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Abstract: Model-based reinforcement learning techniques accelerate the learning task by
employing a transition model to make predictions. In this paper, a model-based learning
approach is presented that iteratively computes the optimal value function based on the most
recent update of the model. Assuming a structured continuous-time model of the system in terms
of a set of bases, we formulate an infinite horizon optimal control problem addressing a given
control objective. The structure of the system along with a value function parameterized in the
quadratic form provides a flexibility in analytically calculating an update rule for the parameters.
Hence, a matrix differential equation of the parameters is obtained, where the solution is used to
characterize the optimal feedback control in terms of the bases, at any time step. Moreover, the
quadratic form of the value function suggests a compact way of updating the parameters that
considerably decreases the computational complexity. Considering the state-dependency of the
differential equation, we exploit the obtained framework as an online learning-based algorithm.
In the numerical results, the presented algorithm is implemented on four nonlinear benchmark
examples, where the regulation problem is successfully solved while an identified model of the
system is obtained with a bounded prediction error.

Keywords: Reinforcement learning, Model-based learning, Optimal control, Feedback control,
Continuous-time control, Adaptive dynamic programming, Sparse identification.

1. INTRODUCTION

Model-based reinforcement learning techniques, as ap-
posed to direct methods in learning, are known to be more
data-efficient. Direct methods usually require enormous
data and hours of training even for simple applications
(Duan et al., 2016), while model-based techniques can
show optimal behavior in a limited number of trials.
This property, in addition to the flexibilities in changing
learning objectives and performing farther safety analysis
make them more suitable for real-world implementations,
such as robotics. In model-based approaches, having a
deterministic or probabilistic description of the transition
system saves much of the effort spent by direct methods in
treating any point in the state-control space individually.
Hence, the role of model-based techniques become even
more significant when it comes to problems with contin-
uous control rather than discrete actions (Sutton (1990);
Atkeson and Santamaria (1997); Powell (2004)).

Various model-based approaches can be found in the liter-
ature that are mainly categorized under two topics: value
function and policy search methods. In value methods,
known also as approximate/adaptive dynamic program-
ming techniques, a value function is used to construct
the policy. However, policy search methods directly im-
prove the policy to achieve optimality. A review of recent
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techniques can be found in Busoniu et al. (2017); Recht
(2019); Polydoros and Nalpantidis (2017); Kamalapurkar
et al. (2018). Another survey is given in Benosman (2018)
that contrasts model-based techniques with data-driven
adaptive techniques.

Value methods in reinforcement learning normally require
solving the well-known Hamilton-Jacobi-Bellman (HJB).
However, common techniques for solving such equations
suffer from curse of dimensionality. Hence, in approximate
dynamic programming techniques, a parametric or non-
parametric model is used to approximate the solution.
In Lewis and Vrabie (2009), some related approaches
are reviewed that fundamentally follow the actor-critic
structure (Barto et al. (1983)), such as value and policy
iteration algorithms.

In such approaches, the Bellman error, which is obtained
from the exploration of the state space, is used to improve
the parameters estimated in a gradient-descent or least-
square loop that require persistent excitation condition.
Since the Bellman error obtained is only valid along the
trajectories of the system, sufficient exploration in the
state-space is required to efficiently estimate the param-
eters. Kamalapurkar et al. (2018) has reviewed different
strategies employed to increase the data-efficiency in ex-
ploration. In Vamvoudakis et al. (2012); Modares et al.
(2014), a probing signal is added to the control to enhance
the exploring properties of the policy. In another approach,
the recorded data of explorations is used as a replay of
experience to increase the data efficiency. In Modares et al.
(2014), the model obtained from identification is used to
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acquire more experience by doing simulation in an offline
routine that decreases the need for visiting any point in
the state space.

As an alternative method, considering a nonlinear control
affine system with a known input coupling function, Ka-
malapurkar et al. (2016b) used a parametric model to ap-
proximate the value function. Then, they employed a least-
square minimization technique to adjust the parameters
according to the Bellman error which can be calculated at
any arbitrary point of the state space by having identified
internal dynamics of the system and approximated state
derivatives.

In this paper, as a different approach for obtaining the
parameters of value function, we aim on solving a closed-
loop optimal control problem online, rather than using a
minimization technique to update the parameters based
on the Bellman error. Although, Bellman theory is clearly
behind all these techniques, the formulation here is con-
trasted with previous approaches: assuming a particular
structure for the identified system allows us to analytically
obtain a matrix differential equation in terms of parame-
ters. This relaxes the need of a gradient-descent or least-
square technique that is used in similar approaches. Unlike
Zhang et al. (2011); Bhasin et al. (2013); Kamalapurkar
et al. (2016b), we assume a quadratic form for the value
function that provides a compact way for parameterizing
the value in terms of quadratic terms, following the struc-
ture considered for the dynamics. Accordingly, we will refer
the presented framework as a structured online learning
(SOL) algorithm.

In Brunton et al. (2016), an algorithm for sparse identifica-
tion of nonlinear dynamical systems (SINDy) is presented
to obtain the explicit dynamics of the system. In Kaiser
et al. (2018), a control approach is employed based on
SINDy that includes two independent stages: the identi-
fication with a generated random signal and the model
predictive control. This technique is shown to be a data-
efficient identification scheme that, in addition, can handle
the noise in data. Although the identification methods
can be used in SOL algorithm are not limited to any
particular approach, as another contribution of this paper,
we employ SINDy to achieve faster convergence of the
parameters in an online scheme. This is contrasted with
Kaiser et al. (2018) in a way that we iteratively perform
both identification and control in a single loop.

The rest of the paper is organized as follows. In Section
2, we propose an optimal control approach based on a
particular structure of dynamics, and characterize the
optimal feedback control based on a matrix of parameters
obtained by a differential equation. Section 3 outlines the
SOL algorithm designed based on the obtained results.
In Section 4, we present the numerical results of this
algorithm implemented on a few benchmark examples.

1.1 Notations

We will denote p-norm by ‖·‖p. For defining a set of basis,
any operator on vector x, is performed component-wise
e.g. x2 = [x2

1, . . . , x
2
n]. Moreover, a diagonal square matrix

A with elements A1, . . . , An on the diagonal is shortened
as A = diag([A1, . . . , An]).

2. A STRUCTURED APPROXIMATE OPTIMAL
CONTROL FRAMEWORK

Consider the nonlinear affine system

ẋ = f(x) + g(x)u (1)

where x ∈ D ⊂ IRn, u ∈ Ω ⊂ IRm, and f, g : D → IRn.

The cost function to be minimized along the trajectory,
started from the initial condition x0 = x(0), is considered
in the following linear quadratic form

J(x0, u) = lim
T→∞

∫ T

0

e−γt
(
xTQx+ uTRu

)
dt, (2)

where Q ∈ IRn×n is positive semi-definite, γ ≥ 0 is the
discount factor, and R ∈ IRm×m is a diagonal matrix with
only positive values, given by design criteria.

For the closed-loop system, by assuming a feedback control
law u = ω(x(t)) for t ∈ [0,∞), the optimal control is given
by

ω∗ = arg min
u(·)∈Γ(x0)

J(x0, u(·)), (3)

where Γ is the set of admissible controls.

Assumption 1. f and g can be identified or effectively
approximated within the domain of interest by the linear
combination of some basis functions φi ∈ C1 : D → IR for
i = 1, 2, . . . , p.

Accordingly, (1) is rewritten as

ẋ = WΦ(x) +

m∑
j=1

WjΦ(x)uj , (4)

where W and Wj ∈ IRn×p are the matrices of the
coefficients obtained for j = 1, 2, . . . ,m, and Φ(x) =
[φ1(x) . . . φp(x)]T .

In what follows, without loss of generality, the cost defined
in (2) is transformed to the space of bases Φ(x), that is

J(x0, u) = lim
T→∞

∫ T

0

e−γt
(
Φ(x)T Q̄Φ(x) + uTRu

)
dt, (5)

where Q̄ = diag
(
[Q], [0(p−n)×(p−n)]

)
is a block diagonal

matrix that contains all zeros except the first block Q
which correspond to the linear bases x.

Then the corresponding HJB equation can be written by
the Hamiltonian defined as

− ∂

∂t
(e−γt V )= min

u(·)∈Γ(x0)
{H = e−γt

(
Φ(x)T Q̄Φ(x) + uTRu

)
+ e−γt

∂V

∂x

T

(WΦ(x) +

m∑
j=1

WjΦ(x)uj)}.

(6)

In general, there exist no analytical approach that can
solve such partial differential equation and obtain the
optimal value function. However, it has been shown in the
literature that approximate solutions can be computed by
numerical techniques.

Assume the optimal value function in the following form

V = Φ(x)TPΦ(x), (7)

where P is symmetric.
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Remark 1. Unlike other approximate optimal approaches
in the literature, such as, Zhang et al. (2011); Bhasin et al.
(2013); Kamalapurkar et al. (2016a), that use a linear
combination of bases to parameterize the value function,
we assume a quadratic form. As a result, the value function
now is defined in the product space Λ := Φ × Φ. Hence,
it is expected that the resulting quadratic terms better
contribute to basing a positive value function around
x = 0. Furthermore, due to the function-approximating
properties of bases Φ itself, one may bring them to Λ in
addition by including a constant basis c in Φ. Therefore,
compared to other approaches, the structure used in (7)
suggests a more compact way of formulating the problem
where by only a limited number of bases in Φ, we can
attain a richer set Λ to parameterize the value function.

Then the Hamiltonian is given by

H = e−γt(Φ(x)T Q̄Φ(x) + uTRu)

+ e−γt Φ(x)TP
∂Φ(x)

∂x

(
WΦ(x) +

m∑
j=1

WjΦ(x)uj

)

+ e−γt
(

Φ(x)TWT +

m∑
j=1

uTj Φ(x)TWT
j

)
∂Φ(x)

∂x

T

PΦ(x).

Moreover, based on the structure of R, the quadratic term
of u is rewritten in terms of its components.

H =

e−γt

(
Φ(x)T Q̄Φ(x) +

m∑
j=1

rju
2
j + Φ(x)TP

∂Φ(x)

∂x
WΦ(x)+

Φ(x)TP
∂Φ(x)

∂x

( m∑
j=1

WjΦ(x)uj

)
+Φ(x)TWT ∂Φ(x)

∂x

T

PΦ(x)

+

( m∑
j=1

ujΦ(x)TWT
j

)
∂Φ(x)

∂x

T

PΦ(x)

)
, (8)

where rj 6= 0 is the jth component on the diagonal of
matrix R. To minimize the resulting Hamiltonian we need

∂H

∂uj
= 2rjuj + 2Φ(x)TP

∂Φ(x)

∂x
WjΦ(x) (9)

= 0, j = 1, 2, . . . ,m.

Hence, the jth optimal control input is obtained as

u∗j = −Φ(x)T r−1
j P

∂Φ(x)

∂x
WjΦ(x). (10)

By plugging in the optimal control and the value function
in (6) we get

− e−γt Φ(x)T ṖΦ(x) + γ e−γt Φ(x)TPΦ(x)

= e−γt

(
Φ(x)T Q̄Φ(x)+

+ Φ(x)TP
∂Φ(x)

∂x

( m∑
j=1

WjΦ(x)r−1
j Φ(x)TWT

j

)
∂Φ(x)

∂x

T

PΦ(x)

− 2Φ(x)TP
∂Φ(x)

∂x

( m∑
j=1

WjΦ(x)r−1
j Φ(x)TWT

j

)

∂Φ(x)

∂x

T

PΦ(x)

+ Φ(x)TP
∂Φ(x)

∂x
WΦ(x) + Φ(x)TWT ∂Φ(x)

∂x

T

PΦ(x)

)
.

This is rewritten as

Φ(x)T ṖΦ(x) + γΦ(x)TPΦ(x) = Φ(x)T Q̄Φ(x)+

− Φ(x)TP
∂Φ(x)

∂x

( m∑
j=1

WjΦ(x)r−1
j Φ(x)TWT

j

)
∂Φ(x)

∂x

T

PΦ(x)

+ Φ(x)TP
∂Φ(x)

∂x
WΦ(x) + Φ(x)TWT ∂Φ(x)

∂x

T

PΦ(x),

where a sufficient condition to hold this equation is

−Ṗ =Q̄+ P
∂Φ(x)

∂x
W +WT ∂Φ(x)

∂x

T

P − γP

− P ∂Φ(x)

∂x

( m∑
j=1

WjΦ(x)r−1
j Φ(x)TWT

j

)
∂Φ(x)

∂x

T

P.

(11)

This equation has to be solved backward to get a value
of P that characterizes the optimal value function (7) and
control (10), however it has been shown that the forward
integration of such equation converge to similar results as
long as we are not very close to the initial time.

Remark 2. While the similarity between the derived op-
timal control and the linear quadratic regulation (LQR)
problem cannot be denied, there are substantial differ-
ences. It should be noted that the matrix differential equa-
tion (11) is derived in terms of Φ which is of dimension p in
contrast with the LQR formulation that includes only the
linear terms of the state with dimension n. As a result, by
using the proposed SOL framework, once we reached to the
neighborhood of the goal (x ≡ 0), we have a richer value
function that can be generalized to a larger domain than
LQR which is only valid in the neighborhood of the origin.
Fig. 1 and Fig. 2 denote the comparison results with
the LQR control on a pendulum, where we choose Q in a
way that both states are penalized equally. Although they
illustrate similar responses around the equilibrium points,
LQR fails to effectively penalize the angular velocity when
x0 is not in the neighborhood of the equilibrium point.

Remark 3. In fact, it is not difficult to prove the LQR
control as a special case of the proposed framework by
limiting the bases to Φ(x) = [(x1 . . . xn) 1]. In this
case, P will be a (2 × 2)-block-structured matrix where

the Ṗ11 block of (11) produces the well-known Riccati
equation, with γ = 0.

Remark 4. Because of the general case considered in
obtaining (11), where Φ includes arbitrary basis functions
of the state, there exists no way to escape from the state-
dependency in this equation, except in the linear case as
mentioned. Hence, we require (11) be solved along the
trajectories of the system.

In the next section, we will establish an online learning
algorithm based on the proposed optimal control frame-
work.
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Fig. 1. Comparison results of the pendulum for an initial
condition (x0 = [−0.51,−1.18]) around the equilib-
rium point that shows very similar results . (a) LQR
control (b) Control obtained by SOL.

Fig. 2. Comparison results of the pendulum for an initial
condition (x0 = [3.27, 1.92]) not in the neighborhood
of the equilibrium point that shows a better penal-
ization of the responses for SOL. (a) LQR control (b)
Control obtained by SOL.

3. STRUCTURED ONLINE LEARNING (SOL)
ALGORITHM

By considering a general description of the nonlinear input
affine system in terms of some bases as in (4), we obtained
a structured optimal control framework that suggests
using the state-dependent matrix differential equation
(11) to achieve the parameters of the nonlinear feedback
control. Next, we exploit this framework to propose the
SOL algorithm. Hence the focus of this section will be on
the algorithm and practical properties of SOL.

The learning procedure is done in the following order: We
first initialize P with a zero matrix. In the control loop,
at any time step tk, the samples of the states are acquired
and the set of bases are evaluated accordingly. Next, by an
identification technique, the system model is updated. The
measurements and the most recent model coefficients are
used to integrate (11) and improve P , which is required to
calculate the control value for the next step tk+1. In what
follows, we discuss the steps involved in more details with
focusing on SINDy algorithm.

ODE Solver and Control Update: In this approach,
we run the system from some x0 ∈ D, then solve the
matrix differential equation (11) along the trajectories
of the system. Different solvers are already developed
that can efficiently integrate differential equations. In the
simulation, we use a Runge–Kutta solver to integrate the
dynamics of the system that replaces the real system in
a real-world application. Although the solver may take
smaller steps, we only allow the measurements and control
update at time steps tk = kh, where h is the sampling time
and k = 0, 1, 2, . . . . For solving (11) in continuous time, we
use the Runge–Kutta solver with a similar setting, where
the weights and the states in this equation are updated by
a system identification algorithm and the measurements
xk at each ieteration of the control loop, respectively. A
recommended choice for P0 is a matrix with components
of zero or very small values.

The differential equation (11) also requires evaluations of
∂Φ/∂xk at any time step. Since the bases Φ are chosen
beforehand, the partial derivatives can be analytically
calculated and stored as functions. Hence, they can be
evaluated for any xk in a similar way as Φ itself. By solving
(11), we can calculate the control update at any time step
tk according to (10). Although, at the very first steps of
learning, control is not expected to take effective steps
toward the control objective, it can help in exploration of
the state space and gradually improve by learning more
about the dynamics.

Remark 5. The computational complexity of updating
parameters by relation (11) is bounded by the complexity
of matrix multiplications of dimension p which is O(p3).
Moreover, it should be noted that, regarding the symmetry
in the matrix of parameters P , this equation updates
L = (p2 +p)/2 number of parameters which correspond to
the number of bases used in the value function. Therefore,
in terms of the number of parameters, the complexity of
the proposed technique is O(L3/2). However, for instance,
if recursive least squares technique were employed with
the same number of parameters, the computations are
bounded by O(L3). As a result, the proposed parame-
ter update scheme can be done considerably faster than
similar model-based techniques, such as, Kamalapurkar
et al. (2016b); Bhasin et al. (2013). In another effort,
Kamalapurkar et al. (2016a) decreased the number of bases
used to improve the computational efficiency, while the
complexity still remained as O(L3).

Identified Model Update: We considered a given struc-
tured nonlinear system as in Assumption 1. Therefore,
having the control and state samples of the system, we
need an algorithm that updates the weights in (4) corre-
sponding to a given cost E(·) as

[W W1 . . .Wj ]k = arg min
Ŵk

E(ẋk, Ŵk,Θ(xk, uk)),

(12)

where Θ(xk, uk) = [ΦT (xk) ΦT (x)u1 . . . ΦT (x)um]
T

k ,
and k is the time step.

As studied in Brunton et al. (2016); Kaiser et al. (2018),
SINDy is a data-efficient tool to extract the underlying
sparse dynamics of the sampled data. Hence, we use SINDy
to update the weights of the system to be learned. In this
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approach, along with the identification, the sparsity is also
promoted in the weights by minimizing

E(ẋ, Ŵ ,Θ(xk, uk)) = ‖ẋk − ŴkΘ(xk, uk)‖22 + λ‖Ŵk‖1
as in (12), where λ is a positive constant. Furthermore,
there exist other techniques that can be alternatively used,
such as neural networks, nonlinear regression, or any other
function approximation and system identification methods
that can minimize the prediction error ‖ẋk−ŴkΘ(xk, uk)‖
by assuming the structure defined in (4).

Database Update: For using SINDy algorithm, a database
of samples is required to recursively perform regressions.
These weights correspond to a library of functions given in
Φ. Any sample of the system, to be stored in the database
at time k, includes Θ(xk, uk) and the derivatives of the
states approximated by (xk − xk−1)/h.

We adopt SINDy to do an online learning task, meaning
that the database has to gradually build along with
the exploration and control. Different approached can be
employed in the choice of samples and building a database
online. A comparison of these techniques can be found in
in Kivinen et al. (2004); Van Vaerenbergh and Santamaŕıa
(2014). In the implementations of SOL done in this paper,
we assume a given maximum size of database Nd, then
we keep adding the samples with larger prediction errors
to the database. This is done in a loop together with
updating the control until the bound of the prediction
error obtained allows the control to regulate the system
to the given reference state. If the maximum number of
samples in database is reached, we forget the oldest sample
and replace it with the recent one.

4. SIMULATION RESULTS

We have implemented the proposed approach on four ex-
amples which, are presented in two categories, considering
Assumption 1: 1) the dynamics can be written exactly
in terms of some choice of basis functions, and 2) the
dynamics includes some terms that are required to be
approximated in the space of some given bases.

As mentioned, in these numerical examples we have ex-
ploited the SINDy algorithm for the identification purpose,
however, clearly the focus of the simulations here is on the
properties of the proposed control scheme rather than the
identification part, regarding that SINDy already has been
extensively studied in Brunton et al. (2016); Kaiser et al.
(2018) as an offline identification algorithm. The SINDy
algorithm adopted here is a powerful tool to obtain the
dynamics of the system with a good precision. However,
this depends greatly on how efficiently we can approx-
imate the derivatives of the states. Hence, in different
implementations, higher sampling rates or higher order
approximation of the derivatives may be needed. For the
same reason, in the proposed examples, the number of
samples used and the system obtained may be further
tuned to match the level of quality reported in Brunton
et al. (2016); Kaiser et al. (2018).

The simulations are done in Python, where we used
Vpython module (Scherer et al. (2000)) to generate the
graphics. We have set the sampling rate to 200Hz (h =
5ms) for all the examples, unless explicitly mentioned

otherwise. The control input value is updated at every
other time step meaning that the update rate is 100Hz.
The simulation is stopped if the trajectory reaches to the
boundary of D or a timeout is reached without satisfying
the objective. Moreover, if the regulation objective is to
reach a point other than the origin (x ≡ 0), we consider
the cost (2), the value (7), and the obtained differential
equation of the value parameters (11) by redefining x :=
x− xref.

4.1 Systems Identifiable in Terms of a Given Set of Bases

In the following two examples, we assume that the bases
constituting the systems dynamics exist in Φ. The system
identified, after running the proposed learning algorithm
and obtaining the value function, clearly depends on the
identification algorithm used and its tuning parameters.

In Table 1, we illustrate the variations of the identified
system and the corresponding value function by imple-
menting the presented SOL algorithm with the exact ẋ
and with the first order approximation of the derivative.
It can be observed that, in the pendulum example, both of
the obtained equations match the exact system (13) with
a good precision. On the other hand, the Lorenz system
is a more challenging system. Hence, by the first-order
approximation of ẋ with h = 5ms, only an approximation
of the dynamics can be obtained, while the exact system
(14) is identified if we use the exact ẋ . As shown in Fig.
3 and Fig. 4, although the model obtained for Lorenz
system by using the approximate state variables does not
closely match the exact dynamics, the obtained controller
can successfully solve the regulation problem as long as
the prediction errors remain bounded.

Example 1. (Pendulum) The state space description of
the system is given as

ẋ1 = −x2,

ẋ2 = −g
l

sin(x1)− k

m
x2 +

1

ml2
u, (13)

where m = 0.1kg, l = 0.5m, k = 0.1, and g = 9.8m/s2.
The performance criteria are defined by the choices of
Q = diag([1, 1]), R = 2.

Objective: The system is regulated to the unstable equi-
librium point given by xref ≡ 0.

In Fig. 1(b) and Fig. 2.(b) state and control responses
for two runs of the learned system are illustrated starting
from two different initial conditions. In table 1, the learned
dynamics and value function are listed for the exact and
the approximated ẋ.

Example 2. (Chaotic Lorenz System) The system dy-
namics are defined by

ẋ1 = σ(x2 − x1) + u,

ẋ2 = −x2 + x1(ρ− x3),

ẋ3 = x1x2 − βx3, (14)

where σ = 10, ρ = 28, and β = 8/3. Furthermore, we
set the performance criteria to Q = diag([160, 160, 12]),
R = 1. This system has two unstable equilibrium points
(±
√

72,±
√

72, 27), where the trajectories of the system
oscillate around these points.
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Table 1. The system dynamics and the corresponding value function obtained by the proposed
method, where the exact and the approximated derivatives of the state variables are used in

different scenarios

Exact ẋ ẋ ≈ (xk+1 − xk)/h, h = 5ms

Pendulum (Φ = {1, x, sinx})
ẋ1 = −1.000x2

ẋ2 = −1.000x2 − 19.600 sin(x1) + 40.000u

ẋ1 = −1.011x2

ẋ2 = −0.995x2 − 19.665sin(x1) + 40.098u
V (x) =1.974x2

1 − 0.058x2x1 + 0.036x2
2

− 2.2 sin(x1)x1 − 0.077 sin(x1)x2

+ 1.548 sin2(x1)

V (x) =2.049x2
1 − 0.058x2x1 + 0.036x2

2

− 2.371 sin(x1)x1 − 0.077 sin(x1)x2

+ 1.630 sin2(x1)

Chaotic Lorenz System (Φ = {1, x, x2, x3, xixj}, i, j ∈ {1, . . . , n}, i 6= j)

ẋ1 = −10.000x1 + 10.000x2 + 1.000u

ẋ2 = 28.000x1 − 1.000x2 − 1.000x1x3

ẋ3 = −2.667x3 + 1.000x1x2

ẋ1 = −10.070x1 + 9.973x2 + 0.989u

ẋ2 = 0.993x1 − 0.997x2 + 8.483x3 − 1.000x1x3

ẋ3 = −8.483x1 − 8.483x2 − 2.666x3 + 1.000x1x2

V (x) =30.377x2
1 + 48.939x2x1 + 25.311x2

2

+ 1.500x2
3 − 1.873x1x2x3 + 4.719x2

1x
2
2

− 3.291x2
1x3 + 1.469x1x

2
3 − 0.012x2

1x2x3

V (x) =11.193x2
1 + 8.389x2x1 + 42.855x2

2

− 20.950x3x1 + 28.441x3x2 + 32.045x2
3

− 1.899x2
1x2 − 4.777x1x

2
2 − 0.456x1x2x3

+ 5.064x2
1x

2
2 + 2.953x2

1x3 − 8.168x1x
2
3

− 2.633x2
1x3x2 + 1.353x2

1x
2
3

Fig. 3. Responses of the Lorenz system while learning
by using the approximated state derivatives as in
Table 1, where starting from one equilibrium point, we
regulated the system to another unstable equilibrium.

Objective: By randomly setting x0 ∈ [−40, 40]3, we

regulate the system to the unstable equilibrium (−
√

72,

−
√

72, 27).

4.2 Systems to Be Approximated by a Given Set of Basis

In what follows, we apply the presented learning scheme on
two benchmark examples. Unlike the previous examples,
the dynamics of these systems includes some rational
terms that cannot be written in terms of some basis
functions, however, an approximation can be obtained
locally that is shown to be sufficient to successfully solve
the regulation problem, as shown in Fig. 6-9.

Moreover, as shown in Fig. 5, a video of the graphical sim-
ulation of the following benchmark examples is included.

Fig. 4. The value, components of P , and prediction error
corresponding to Fig. 3, respectively.

Fig. 5. A view of the graphical simulations of the
benchmark cartpole and double inverted pendu-
lum examples. The video can be accessed in:
https://youtu.be/-j0vaHE9MZY .

Example 3. (Cartpole Swing up) The dynamics are
given as

ẋ1 = x2,

ẋ2 =
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−u cos(x1)−mLx2
2 sin(x1) cos(x1) + (M +m)g sin(x1)

L(M +m sin(x1)2)
,

ẋ3 = x4,

ẋ4 =
u+m sin(x1)(Lx2

2 − g cos(x1))

M +m sin(x1)2
, (15)

where the state vector is composed of the angle of the
pendulum from upright position, the angular velocity, and
the position and velocity of the cart, with m = 0.1kg,
M = 1kg, L = 0.8m, and g = 9.8m/s2. Moreover, we
choose Q = diag([60, 1.5, 180, 45]), R = 1.

Objective: By starting from some initial angles close to
the stable angle of the pendulum (±π), the cart swings up
the pendulum to reach to and stay at the unstable state
given as xref ≡ 0.

By running the learning scheme, an approximation of the
system is identified as

ẋ1 = 1.000x2,

ẋ2 = 12.934 sin(x1) + 0.230 sin(x3)− 1.234 cos(x1)u,

ẋ3 = 0.995x4,

ẋ4 = 0.926 sin(x1) + 0.953u, (16)

where Φ = {1, x, x2, x3, sinx, cosx}. Moreover, considering
the assumed bases, we obtained the optimal value function
as below.

Fig. 6. Responses of the cartpole system while learning by
using the approximated state derivatives.

Fig. 7. The value, components of P , and prediction error
corresponding to Fig. 6, respectively.

V (x) = 59.712x2
1 + 9.855x2x1 + 134.855x2

2 + 9.587x3x1

+ 241.295x3x2 + 223.389x2
3 + 4.418x4x1 + 222.022x4x2

+ 226.646x4x3 + 100.417x2
4 − 63.050 sin(x1)x1

+ 1098.765 sin(x1)x2 + 2294.259 sin2(x1)

+ 984.786 sin(x1)x3 + 909.030 sin(x1)x4 − 1.712 sin(x3)x1

+ 18.102 sin(x3)x2 + 15.812 sin(x3)x3 + 0.806 sin2(x3)

+ 75.231 sin(x3) sin(x1) + 15.072 sin(x3)x4. (17)

Example 4. (Double Inverted Pendulum on a Cart) By
defining y := [q θ1 θ2]T to be a vector of the cart
position and angles of the double pendulum from the top
equilibrium point, the system dynamics can be written in
the following form.

ẋ =

[
ẏ

M−1f(y, ẏ)

]
, (18)

where M = m+m1 +m2, l1(m1 +m2) cos(θ1), m2l2 cos(θ2)
l1(m1 +m2) cos(θ1), l21(m1 +m2), l1l2m2 cos(θ1 − θ2)

l2m2 cos(θ2), l1l2m2 cos(θ1 − θ2), l22m2

 ,
f(y, ẏ) = l1(m1 +m2)θ̇2

1 sin(θ1) +m2l2θ̇
2
2 sin(θ2)− d1q̇ + u

−l1l2m2θ̇
2
2 sin(θ1 − θ2) + g(m1 +m2)l1 sin(θ1)− d2θ1

l1l2m2θ̇
2
1 sin(θ1 − θ2) + gl2m2 sin(θ2)− d3θ2

 ,
m = 6kg, m1 = 3kg, m2 = 1kg, l1 = 1m, l2 = 2m,d1 = 10,
d2 = 1, and d3 = 0.5.

Objective: We run the system from random angles
around the top unstable equilibria of the pendulums given
by θ1 = 0 and θ2 = 0, where the controller has to learn to
regulate the system to xref ≡ 0.

We choose the bases as Φ = {1, x, x2}. Moreover the per-
formance criteria is given by Q = diag([15, 15, 15, 1, 1, 1]),
R = 1. A sample of the obtained approximate dynamics is

ẋ1 = 0.998x4, ẋ2 = 0.997x5, ẋ3 = 0.996x6,

ẋ4 = 0.238x1 − 4.569x21.245x3 − 1.891x4 − 0.908x6

− 0.105x2
2 + 5.0131u− 2.824x2

2u,

ẋ5 = 16.718x2 − 2.328x3 + 1.558x4 − 0.598x5 + 0.130x6

− 0.114x2
2 − 4.9911u5.777x2

2u− 0.690x2
3u,

ẋ6 = 0.123x1 − 6.721x2 + 9.032x3 + 0.191x5 − 0.358x6

+ 0.969x2
3 + 0.184x2

6 − 1.898x2
2u+ 1.431x2

3u. (19)

It should be noted that, because of the random initial
conditions and different samples in the database, a differ-
ent approximation of the system may be obtained in any
learning procedure. Furthermore, considering the dimen-
sion of the system and the number of terms in the identified
system (19), the obtained value function includes many
terms of polynomials as expected. Therefore, for the sake
of brevity, the obtained optimal value function is omitted.

5. CONCLUSION

Considering the online model-based regulation problem,
the structured dynamics helped us in analytically com-
puting an iterative update rule to improve the optimal
value function according to the latest update on the iden-
tified system. Based on the computational complexity and
the performance observed in the numerical and graphical
simulations, we showed some potential opportunities in
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employing the SOL algorithm as an online model-based
learning technique. Our future research will follow on the
stability analysis and further applications of this approach.

Fig. 8. Responses of the double-inverted pendulum sys-
tem while learning by using the approximated state
derivatives.

Fig. 9. The value, components of P , and prediction error
corresponding to Fig. 8, respectively.

REFERENCES

Atkeson, C.G. and Santamaria, J.C. (1997). A comparison
of direct and model-based reinforcement learning. In
Proceedings of International Conference on Robotics and
Automation, volume 4, 3557–3564. IEEE.

Barto, A.G., Sutton, R.S., and Anderson, C.W. (1983).
Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE transactions on sys-
tems, man, and cybernetics, (5), 834–846.

Benosman, M. (2018). Model-based vs data-driven adap-
tive control: An overview. International Journal of
Adaptive Control and Signal Processing, 32(5), 753–776.

Bhasin, S., Kamalapurkar, R., Johnson, M., Vamvoudakis,
K.G., Lewis, F.L., and Dixon, W.E. (2013). A novel
actor–critic–identifier architecture for approximate opti-
mal control of uncertain nonlinear systems. Automatica,
49(1), 82–92.

Brunton, S.L., Proctor, J.L., and Kutz, J.N. (2016). Dis-
covering governing equations from data by sparse identi-
fication of nonlinear dynamical systems. Proceedings of
the National Academy of Sciences, 113(15), 3932–3937.

Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D.
(2017). Reinforcement learning and dynamic program-
ming using function approximators. CRC press.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. (2016). Benchmarking deep reinforcement
learning for continuous control. In International Con-
ference on Machine Learning, 1329–1338.

Kaiser, E., Kutz, J.N., and Brunton, S.L. (2018). Sparse
identification of nonlinear dynamics for model predictive
control in the low-data limit. Proceedings of the Royal
Society A, 474(2219), 20180335.

Kamalapurkar, R., Rosenfeld, J.A., and Dixon, W.E.
(2016a). Efficient model-based reinforcement learning
for approximate online optimal control. Automatica, 74,
247–258.

Kamalapurkar, R., Walters, P., and Dixon, W.E. (2016b).
Model-based reinforcement learning for approximate
optimal regulation. Automatica (Journal of IFAC),
64(C), 94–104.

Kamalapurkar, R., Walters, P., Rosenfeld, J., and Dixon,
W. (2018). Model-based reinforcement learning for ap-
proximate optimal control. In Reinforcement Learning
for Optimal Feedback Control, 99–148. Springer.

Kivinen, J., Smola, A.J., and Williamson, R.C. (2004).
Online learning with kernels. IEEE Transactions on
Signal Processing, 52(8), 2165–2176.

Lewis, F.L. and Vrabie, D. (2009). Reinforcement learning
and adaptive dynamic programming for feedback con-
trol. IEEE Circuits and Systems Magazine, 9(3), 32–50.

Modares, H., Lewis, F.L., and Naghibi-Sistani, M.B.
(2014). Integral reinforcement learning and experience
replay for adaptive optimal control of partially-unknown
constrained-input continuous-time systems. Automat-
ica, 50(1), 193–202.

Polydoros, A.S. and Nalpantidis, L. (2017). Survey of
model-based reinforcement learning: Applications on
robotics. Journal of Intelligent & Robotic Systems,
86(2), 153–173.

Powell, W.B. (2004). Handbook of learning and approxi-
mate dynamic programming, volume 2. John Wiley &
Sons.

Recht, B. (2019). A tour of reinforcement learning:
The view from continuous control. Annual Review of
Control, Robotics, and Autonomous Systems, 2, 253–
279.

Scherer, D., Dubois, P., and Sherwood, B. (2000).
Vpython: 3d interactive scientific graphics for students.
Computing in Science & Engineering, 2(5), 56–62.

Sutton, R.S. (1990). Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming. In Machine Learning Proceedings 1990,
216–224. Elsevier.

Vamvoudakis, K.G., Lewis, F.L., and Hudas, G.R. (2012).
Multi-agent differential graphical games: Online adap-
tive learning solution for synchronization with optimal-
ity. Automatica, 48(8), 1598–1611.

Van Vaerenbergh, S. and Santamaŕıa, I. (2014). Online
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