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Abstract: Anaerobic digestion systems are of increasing interest as they are able to produce biogas while
treating waste/wastewater. However, their dynamics is complex and not fully understood, which makes
their operation and optimization difficult. In this paper, an extremum seeking control algorithm is applied
to a three-stage anaerobic digestion system to maximize the outflow rate of methane. In a first stage, the
stability analysis of the three-stage model is performed, which provides valuable information on the type
of steady states the system possesses, the occurrence of the optimal steady state and good practices to
successfully operate the system. In a second stage, an extremum seeking controller, which employs a
recursive least-squares algorithm for block-oriented models, is implemented and tested on the anaerobic
digestion model. Simulation results show that the proposed controller globally stabilizes the process
dynamics at the optimal operating point. Compared to the classical extremum seeking algorithms, the
proposed technique allows for a faster convergence, in an imposed time period assigned by the designer.

Keywords: Recursive Least Squares, Real-Time Optimization, Wiener-Hammerstein models, Process
Control, Biogas Production.

1. INTRODUCTION

Anaerobic digestion (AD) is a well-established technology
for producing renewable energy. The process involves several
biochemical stages, through which organic matter found in
waste or wastewater streams is transformed into biogas. This
mainly consists of methane, carbon dioxide and hydrogen. The
dynamics of an anaerobic digestion process is very complex and
not fully understood, which makes its optimization and control
difficult. In addition, some of the process key variables cannot
be measured due to the lack of robust on-line measurement
systems. In practice, most of the biogas producing plants are
still operated manually (Gaida et al., 2017), resulting in a
suboptimal biogas production.

To cope with the system complexity and develop efficient con-
trol structures, the research community relies on the use of
models, which describe with various degrees of detail the pro-
cess dynamics. Model analysis provides valuable information,
which can be further used in the control design stage, resulting
in simpler to implement control loops (Jimenez et al., 2015).
Many studies have been published, most of them focusing on
two-stage AD models (Sbarciog et al., 2010; Benyahia et al.,
2012; Rincón et al., 2014; Khedim et al., 2018).

One of the main characteristics of the AD processes empha-
sized by the analysis studies is the steady state multiplicity.
Hence, the start-up and control of AD processes is a delicate
task due to the risk of reactor wash-out. This leads in current
practice to the use of low dilution rates, and in turn to very
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slow transients and low biogas yield. To improve this situation,
feedback control is an essential component, which is, however,
difficult to implement as dynamic models are uncertain. It is
therefore appealing to resort to model-free approaches, such as
extremum seeking. Extremum seeking (ES) is a real-time feed-
back optimization technique initially proposed in the seminal
work of Leblanc (1922), and brought back more recently to
attention thanks to the filtering scheme of Ariyur and Krstic
(2003). Its main purpose is to infer on-line information on the
gradient of a convex and measurable cost function, and to drive
this quantity to zero in average so as to reach the extremum. The
main drawback of the ES approach is its inherent slow conver-
gence due to the three-scale separation of the filtering technique
(Ariyur and Krstic, 2003). Research efforts have therefore been
paid to speed-up convergence. In (Guay and Dochain, 2015),
a time-varying approach using a faster parameter estimator is
proposed, while in (Guay and Dochain, 2017) an original
proportional-integral controller replaces the classical integrator.
However, parameter tuning mostly relies on empirical rules
and can be tricky for the non-specialist user. In an attempt to
alleviate this latter difficulty, Dewasme et al. (2011); Feud-
jio Letchindjio et al. (2018) used a Recursive Least Squares
(RLS) algorithm to estimate the unknown static map param-
eters. Recently, Feudjio Letchindjio et al. (2019) proposed an
original RLS strategy for block-oriented models (BOM, which
can approach a wide range of nonlinear systems) taking system
dynamics into account to drastically accelerate the ES estimator
convergence. In the present study, the BOM-ES-RLS strategy
is applied to optimize the biogas production of an anaerobic
process described by a three-stage model, featuring multiple
steady states and complex dynamics. Different extremum seek-
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ing techniques have been previously applied to two-stage AD
models (Lara-Cisneros et al., 2015; Barbu et al., 2017). To our
knowledge, this is the first reported implementation for a three-
stage model, which brings up additional challenges.

2. MODEL DESCRIPTION

The model studied throughout this paper includes three stages
of the anaerobic digestion process (Weedermann et al., 2013,
2015), acidogenesis, acetogenesis and methanogenesis, and
involves four nutrient groups and the corresponding bacterial
groups: simple substrates S, volatile fatty acids (except of
acetic acid) V , acetic acid A, hydrogen H , acidogenic bacteria
XS , acetogenic bacteria XV , acetoclastic methanogens XA

and hydrogenotrophic methanogens XH . It is assumed that the
biomass decay is negligible and it is not included in the model
equations.

The three stage model is an approximation of the ADM1
model (Weedermann et al., 2015), as it is built by lumping the
numerous components of ADM1 in only four microorganism
groups growing on four substrates. The main advantage of this
model is that it represents the complex dynamics of ADM1 with
a reduced number of equations, allowing for a rigorous study of
the system dynamics and the establishment of analytical results.

The model is based on the reaction network

k1S
gS
→ k2V + k4A+ k7H +XS (1)

k3V
gV
→ k5A+ k8H +XV (2)

k6A
gA
→ k10CH4 +XA (3)

k9H
gH
→ k11CH4 +XH (4)

In the first reaction, the acidogenic bacteria XS grow on the
organic substrate S and produce volatile fatty acids V , acetic
acid A and hydrogen H . In the second reaction, the aceto-
genic bacteria XV grow on volatile fatty acids V and pro-
duce acetic acid A and hydrogen H . In the third reaction,
the acetoclastic methanogens XA grow on the acetic acid and
produce methane CH4, while in the fourth reaction the hy-
drogenotrophic methanogens XH grow on hydrogen and pro-
duce also methane.

The mass balances for each component in the bioreactor read:

dXS

dt
= −DXS + gS(S)XS (5)

dXV

dt
= −DXV + gV (V,H)XV (6)

dXA

dt
= −DXA + gA(A)XA (7)

dXH

dt
= −DXH + gH(H,A)XH (8)

dS

dt
= D(Sin − S)− k1gS(S)XS (9)

dV

dt
= −DV + k2gS(S)XS − k3gV (V,H)XV (10)

dA

dt
= −DA+ k4gS(S)XS + k5gV (V,H)XV − k6gA(A)XA

(11)

dH

dt
= −DH + k7gS(S)XS + k8gV (V,H)XV − k9gH(H,A)XH

(12)

while the rate of methane production is given by:

QM = k10gA(A)XA + k11gH(H,A)XH (13)

In (5)- (13), D represents the dilution rate (the inlet flow scaled
by the reactor volume), Sin is the concentration of nutrient
in the influent flow, ki, i = 1 . . . 9 are the stoichiometric
parameters, while gj , j ∈ {S, V,A,H} denote the growth
functions. The growth functions depend on the concentration of
the component that is decomposed and other factors that might
inhibit the reaction:

gS(S) =
mSS

KS + S
(14)

gV (V,H) =
mV V

KV + V + µHH
(15)

gA(A) =
mAA

KA +A+A2/KI

(16)

gH(H,A) =
mHH

KH +H + µAA
(17)

where mj and Kj , with j ∈ {S, V,A,H} respectively denote
the maximum growth rates and the half-saturation constants in
the absence of inhibition; KI is a coefficient describing the
inhibition due to A on the growth of XA; µH and µA are
inhibition factors for the growth of XV and XH respectively
due to H and A. The numerical values of the system parameters
used in the simulation results are given in Table 1.

Table 1. Numerical values for system parameters

Parameter Value Parameter Value

mS 3.5 day−1 k1 11.111

KS 0.4 g COD/L k2 1.962

mV 0.86 day−1 k3 20

KV 0.3 g COD/L k4 6.419

mA 0.4 day−1 k5 10.357

KA 0.15 g COD/L k6 20

Ki 10 g COD/L k7 2.367

µH 1 g COD/L k8 5.268

mH 2.1 day−1 k9 16.667

KH 2.5e-5 g COD/L k10 19

µA 5 g COD/L k11 15.667

2.1 Characterization of steady states

Analytical expressions for all system equilibria are provided
by Sbarciog and Vande Wouwer (2016, 2020), however, their
stability has been assessed only through simulations of system
phase portraits for selected values of the dilution rate D and
inlet substrate concentration Sin. Here, we provide a more
formal analysis, which gives a global view on the steady states
stability, in all possible regions (defined by the pair (Sin, D))
of the bifurcation diagram. The bifurcation diagram has been
constructed analytically in (Sbarciog and Vande Wouwer, 2020)
and is shown in Figure 1.

The model (5)-(12) exhibits a complex steady state behavior,
comparable to the one of the ADM1 model (Bornhöft et al.,
2013). Nine types of steady states may occur, characterized by:

(1) Total wash-out: there exists one steady state of this type,
denoted by ξW , which is always physical, independent of
the dilution rate and inlet substrate concentration;

(2) Wash-out of the acetogenic bacteria and of both
methanogenic microorganisms: there exists one steady
state of this type, denoted by ξ0. This steady state is physi-
cal in all regions shown in Figure 1. Since no methanogens
are present in the reactor, no methane is produced in this
steady state.
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Fig. 1. Bifurcation diagram of the anaerobic digestion model

(3) Wash-out of both methanogenic microorganisms: one
steady state of this type exists, denoted by ξV . This steady
state is physical in the regions J2,J4 − J11. No methane
is produced in this steady state.

(4) Wash-out of hydrogenotrophic methanogens: up to two
steady states of this type may exist, denoted by ξV A

i ,

i = 1, 2. ξV A
1 occurs in the regions J4 − J11, while ξV A

2

occurs in the regions J6 − J11. These steady states are
characterized by methane production through acetoclastic
methanogenesis.

(5) Wash-out of the acetogenic bacteria and acetoclastic
methanogens: one steady state of this type may exist,
denoted by ξH . This steady state occurs as a physical
equilibrium point in the regions J5, J8 and J9. Methane
production is low in this steady state.

(6) Wash-out of acetoclastic methanogens: one steady state of
this type may exist, denoted by ξV H . Methane production
occurs through hydrogenotrophic methanogenesis, how-
ever the amount is low. This steady state is physical in the
regions J5, J8 and J9.

(7) Wash-out of the acetogenic bacteria: up to two steady
states of this type may occur, denoted by ξAH

i , i = 1, 2.

ξAH
1 is physical in the regions J4 − J11, while ξAH

2 is
physical only in J7, J8. Methane is produced through
both acetoclastic and hydrogenotrophic methanogenesis.

(8) Wash-out of acetogenic bacteria and hydrogenotrophic
methanogens: up to two steady states of this type may
occur, denoted by ξAi , i = 1, 2. ξA1 occurs in the regions

J3−J11, while ξA2 occurs in the regions J6−J8 and J10.
Methane is produced in these steady states.

(9) Coexistence of all microorganisms types: up to two steady
states of this type may occur, denoted by ξV AH

i , i =
1, 2. The highest amount of methane is produced in these
steady states, thus from a practical point of view the
anaerobic digestion system should be operated around a
steady state of this type. ξV AH

1 is physical in the regions
J4 − J11, while ξV AH

2 is physical in J7 − J10.

Figure 2 shows the methane produced in each steady state
type, for fixed inlet substrate concentration Sin = 40 COD/L
and various values of the dilution rate. Maximum methane
production occurs in a steady state type ξV AH , where all
microorganisms types coexist in the bioreactor.
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Fig. 2. Methane outflow rate at steady state

2.2 Stability of the steady states

The local stability of the steady states is assessed by lineariz-
ing the dynamics around the equilibrium points. To this end,
one needs to compute the eigenvalues of the Jacobian ma-
trix and evaluate them at the specific steady state. The de-
termination of the Jacobian matrix and the calculation of the
eigenvalues may be simplified by considering a transforma-
tion of the original system (5)-(12) to the so-called canonical
states: ξ = [ ξa ξb ]′ 7→ x = [ xa xb ]′, with xa = ξa =
[XS XV XA XH ]′ and xb given by

xb =




S + k1XS

V − k2XS + k3XV

A− k4XS − k5XV + k6XA

H − k7XS − k8XV + k9XH


 (18)

Then, state equations are rewritten as:

ẋ1 =
dXS

dt
= −Dx1 + gS(S)x1 (19)

ẋ2 =
dXV

dt
= −Dx2 + gV (V,H)x2 (20)

ẋ3 =
dXA

dt
= −Dx3 + gA(A)x3 (21)

ẋ4 =
dXH

dt
= −Dx4 + gH(H,A)x4 (22)

ẋ5 = D(Sin − x5) (23)

ẋ6 = −Dx6 (24)

ẋ7 = −Dx7 (25)

ẋ8 = −Dx8 (26)

and the Jacobian matrix can be written as

J =

[
J1 J2
J3 J4

]
=




J1 J2

0

−D
−D

−D
−D


 (27)

Note that the linear dynamics (23)-(26) is stable (negative
eigenvalues equal to −D). Thus, the stability of the steady
states is assessed by computing and evaluating the eigenvalues
of the matrix J1, which has the form

J1 =



j1 0 0 0
j2 j3 0 j4
j5 j6 j7 0
j8 j9 j10 j11


 (28)

The eigenvalues are the solutions of the equation
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(j1 − λ)
[
λ3 − λ2 (j3 + j7 + j11) + λ (j3j7 + j3j11+

j7j11 − j9j4) + j3j7j11 + j6j10j4 − j9j4j7] = 0 (29)

with

j1 = −D + gS − k1x1

dgS
dS

, j4 = −k9x2

∂gV
∂H

(30)

j3 = −D + gV + x2

(
−k3

∂gV
∂V

+ k8
∂gV
∂H

)
(31)

j6 = k5x3

∂gA
∂A

, j7 = −D + gA − k6x3

∂gA
∂A

(32)

j9 = x4

(
k8

∂gH
∂H

+ k5
∂gH
∂A

)
, j10 = −k6x4

∂gH
∂A

(33)

j11 = −D + gH − k9x4

∂gH
∂H

(34)

Note that except for the total wash-out steady state ξW , the first
eigenvalue λ = j1 is negative. All the other equilibria occur
when the dilution rate equals the growth function of the acido-
genic microorganisms, i.e., D = gS . This growth function is
of Monod type, which implies that its derivative is always pos-
itive. Moreover, k1 and x1 denote respectively a stoichiometric
parameter and the concentration of microorganisms, which are
always positive.

Table 2 displays the stability of equilibria in the widest regions
shown on the bifurcation diagram (Figure 1). When a steady
state is unstable, its index (number of positive eigenvalues) is
also indicated. Noticeably, the steady state ξV AH

1 , characterized
by the highest methane production as seen in Figure 2 is
always stable. However, ξV AH

1 is the only stable steady state
of the system at either low influent substrate concentrations
or low dilution rate values, which are rarely employed in
practice. At higher inlet substrate concentrations and dilution
rates, which allow processing a reasonable amount of waste
and produce a significant amount of methane, the anaerobic
digestion system is characterized by bistability: two system
steady states are locally asymptotically stable. ξV AH

1 preserves
its stability properties, while either ξV (in regions J6, J7, J10,
J11) or ξV H (in regions J8, J9) becomes stable. Note that
from a practical point of view neither ξV nor ξV H are desirable.
Hence, the role of the extremum seeking algorithm detailed in
the next section is to stabilize the operation of the anaerobic
digestion system at the unknown optimal steady state.

3. EXTREMUM SEEKING CONTROL

3.1 RLS extremum seeking with block-oriented model

A recursive least-squares algorithm (RLS) with forgetting fac-
tor proposed by Dewasme et al. (2011) with a block-oriented
model representation as in (Feudjio Letchindjio et al., 2019)
(see Figure 3) is proposed to optimize the biogas production by
extremum seeking (ES). The anaerobic digester is considered
as a Hammerstein model with a static map (similar to one
of the steady state diagrams of Figure 2) followed by a first
order (strictly proper and stable) transfer function describing
system/sensor dynamics. Since measurements are collected at
discrete times, a discrete form of the model is used and G(s) =

1

1 + τs
is considered in an equivalent discrete form using the

matched pole-zero method, leading to G(z) =
K1

z − α
with

K1 = 1 − α and α = e−
Ts

τ , Ts being the sampling period.

Fig. 3. Extremum seeking control loop applied to the anaerobic
digester

The static map shown in Figure 2 is approximated by the linear
form:

x(tk) = c+ ξ u(tk) (35)

where x is an intermediate state variable, u = D the input, ξ
the gradient and c a constant. The first order dynamics reads:

y(tk) = K1x(tk) + αy(tk−1) (36)

Combining (35) and (36) results in:

y(tk) = K1ξu(tk) + αy(tk−1) +K1c

= φT θ + ν
(37)

where φT = [1, y(tk−1), u(tk)]
T is the known vector of ex-

planatory variables, θ = [θ1, θ2, θ3]
T = [K1c, α,K1ξ]

T is the
parameter vector and ν ∼ N (0, σ2) is white noise.

The RLS algorithm (see Figure 3) provides the gradient esti-

mate ξ̂ =
θ3

1− θ2
of ξ. The gradient estimation ξ̂ ≈

∂̂y

∂u
is

driven to zero in average by the extremum seeking control loop.

A dither signal d = Asin(ωt) is used to ensure the persistency

of excitation (Åström and Wittenmark, 1995). As a general

rule, a minimum of
n

2
distinct sinusoids is necessary for the

identification of n parameters (Landau and Dugard, 1986).

4. EXTREMUM SEEKING LOOP DESIGN

A simple pole-placement procedure can be used to define the
extremum seeking control (ESC) closed-loop dynamics, i.e.,
to design the integral constant kI (see Figure 3). As discussed
by Feudjio Letchindjio et al. (2019), a controllable state-space
representation of the slope/gradient evolution can be inferred
as:

ξk+1 = Aξk +Bw(Dref ) (38a)

y = Cξk (38b)

where w is a function of the corresponding input reference
Dref providing the desired gradient ξref . Introducing an in-
tegral action, the system reads:[

ξk+1

vk+1

]
=

[
A 0

−CA I

] [
ξk
vk

]
+

[
B

−CB

]
w(Dref ) +

[
0
I

]
rk+1

(39a)

y = [C 0]

[
ξk
vk

]
(39b)
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Table 2. Steady states stability in the main regions of the bifurcation diagram: ’s’ - stable, ’u’ - unstable,
’-’ - not physical

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

ξ0 s u(1) u(1) u(2) u(3) u(1) u(1) u(2) u(3) u(1) u(2)

ξV - s - u(1) u(2) s s u(1) u(1) s s

ξV A
1

- - - u(1) u(1) u(1) u(1) u(1) u(1) u(1) u(1)

ξV A
2

- - - - - u(1) u(2) u(2) u(2) u(2) u(1)

ξH - - - - u(2) - - u(1) u(2) - -

ξV H - - - - u(1) - - s s - -

ξAH
1

- - - u(1) u(1) u(1) u(1) u(1) u(1) u(1) u(1)

ξAH
2

- - - - - - u(2) u(2) - - -

ξA
1

- - s u(2) u(2) u(2) u(2) u(2) u(2) u(2) u(2)

ξA
2

- - - - - u(2) u(3) u(3) - u(2) -

ξV AH
1

- - - s s s s s s s s

ξV AH
2

- - - - - - u(1) u(1) u(1) u(1) -

Applying classical pole-placement procedures, the closed-loop
dynamics can be specified in the time domain, yielding the
integral (extremum seeking) control gain.

5. APPLICATION OF THE BOM-RLS-ES TO THE
ANAEROBIC DIGESTER

The extremum seeking parameters are summarized in Table 3
(the reader is referred to Feudjio Letchindjio et al. (2019) con-
cerning the RLS parametrization) and the results of the appli-
cation of the BOM-RLS-ES controller to the anaerobic digester
are shown in Figures 4, 5 and 6. During the first simulated days,
the input is set to D = 0.1 d−1 to let the system reach a steady
state. This steady state can be computed using the equilibria
expressions provided by Sbarciog and Vande Wouwer (2016).
However, the precise values of the states at equilibrium are
not of interest. The most important fact is that for the cho-
sen dilution rate and inlet substrate concentration (Sin = 40
gCOD/L), the anaerobic digestion system is operated in the
region J5 (Figure 1), where the only stable steady state is of
ξV AH type (see Table 2). This ensures that all microorganisms
are present in the bioreactor at the moment the extremum seek-
ing algorithm is started, rendering possible the maximization of
methane outflow rate.

Figure 4 shows that the system natural settling time is ap-
proximately 50 d. In order to maintain the process dynamics
and to avoid the slow convergence of the extremum seeking
controllers (Guay and Dochain, 2015; Ariyur and Krstic, 2003;
Feudjio Letchindjio et al., 2019), the same settling time (50 d)
is imposed to the closed-loop system. This is achieved with
an integral gain kI = 3.5 × 10−5. Since 3 parameters from
(37) are estimated, the dither signal is chosen as the sum of
two sinusoids (allowing to identify up to 4 parameters) d =
A1sin(ω1t)+A2sin(ω2t) and the measurement sampling time
is set to Ts = 0.01 d. To obtain more details on the dither signal
parameter design, the reader may refer to Feudjio Letchindjio
et al. (2019).

Table 3. Extremum seeking control parameters

kI 3.5 10
−5 Ts 0.01 d

A1 0.01 d−1 ω1
2π

5
d−1

A2 0.005 d−1 ω2
2π

2
d−1

In day 51, the ES controller is activated and leads the system
to its optimal level of biogas production Q∗

M . As shown in
Figure 5, and as expected from the pole-placement procedure,
the convergence time is indeed approximately 50 d.
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Fig. 4. Extremum seeking application to the anaerobic digester:
time evolution of the system states
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Fig. 5. Extremum seeking application to the anaerobic digester:
time evolution of the output y = QM and input u = D

6. CONCLUSION

In this paper the stability of a three-stage anaerobic digestion
system is studied and the application of an extremum seeking
control algorithm to maximize the outflow rate of methane is
presented. The stability analysis shows that the optimal steady
state for a fixed inlet substrate concentration lies in an operating
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Fig. 6. Extremum seeking application to the anaerobic digester:
convergence diagram

region where the system possesses two asymptotically stable
steady states. The implemented extremum seeking (ES) control
integrates a recursive least-squares (RLS) algorithm for block-
oriented models (BOM), which allows for a faster convergence
(compared to classical ES algorithms) to the optimal steady
state. Simulation results show that the proposed controller sta-
bilizes the system at the optimum, while the dynamics settles
down in the imposed time. Future work will consider the eval-
uation of the closed-loop robustness with respect to parameter
uncertainty and measurement noise.
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