
estimates

1 2

34

5 6

Fig. 1. Our workflow for agile latency estimation.

𝑟"#
SPT

1

ECU1

Service 𝑆#
𝑔##

SPT
2

ECU3

Service 𝑆&
𝑔&#

FCT

ECU2

Service 𝑆"
𝑔"#

𝑟""

𝑟'#

FPT

ECU4

Service 𝑆'

Fig. 2. A particular test case consisting of services
S1, S2, S3 and S4 with interfaces and tasks for internal
processing.

of our approach stems from the ability to automatically
generate, deploy, execute and evaluate tests based on the
aforementioned XML specification.

4.1 Obtained Latency Measures

Various parts that contribute to the overall end-to-end
communication latencies are measured and attributed to
internal mechanisms of our architecture. This not only
allows to estimate overall latencies for a specific system,
but also to pinpoint and optimize bottlenecks in our
implementation. We will now further detail the approach.

A test definition consists of multiple elements. First, we
have ECUs which run one or more services. A service
consists of a name, a list of guarantees and requirements,
and a list of tasks. Guarantees and requirements are
typed interfaces, which also define the size of data being
exchanged. As we do not conduct functional tests, we use a
dummy interface type which consists of a byte-array with a
specific size. Each interface is therefore defined by its name
and data size. As explained in Section 3, services consist
of two different types of tasks (conditional and periodic
tasks) for carrying out computation within a task. These
two basic tasks are defined by their activation pattern
and not the actual computation carried out. In order to
constraint the computation patterns within a task, we
assume the following three types of internal task behaviors.

(1) Source Periodic Task (SPT). This kind of task is
activated with a fixed frequency and writes data to

an output interfaces in each activation. The number
of packages is later denoted as the sample size, as
it defines the number of packages which are sent
through the network for testing. An SPT writes data
to multiple guarantees but does not read data from
requirements. As described in Section 3, an absolute
starting time to which all activations will align can be
defined for synchronization of multiple periodic tasks.
This is especially important when multiple periodic
tasks are involved in a computation chain, as offsets
between their absolute starting times can influence
latencies.

(2) Forwarding Periodic Task (FPT). These tasks
are also activated periodically. During each activa-
tion, SPTs read data from the circular buffers of
specific requirements, wait for a configurable amount
of time to simulate computation, and forward the
data through output interfaces. This type of task
is defined by a list of requirements read, guarantees
written, the execution frequency and a starting offset.

(3) Forwarding Conditional Task (FCT). This con-
ditional task is executed every time all its require-
ments received data. During execution, for every re-
quirement linked to the task, data is retrieved from
the circular buffer and for every guarantee new pack-
ages are created and sent to other services. FCTs
are similar to SPTs, but follow sporadic instead of
periodic activation patterns.

Fig. 2 shows a setup consisting of multiple services, in-
terfaces and tasks. Services S1 and S3 each have one SPT
that writes to their respective guarantee interfaces. Service
S2 has two requirements r12, r

2
2 and one guarantee g12 . The

FCT in S2 is configured to trigger as soon as data for
requirements r12 and r22 is available. Upon execution, FCT
reads from both requirements and writes g12 . Service S4

has one FPT, which reads data from its only requirement
r14. In general, services may consist of multiple tasks, but
we constrain our example to one task per service for the
sake of simplicity.

Fig. 3 depicts the interaction between services and the
latency measures that our framework automatically ob-
tains from the setup above. SPT1, which is executed with
100 Hz, writes one data package to guarantee g11 at the end
of each execution. SPT2 is also executed with 100 Hz but
its absolute starting point is shifted by 2 ms with respect to
SPT1. At the end of each SPT2 execution the guarantee g13
is written. FCT of S2 is executed as soon as data from both
requirements is available. Upon termination, FCT writes
data to g12 . At the end of the computation chain, FPT
in S4 reads the data in r14 upon activation. The resulting
chain of interaction is highlighted in Fig. 3. Note that the
particular setup is executed periodically, as hinted in gray.

We take timestamps at different events. First, timestamps
are taken upon start of task execution. SPT1 is executed
at t0, SPT2 at t1, FCT at t2 and FPT at t3. SPT1
task has the earliest absolute start reference among all
tasks and therefore acts as absolute start reference t0 =
0 s. The second latency measured is the transmission
time of the packages exchanged between two services,
in our example denoted as d1, d2 and d3. This measure
takes into account both the latency stemming from the
Ethernet network, the operating system as well as our

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5871



SPT1 FCT SPT2

𝒕𝟎= 0𝑠
𝒕𝟏 = 𝑡#+ 2𝑚𝑠

𝒕𝟐

𝒅𝟏

𝒅𝟐𝒅𝟏%

𝒅𝟐%

10𝑚𝑠

12𝑚𝑠

𝑡

FPT

𝒅𝟑

𝒕𝟑

20𝑚𝑠

Fig. 3. Sequence diagram displaying the interaction be-
tween tasks for the example setup displayed in Fig 2.
Measurement points for latency estimation are indi-
cated in bold letters.

service layer. The third measure captures the time between
the reception of a package and the actual activation of
FCT1, denoted as d′1 and d′2. A configurable amount of
packages are sent through the network and timestamps are
obtained for every run. Note that in our concept for service
orientation, the interfaces are not matched automatically,
but explicitly through the Orchestrator. Therefore, the
test specification also needs to contain which interfaces
are linked with one another.

4.2 Test description in XML

We will now provide further details on the use of XML files
to specify tests. The test specification consists of multiple
ECUs and services running on them, which in turn consist
of interfaces and tasks. Listing 1 shows the XML definition
of the topology in Fig. 2.

In line 1–3, the interface types used in the test are defined.
In our example, we define an interface called LP which
has a 200 bytes payload. The interface name is used for
specifying the type of guarantee or requirement (cf. lines
7 and 19).

ECU1, ECU2 and ECU3 are defined in line 5–50. An
IP address per ECU is specified for code deployment
purposes, although our SOA implementation does not
require the user to specify IP addresses.

Service S1 is placed on ECU1 (cf. lines 6–14). This service
has one guarantee corresponding to g11 (called gua s1 ) of
LP type and consists of SPT1 (cf. lines 8–13). Frequency,
sample size and the starting offset in microseconds are
specified in line 10, 11 and 12. ECU2 is introduced in line
16–28. Service S2 has two requirement called req s21 and
req s22, which correspond to r21 and r22 (cf. lines 19–20)
and one guarantee gua s2, which corresponds to g12 . The
services S3 and S4 are placed on ECU3 (cf. lines 29–39)
and ECU4 (cf. lines 40–49), respectively.

1 <latpacks>
2 <latpack size="200">LP</latpack>
3 </latpacks>
4 <ecus>
5 <ecu name="ECU1" ip="137.226.8.72">
6 <service name="S1">
7 <gua name="gua_s1" datatype="LP" />
8 <spt name="SPT1">
9 <gua>gua_s1</gua>

10 <frequency>100</frequency>
11 <samplesize>1000</samplesize>
12 <startref>0</startref>
13 </spt>
14 </service>
15 </ecu>
16 <ecu name="ECU2" ip="137.226.8.78">
17 <username>root</username>
18 <service name="S2">
19 <req name="req_s21" datatype="LP" />
20 <req name="req_s22" datatype="LP" />
21 <gua name="gua_s2" datatype="LP" />
22 <fct name="FCT">
23 <req>req_s21</req>
24 <req>req_s22</req>
25 <gua>gua_s2</gua>
26 </fct>
27 </service>
28 </ecu>
29 <ecu name="ECU3" ip="137.226.8.74">
30 <service name="S3">
31 <gua name="gua_s3" datatype="LP" />
32 <spt name="SPT2">
33 <gua>gua_s3</gua>
34 <frequency>100</frequency>
35 <samplesize>1000</samplesize>
36 <startref>2000</startref>
37 </spt>
38 </service>
39 </ecu>
40 <ecu name="ECU4" ip="137.226.8.76">
41 <service name="S4">
42 <req name="req_s4" datatype="LP" />
43 <fpt name="FPT">
44 <req>req_s4</req>
45 <frequency>100</frequency>
46 <startref>0</startref>
47 </fpt>
48 </service>
49 </ecu>
50 </ecus>
51 <connections>
52 <connection>
53 <gua>gua_s1</gua>
54 <req>req_s21</req>
55 </connection>
56 <connection>
57 <gua>gua_s3</gua>
58 <req>req_s22</req>
59 </connection>
60 <connection>
61 <gua>gua_s2</gua>
62 <req>req_s4</req>
63 </connection>
64 </connections>

Listing 1. Specification of the setup depicted in Fig. 2.

The last part of the XML file describes how the interfaces
are linked with one another and corresponds to the con-
nection depicted in Fig. 2. Note that it is possible to place
multiple services on the same ECU.

4.3 Code Generation and Test Execution

In this section we describe the procedure of how an XML
test definition is used to execute the latency measurement

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5872



in our testbed. The automated pipeline consists of steps
2–6 as depicted in Fig. 1. The execution of these steps is
performed by the designated supervisor host, that is placed
in the same Ethernet network as the ECUs to be tested.

(1) Code Generation. The code generator produces
two outputs. First, the source code for every ECU
and second, an Orchestrator script which assembles
the system according to the specification. The source
code for an ECU consists of the dummy service and
package type definitions (cf. lines 1–3 in Listing 1).
The Orchestrator script specifies the connection of
interfaces and controls the life cycle of each service
(cf. lines 51–64 in Listing 1).

(2) File Distribution and Compilation. After code
generation, the supervisor copies the generated files
to every ECU. Services are compiled locally on each
ECU. For this purpose, the IP address of each ECU
is provided by the XML definition.

(3) Test Preparation & Start. After compilation, the
service binaries are started by the supervisor. Note
that the services at this point are still in stopped
state, i. e. the tasks are not executed. Next, the su-
pervisor launches the Orchestrator. The Orchestrator
runs on the supervisor and executes the Orchestrator
script generated in step 1, which connects the services
and activates them. After the activation, the SPTs
starts sending the packages, which initiates the test.

(4) Test End. Upon sending the amount of specified
packages, SPTs indicate the end of a test through a
specific message to the supervisor. In order to inform
subsequent tasks, the SPTs send a special packet to
indicate test finalization. When a FCT/FPT receives
such a package, it forwards it and shuts down.

(5) Data Collection. The supervisor downloads all gen-
erated data from the ECUs. Every task saves a times-
tamp upon activation. For every package, the times-
tamp at reception and transmission is saved.

(6) Evaluation. For the evaluation of the collected data,
various statistics are computed from the raw data
obtained in the previous step. For this, our evaluation
script establishes the connection between the XML
specification and the measured data. Then, it com-
putes various statistics of interest, such as minimum,
maximum or mean values.

5. DISCUSSION & EVALUATION

In this section, we present a testbed that implements
the approach described in Section 4. Fig. 4 shows the
testbed on a conceptual level. We follow the sense-plan-act
paradigm and incorporate compute platforms of different
characteristics. Three Intel NUCs provide plenty compute
power for sensing and trajectory planing services. Xilinx
UltraScale+ SoCs and Infineon Aurix provide less com-
putation power but are, due to their embedded nature,
more appropriate as a low-level actuator interface. The
Intel NUCs run off-the-shelf Ubuntu 18.04 and the Xilinx
UltraScale+ runs PetaLinux. For this work, we did not
incorporate the Infineon Aurix and plan to do so in future
work. The clock on all compute nodes is synchronized
using PTP, which is essential for the comparability of
timestamps. The supervisor is also running on an Intel

Plan Sense Sense 

Infineon 
Aurix 

Infineon 
Aurix 

Intel NUC i5 Intel NUC i5 

Industrial Ethernet 
8 Port Switch Intel NUC i5 

Act 

Test Supervisor 

Intel NUC i5 

Act 

Xilinx 
Ultrascale+ 

Act 

Fig. 4. The computers in our testbed that is used
for latency estimation resemble the sense-plan-act
paradigm.

Table 1. The starting times in µs of tasks
relative to the activation of t0.

SPT1 (t0) FCT (t2) SPT2 (t1) FPT (t3)

mean 0.0 2308.54 1854.84 9824.60
min 0.0 1532.55 1383.78 9410.85
25% 0.0 2126.87 1685.85 9641.40
50% 0.0 2205.25 1744.50 9716.98
75% 0.0 2519.66 2067.32 10028.24
max 0.0 3504.51 2286.91 10267.019

NUC, and all compute nodes are connected via an indus-
trial Ethernet switch.

The purpose of this evaluation to demonstrate and discuss
the results obtained from the specified test cases, and not
to demonstrate the performance of our service framework.
All tests were carried out without a real-time Linux patch,
which leaves room for optimization.

For evaluation, we executed the test defined in the XML
file displayed in Listing 1. SPT1, SPT2 and FPT run on
three Intel NUCs and the FCT is executed on a Xilinx
UltraScale+ board. Table 1 shows the results obtained for
the start of task execution, which correspond to times-
tamps t0, t1 and t2 in Fig. 3. Durations are expressed with
respect to t0 = 0.

SPT2 starts on average 1.8 ms later than SPT1. This
corresponds to the desired activation offset in the provided
example of 2 ms. We attribute the deviation to the lacking
real-time capabilities of the operating system used. In
other experiments running SPTs at 100 Hz, the starting
point of two executions of the task deviates up to 1.7 ms.
FCT1 is activated on average about 2.2 ms relative to the
activation of SPT1. The processing of messages produced
by SPT1 and SPT2 in FPT occurs 10 ms later. This corre-
sponds to one activation period of FPT, which is the ear-
liest possible processing time for the given configuration.
Assuming that the described service setup implements a
control system, the result can be interpreted as follows:
a change in a sensor value will take on average 10 ms in
order to have an effect on the actuation system.

Table 2 shows the latencies d1, d2 and d3. We can see
that the raw communication latencies between Intel NUCs

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5873



Table 2. Results of d1, d2 in µs.

req s21 (d1) req s22 (d2) req s4 (d3)

mean 302.02 429.84 632.56
min 231.02 129.22 345.23
25% 282.28 409.60 616.72
50% 286.57 413.17 643.01
75% 324.24 451.32 664.94
max 781.05 1484.63 5686.28

Table 3. Results of d′1, d′2 regarding FCT in µs.

r12 → FCT (d′1) r22 → FCT (d′2)

mean 2004.29 20.15
min 1243.82 12.87
25% 1830.81 19.31
50% 1905.67 19.55
75% 2218.36 20.26
max 2807.14 55.55

are smaller than to the Xilinx UltraScale+, which can
be attributed to the reduced computation power. Finally,
Table 3 shows d′1 and d′2. It can be seen that the values of d′1
are larger then the ones of d′2. This is because SPT1 sends
packages on average 1.8 ms earlier (according to Table 1).
The time between the reception of the packages of SPT1
and the execution of FCT is longer than the time between
the reception of packages of SPT2 and FCT’s execution.
This is expected based on the phase-shift between SPT1
and SPT2.

At the current state of our testbed, only Linux-based
systems can be tested, as our code generation, deployment
and compilation pipeline relies on Linux tools. Currently,
no platforms with scarce resources such as microcontrollers
are supported yet.

6. CONCLUSION AND FUTURE WORK

The presented work allows to obtain latency estimates in
an agile approach for control systems that are implemented
using a SOA approach. We have described the computa-
tion model for internal service processing and the data
format used for test case definition. We have also provided
latency estimates obtained on an exemplary testbed, that
resembles the sense-plan-act paradigm. For future work,
we plan to be able incorporate the low-level microcon-
trollers in our testbed in our automated pipeline. This
will require adaptations to the code deployment stage,
as these controllers need to be flashed using a special
programmer. Furthermore, we plan to obtain fine-grained
latency estimates for data serialization and other internal
processes of our SOA implementation.

REFERENCES

Bocchi, L., Fiadeiro, J.L., and Lopes, A. (2008). Service-
Oriented Modelling of Automotive Systems. In
2008 32nd Annual IEEE International Computer Soft-
ware and Applications Conference, 1059–1064. doi:
10.1109/COMPSAC.2008.228.

Broy, M., Kruger, I.H., Pretschner, A., and Salz-
mann, C. (2007a). Engineering Automotive Soft-
ware. Proceedings of the IEEE, 95(2), 356–373. doi:
10.1109/JPROC.2006.888386.

Broy, M., Krüger, I.H., and Meisinger, M. (2007b). A
Formal Model of Services. ACM Trans. Softw. Eng.

Methodol., 16(1). doi:10.1145/1189748.1189753. URL
http://doi.acm.org/10.1145/1189748.1189753.

Eidson, J. and Lee, K. (2002). IEEE 1588 Standard for a
Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems. In Sensors for
Industry Conference, 2002. 2nd ISA/IEEE, volume 10.
IEEE.

Farcas, C., Farcas, E., Krueger, I.H., and Menarini, M.
(2010). Addressing the Integration Challenge for Avion-
ics and Automotive Systems—From Components to
Rich Services. Proceedings of the IEEE, 98(4), 562–583.
doi:10.1109/JPROC.2009.2039630.

Farcas, E., Farcas, C., Pree, W., and Templ, J. (2005).
Transparent Distribution of Real-Time Components
based on Logical Execution Time. In ACM SIGPLAN
Notices, volume 40, 31–39. ACM.

Kampmann, A., Alrifaee, B., Kohout, M., Wüstenberg, A.,
Woopen, T., Nolte, M., Eckstein, L., and Kowalewski,
S. (2019a). A Dynamic Service-Oriented Software Ar-
chitecture for Highly Automated Vehicles. In 2019 22st
International Conference on Intelligent Transportation
Systems (ITSC), to appear. IEEE.

Kampmann, A., Wüstenberg, A., Alrifaee, B., and
Kowalewski, S. (2019b). A Portable Implementation
of the Real-Time Publish-Subscribe Protocol for Micro-
controllers in Distributed Robotic Applications. In 2019
22st International Conference on Intelligent Transporta-
tion Systems (ITSC), to appear. IEEE.

Kugele, S., Hettler, D., and Peter, J. (2018). Data-Centric
Communication and Containerization for Future Auto-
motive Software Architectures. In 2018 IEEE Inter-
national Conference on Software Architecture (ICSA),
65–6509. doi:10.1109/ICSA.2018.00016.

Kugele, S., Obergfell, P., Broy, M., Creighton, O., Traub,
M., and Hopfensitz, W. (2017). On Service-Orientation
for Automotive Software. In 2017 IEEE International
Conference on Software Architecture (ICSA), 193–202.
doi:10.1109/ICSA.2017.20.

Pardo-Castellote, G. (2003). OMG Data-Distribution Ser-
vice: Architectural Overview. In Distributed Computing
Systems Workshops, 2003. Proceedings. 23rd Interna-
tional Conference on, 200–206. IEEE.

Saad, E., Vian, J., Clark, G., and Bieniawski, S. (2009).
Vehicle swarm rapid prototyping testbed. In AIAA In-
fotech@ Aerospace Conference and AIAA Unmanned...
Unlimited Conference, 1824.

Stubbs, A., Vladimerou, V., Fulford, A.T., King, D.,
Strick, J., and Dullerud, G.E. (2006). Multivehicle
Systems Control over Networks: A Hovercraft Testbed
for Networked and Decentralized Control. IEEE Control
Systems Magazine, 26(3), 56–69.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5874


