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Abstract: In this paper, the stability properties of a microgrid in closed-loop with local
inverters’ controllers and a droop power-sharing scheme are studied. The main result is the
formal statement that this system is asymptotically stable concerning the equilibrium point
that satisfies desired operating conditions. In contrast to the results reported in the literature,
neither the stability analysis of the inverter’s dynamics is omitted, nor is it assumed that the
only dynamic behavior is that corresponding to the droop scheme. The contribution exploits
the inclusion of a passivity–based control law for the inverters and the input–to–state stability
properties exhibited by the considered droop algorithm. The validity of the analysis is illustrated
via a numerical evaluation.
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1. INTRODUCTION

The benefit obtained by the inclusion of microgrids (MGs)
for electric power generation is a well-recognized fact. The
challenges that impose their proper operation, however,
still require the attention of the scientific community
(Rojas and Rousan [2017], Tuffner et al. [2018], Rajesh
et al. [2017]). The main objective of a MG is two–fold:
voltage regulation in all the nodes and fulfillment of the
demanded power by the loads. This task must be carried
out taking into account the intermittency of the available
energy, the necessity of conditioning the generated energy,
and the sensitivity of the devices involved to sudden
changes in the network operation, among other problems.

To deal with the problem, it is necessary to first locally
regulate the voltages and currents of the generation units
for later on implementing power-sharing algorithms that
consider the amount of power that each source can provide
(Agundis-Tinajero et al. [2019], Barklund et al. [2008]).
In fact, if each source is equipped with an inverter, the
local controls are conceived to divide the sources into two
types: grid–forming inverters, with the main objective of
regulating the voltages nodes and grid–following inverters,
that provide the maximum amount of power that they are
capable of generating (See Han et al. [2016], Pedrasa and
Spooner [2006]). Many solutions have been reported. The
most relevant are related to the use of classical propor-
tional integral (PI) techniques for the local controls and
the droop control for the power-sharing step (Han et al.
[2016], Rocabert et al. [2012], Lopes et al. [2006], Guerrero
et al. [2013]). In this context, the implementation of the
PI schemes is carried out without giving formal proof to
justify stability properties, while for the droop algorithm
(for example in Zhong and Hornik [2012]) several quite
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important analyses of its stability properties have been
provided, although all of them are stated without consid-
ering the dynamics of the local controls (Schiffer et al.
[2014], Simpson-Porco et al. [2013]).

In this paper, the stability study of a MG model that
explicitly includes both the inverter dynamic and the
droop algorithm is approached. The result considers the
design of the local controllers as a continuation of the work
developed by the authors in a series of publications (Avila-
Becerril et al. [2018, 2017]) and the droop control algo-
rithm reported in Konstantopoulos et al. [2015] because
the dynamic behavior of this version tends to the behavior
of the basic droop algorithm and exhibits some input–to–
state stability (ISS) properties that are fundamental in
obtaining the main contribution of the paper.

The system approached in this paper considers the exis-
tence of grid–forming and grid–following inverters. Thus,
a passivity-based control (PBC) scheme is proposed to
guarantee the regulation of the output voltage of the
grid–forming inverters, while the voltages and currents
of the grid–following devices are steered to values that
correspond to the maximum amount of power that can be
extracted from them. In addition, the grid–forming sources
are provided with the droop scheme which, depending on
the power demanded by the loads, generates the voltage
reference required to implement the local control law. In-
terestingly enough, the final structure of the controlled sys-
tem satisfies the practical requirements for using only local
variables measurements’. Concerning the formal mathe-
matical analysis, the Hamiltonian structure of the closed
loop is exploited in the analysis since it exhibits some
passivity and ISS properties that, in conjunction with the
ISS properties of the droop scheme, allow to establishing
asymptotic stability properties of the equilibrium point.

The rest of the paper is organized as follows: In Section 2
the model considered for the inverters is presented while
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the PBC design is included in Section 3. Section 4, is
devoted to introducing the structure of Droop control,
and the main result of the paper the stability proof for
the whole closed–loop system is stated in Section 5. The
numerical evaluation is contained in Section 6, and some
concluding remarks are presented in Section 7.

2. INVERTERS MODELING

Each distributed energy resource (DER) includes a DC
voltage (or current) source, power semiconductor devices,
and an LC filter for approximately obtaining a sinusoidal
output voltage. Since there are two types of DC sources, it
is convenient to split the set of inverters into two subsets,
i.e. N = N1 ∪ N2, such that N1 contains grid-forming
nodes and N2 corresponds to grid-following nodes.

Grid-forming inverters Consider a generic voltage–fed
inverter located at the i−th node of an MG, i.e. i ∈ N1,
represented in Fig. 1 where V0,i > 0 ∈ R, uν,i ∈ R is
the modulation (control) signal, while Lν,i, Cν,i are the
strictly positive parameters of the output filter. Each grid-
forming inverter is subject to a current demand denoted
by ILν,i. Denote the inverter’s output voltage by vν,i, the

+
−V0

Lν iν rL

Cν rC

+

−
V0uν

+

−
vν

ILν

Fig. 1. Voltage-fed inverter scheme

inductor’s current by iν,i and assume linear constitutive
relationships for both the inductor and the capacitor. If the
|N1| individual sources are piled up, then it is immediately
obtained that the dynamic model in compact form is given
by

Lν
d

dt
iν = −rLiν − vν + V0uν , (1a)

Cν
d

dt
vν = −r−1C vν + iν − ILν , (1b)

with the vectors iν = col{iν,i}, vν = col{vν,i}, uν =

col{uν,i}, ILν = col{ILν,i} ∈ R|N1|, the parameter ma-
trices Lν = diag{Lν,i}, Cv = diag{Cν,i}, rL = diag{rL,i},
rC = diag{rC,i} ∈ R|N1|×|N1|, and the matrix V0 =

diag{V0,i} ∈ R|N1|×|N1|. Moreover, by defining the state

xν := [i>ν v>ν ]> ∈ R2|N1| (2)

and by recognizing the total stored energy function for
these devices Wv : R2|N1| × R2|N1| → R≥0 as

Wv(xν) =
1

2
x>ν Pνxν , (3)

with Pν = diag{Lν , Cν} > 0, model (1) can then be
equivalently written as a Hamiltonian system of the form

Pν ẋν = (Jν −Rν)xν +Gνuν −
[

0

ILν

]
, (4)

where Rν = diag{rL, r−1C } > 0,

Jν =

[
0 −I
I 0

]
= −J>ν , and Gν =

[
V0
0

]
∈ R2|N1|×|N1|

Grid-following inverters A generic grid-following in-
verter located at the i−th node of a MG such that i ∈ N2,
is represented in Fig. 2 where I0,i > 0 ∈ R, uκ,i ∈ R is the
modulation (control) signal, while Lκ,i, CDC,i, rκL,i, and
rDC,i ∈ R are strictly positive parameters of the output
filter. Now consider |N2| current–fed inverters, denote the

rDC vDC

rκL
Lκ

I0 uκvDC

uκiκ

+

−

+

−
vL

Fig. 2. Current-fed inverter scheme

inverter’s output voltage by vL,i, the capacitor’s voltage in
the DC side by vDC,i, while iκ,i is the inductor’s current,
and linear inductors and capacitors, then the model in
vector notation is given by

Lκ
d

dt
iκ = −rκL

iκ + UκvDC − vL, (5a)

CDC
d

dt
vDC = −r−1DCvDC − Uκiκ + I0, (5b)

with the vectors iκ = col{iκ,i}, vDC = col{vDC,i} ∈ R|N2|,

the matrix Uκ = diag{uκ,i} ∈ R|N2|×|N2|, the parameter
matrices Lκ = diag{Lκ,i}, CDC = diag{CDC,i}, rκL

=

diag{rκL,i}, rDC = diag{rDC,i} ∈ R|N2|×|N2|, and the

vectors vL = col{vL,i}, I0 = col{I0,i} ∈ R|N2|. Define the
state

xκ := [i>κ v>DC ]> ∈ R2|N2| (6)

and the total stored energy function Wκ : R2|N2| ×
R2|N2| → R≥0 by

Wκ(xκ) =
1

2
x>κ Pκxκ, (7)

with the parameters matrix Pκ = diag{Lκ, CDC}. Thus,
model (5) can be equivalently written as a PCH system of
the form

Pκẋκ = (Jκ(Uκ)−Rκ)xκ + eκ, (8)

with Rκ = diag{rκL
, r−1DC} and the matrices

Jκ(Uκ) =

[
0 Uκ
−Uκ 0

]
= −J>κ (Uκ), and eκ =

[
−vL
I0

]
.

Remark 1. An important property enjoyed by the previous
model is that with an appropriate definition of the skew-
symmetric Ji, matrix Jκ(Uk) can be rewritten as

Jκ(Uk) =

|N2|∑

i=1

Jiuκ,i. (9)

As a consequence, model (8) can also be expressed as

Pκẋκ = −Rκxκ +Gκ(xκ)uk + eκ, (10)

with the control input uk = col{uκ,i} ∈ R|N2| and

Gκ(xκ) :=

[
J1xκ

... · · ·
...J|N2|xκ

]
∈2|N2|×|N2| . (11)

3. PASSIVITY–BASED CONTROLLER DESIGN

In this section, following the ideas reported in Cisneros
et al. [2015] and Avila-Becerril et al. [2018], we present
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the inverters’ controllers that steer the output currents
and voltages of the inverters to a desired state.

Before we formulate the control problem, we first identify
the admissible voltages and currents that the inverters are
able to follow. These trajectories x?ν := [i?>ν v?>ν ]> ∈
R2|N1| and x?κ := [i?>κ v?>DC ]> ∈ R2|N2| verify that

Pν ẋ
?
ν = (Jν −Rν)x?ν +Gνu

?
ν −

[
0
ILν

]
, (12a)

Pκẋ
?
κ = (Jκ(U?κ)−Rκ)x?κ + eκ, (12b)

for some u?ν , u?κ and for the measured current ILν as well
as the measured voltage vL.

It is important to notice that in the case of the grid-
forming inverters for a given u?ν the corresponding x?ν is
determined by the solution of (12a). Section 4 is dedicated
to obtaining u?ν . On the other hand, since the system (12b)
is related to the grid-following nodes, the output reference
currents i?κ are assumed known. Given i?κ, the i–th entry
of u?κ,i is given by

u?κ,i =
1

‖x?κ,i‖2
(
x?κ,i

)T
JTi
[
Pκ,iẋ

?
κ,i +Rκ,ix

?
κ,i −Qi

]
,

(13)
with

Ji =

[
0 1
−1 0

]
, Qi =

[
vL,i
I0,i

]
,

and v?DC,i obtained as the solution of

CDC,iv̇
?
DC,i = −

i?κ,i
v?DC,i

[
Lκ,ii̇

?
κ,i + rκ,ii

?
κ,i + vL,i

]

− r−1DC,iv?DC,i + I0i, (14)

considering v?DC,i(0) > 0.

Remark 2. Equations (13) and (14) are singularity-free,
and their solutions tend to a (in average) positive value
since its structure is equivalent to
1

2
CDC,iẇ = −i?κ,i

[
Lκ,ii̇

?
κ,i + rκ,ii

?
κ,i + vL,i

]
−r−1DC,iw+I0iw

1
2

where w = (v?DC,i)
2, avoiding any singular behavior as long

as v?DC,i(0) > 0. This can be proven following arguments

as those presented in Sandoval et al. [2012].

3.1 Inner Controllers

We now assume that the desired output currents and
voltages of the inverters are admissible trajectories that
fulfill the following:

A.1 The reference state x?ν corresponds to a given active
power load sharing among the grid-forming inverters.

A.2 An external controller provides the bounded reference
signal i?κ.

For presenting the controllers, we first introduce the error
variables x̃ν = xν − x?ν and x̃κ = xκ − x?κ. These variables
have a dynamic represented by

Pν ˙̃xν = (Jν −Rν)x̃ν +Gν ũν , (15a)

Pκ ˙̃xκ = (Jκ(Ũκ)−Rκ)x̃κ, (15b)

with ũν := uν − u?ν and Ũκ := Uκ − U?κ . The control
objective is formulated as to design control inputs uν and
uκ such that

lim
t→∞

x̃ν = 0, lim
t→∞

x̃κ = 0, (16)

guaranteeing internal stability.

Proposition 3. Consider the MG model (4)–(8) under
A.1-A.2 and assume the following:

A.3 The demanded current and voltage ILν and vL are
known bounded continuous functions.

A.4 The prescribed input voltage u?ν is a known bounded
function with bounded first derivative.

A.5 The reference v?ν is a known bounded function with
bounded first derivative.

A.6 All the inverters’ parameters are positive and known.
The input voltages V0 and currents I0 are also known.

Under these conditions, the control law given by

uν = V −10 (−Kpν ĩν +Kiνyν) + u?ν , (17a)

ẏν = −ĩν , (17b)

uκ = −KpκG
>
κ (x?κ)x̃κ +Kiκyκ + u?κ, (17c)

ẏκ = −G>κ (x?κ)x̃κ, (17d)

with u?ν and u?κ satisfying (12), and the gain matrices
Kpν ,Kiν ∈ R|N1|×|N1| > 0 and Kpκ,Kiκ ∈ R|N2|×|N2| > 0
achieve the control objective (16) guaranteeing internal
stability.

Proof. To prove the stability of the equilibrium x̃ν =
x̃κ = 0, we take the time derivative of

Hν(x̃ν , yν , x̃κ, yκ) =
1

2

(
x̃>ν Pν x̃ν + y>ν Kiνyν

+ x̃>κ Pκx̃κ + y>κKiκyκ
)

(18)

along the trajectories of the system (15) in closed-loop
with (17), which gives

Ḣν = −x̃>ν R̄ν x̃ν − x̃>κRκx̃κ − x̃>κGκ(x?κ)KpκG
>
κ (x?κ)x̃κ

≤ −λmin

{
R̄ν
}
‖x̃ν‖2 − λmin {Rκ} ‖x̃κ‖2

− λmin {Kpκ} ‖G>κ (x?κ)x̃ν‖2 < 0,

with R̄ν = diag{rL +Kpν , r
−1
C }. Finally, following similar

arguments to those of Cisneros et al. [2015], we can
conclude global asymptotic stability of x̃ν = x̃κ = 0.

For the grid-forming inverters, the internal stability comes
from A.4-A.5, and in Section 5 we will investigate this
issue. In the case of the grid-following inverters, we use
A.3, A.6, and input-to-state properties. For this, we take
the admissible trajectories x?κ := [i?>κ v?>DC ]> ∈ R2|N2|

solutions of (12b) and the Lyapunov function

Wκ(x?κ) =
1

2
x?>κ Pκx

?
κ, (19)

that has a time derivative along the trajectories (12b) as

Ẇκ = −x?>κ Rκx
?
κ + x?>κ eκ

≤ −(1− θκ)λmin{Rκ}‖x?κ‖2 (20)

∀ ‖x?κ‖ ≥
‖eκ‖

θκλmin{Rκ}
> 0,

for 0 ≤ θκ ≤ 1 and eκ defined in (8). Inequality (20)
implies that system (12b) is ISS such that

‖x?κ‖ ≤ γκ(‖eκ‖) + βκ. (21)

Finally, from A.3 and A.6, eκ ∈ L∞, which concludes the
proof.
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4. DROOP CONTROL

To ensure that Assumption A.1 is satisfied, it is necessary
to generate appropriate references. To solve this problem,
in this paper a droop control scheme is adopted.

Unlike the reported in the literature, we use a robust droop
control to generate the i−th voltage reference for the inner
controllers of the grid-forming nodes, which are denoted
by V0,iu

?
ν,i. We assume that these references are sinusoidal

with phase angle θν,i and amplitude
√

2Eν,i, i.e.,

V0,iu
?
ν,i =

√
2Eν,i sin(θν,i). (22)

In the next subsection, we introduce the robust droop
controller to generate the signal ydroop,i that provides the
magnitudes and angles of the sinusoidal references (22).

Inspired by Konstantopoulos et al. [2015], the robust droop
controller is implemented in the following form:

ydroop,i =
√

2Eizi, (23)

where the dynamics of the RMS voltage Ei and the phase
angle θi of the i− th inverters are given by[

Ėi
Ėqi

]
=

[
−RE φ̇i
−φ̇i −RE

] [
Ei
Eqi

]
, (24a)

[
żi
żqi

]
=

[
−Rz θ̇i
−θ̇i −Rz

] [
zi
zqi

]
, (24b)

where

φ̇i = (Ke(Eref − V ?i )− niQ?i ) c, (25a)

θ̇i = (ωref −miP
?
i ) , (25b)

RE = kE(E2
i + E2

qi − V 2
i ), (25c)

Rz = kz(z
2
i + z2qi − 1), (25d)

with Eref and ωref as the rated voltage and angular
frequency, respectively. Furthermore, c ∈ R is a positive
constant, while V ?i in (25a) represents the RMS output
voltage of the grid-forming inverters such that

V ?i :=

√
1

T

∫ t0+T

t0

v?
2

ν,idt.

Similarly, P ?i and Q?i are the active and reactive power
calculated as functions of (v?ν,i, i

?
ν,i). The control param-

eters Ke, ni and mi ∈ R are determined by the droop
ratio (Zhong and Hornik [2012]), while kE , kz, and Vi are
positive constants.

Finally, we get the reference of the inner controller by
matching (23) with (22). In Konstantopoulos et al. [2015]
it is proven that the solution of (24) converges to the so-
lution of the conventional robust droop controller (Zhong
and Hornik [2012]). This fact makes A.1 feasible.

5. CLOSED–LOOP STABILITY ANALYSIS

In this section the main result of the paper is presented:
the stability analysis of the whole closed–loop system
composed of the PBC introduced in Section 3 and the
droop control presented in Section 4. To this end, we first
establish ISS properties of the individual systems to then
establish that an interconnection as illustrated in Fig. 3
ensures ISS properties from ILν to x?ν . Specifically, we show
that if A.3 holds and we use the droop control to generate
V0u

?
ν , then the references x?ν remain bounded.

Droop Control

Σ : x?ν → V0u
?
ν

Voltage-fed
Σ?
ν : eν → x?ν

(i?ν , v
?
ν)

x?νx?νeν

V0u
?
ν

[
V0u

?
ν

0

]
+

[
0
ILν

] −

ISS

Fig. 3. Interconnection with droop control

Voltage-fed inverters We first consider the admissible
trajectories x?ν := [i?>ν v?>ν ]> ∈ R2n, which are solutions
of (12a) and the Lyapunov function Wν(x?ν)

Wν(x?ν) =
1

2
x?>ν Pνx

?
ν . (26)

Define

eν =

[
V0u

?
ν

−ILν

]
(27)

such that the time derivative of Wν along (12a) is

Ẇν = −x?>ν Rνx
?
ν + x?>ν eν

≤ −(1− θν)λmin{Rν}‖x?ν‖2 (28)

∀ ‖x?ν‖ ≥
‖eν‖

θνλmin{Rν}
> 0

and 0 ≤ θν ≤ 1. Inequality (28) implies that system (12a)
is input-to-state stable (Khalil [1996]) such that

‖x?ν‖ ≤ γν(‖eν‖) + βν , (29)

where

γν =

√
λmax{Pν}‖eν‖2

λmin{Pν} θ2ν λ2min{Rν}
.

Droop control First, notice that the droop controller (24)
has as an input a pair of currents and voltages as shown
in Fig. 3. This input is denoted by

edroop =

[
i?ν,i
v?ν,i

]
. (30)

According to Konstantopoulos et al. [2015], since Ei, Eqi
are bounded in [−Vi, Vi] and zi, zqi are bounded in [−1, 1]
for any input edroop, then

‖ydroop,i‖ =
√

2 ‖Eizi ‖ ≤ βdroop. (31)

The controller (24) is also finite gain L∞ stable with gain
γdroop = 0, since (31) holds true independently of the input
edroop.

Interconnection On the one hand, inequality (31) means
that for the grid-forming inverters the voltage V0u

?
ν in

(12a) can be bounded by

‖V0u?ν‖ ≤ βdroop. (32)
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Notice from (27) (see also Fig. 3) and the triangle inequal-
ity that

‖eν‖ ≤ ‖ILν‖+ βdroop. (33)

Using the ISS properties of the voltage-fed inverters, in
particular substitution of (33) in (29), gives

‖x?ν‖ ≤ βν + γν(‖ILν‖) + γνβdroop. (34)

Thus, the connection of Fig. 3 is L-stable.

6. NUMERICAL EVALUATION

To validate the stability, performance, and robustness of
the PBC operating together with the droop controller, we
use a single-phase MG of nine nodes presented in Fig. 4
and taken from (Sauer et al. [2017]). The figure shows
three grid-forming inverters controlled by (17), among
which the power consumption is distributed. The network
parameters are presented in Table 1.

+

−V01
Lr1

1 4

Cr1

CD

CA

+

−V02
Lr2

2 7

Cr2

CD

CA

+

−V03
Lr3

3 9

CD

CA

Rr8Lr8
5

Cr6

Load3

Rr9Lr9

6

Cr5 Load2

Rr6Lr6

Rr7Lr7

Rr4Lr4

Rr5Lr5

8

Cr4

Load1

Fig. 4. Single-phase MG with nine nodes, three sources
and three loads.

The generation units have the same parameters but we
assume that the units have different apparent power ca-
pacity. In this sense, each inverter is powered by V0,i =
400 V DC voltage source, and the power ratings are
S1 = 20 kV A, S2 = 10 kV A, and S3 = 5 kV A. The
filters’ inductors and capacitors are Lν,i = 2.35 mF and
Cν,i = 28 µF with parasitic resistances rL,i = 0.9 Ω and

rC,i = 100 MΩ, respectively. The droop coefficients are

ni =
KeEref

4Si
and mi =

ωref

10Si
, while Ke = 10, Eref =

127 VRMS and ωref = 2πfref with fref = 60 Hz. The
parameter kE = kz = 10 and c = Eqi/2.4E

2
ref , while the

controller’s gains are Kpν,i = 10 and kiν,i = 1.

With respect to the power references, the considered
profiles are shown in Fig. 5(a) for the grid–forming sources
and in Fig. 5(b) for the active power demanded by the
loads connected in nodes 5, 6 and 8. The variations in
these behaviors emulate the intermittent availability of the
generated power for the inverters with some changes in the
demand. In time t = 0 [s], a load of 6 [kW ] is connected
in node 8 and a load of 4 [kW ] in node 6. Finally, in time
t = 20 [s], a load of 10[kW ] is connected to node 5.

6.1 Simulation results

The numerical evaluation was performed in the Simulink
of MATLABTM with a Runge-Kutta variable step-size
integration method. During the first 20 [s], there is only
active power demand in nodes 6 and 8; in node 6 the
demand is 5 [kW ] and 7 [kW ] in node 8 such that the total
active power demanded is 12 [kW ]. The power capacities
of the grid-forming inverters satisfy that

S1 = 2S2 and S2 = 2S3.

Fig.5(a) shows the active power generated by the inverters.
Notice that the power of inverter 1 is twice the power
supplied by inverter 2 which in turn is twice the power
generated by inverter 3, putting in evidence the distribu-
tion of the load between the inverters.

In t = 20 [s] a load of 9 [kW ] is connect to node 5 and it
is observed that the distribution of load in the inverters is
satisfied, confirming the robustness of the proposed control
scheme. Fig. 6(a) shows the reference voltage Eref and
the output filter voltages of the inverters. Note that the
error in steady state between the reference voltage and
the voltages of the inverter, is less than 1.5%, while the
maximum error is less than 5% of the nominal value.

To complete the illustration of the stabilization properties
of the controller, the reference frequency fref and the
frequency of the inverters are shown in Fig.6(b). Notice
that the steady-state error of the frequency of the inverters
and the reference frequency are less than 0.03%.

7. CONCLUDING REMARKS

In this paper, it has been shown that the equilibrium point
that corresponds to a proper operation of an MG equipped
with local PBC controllers and a droop power-sharing
scheme is asymptotically stable. The analysis exploited the
ISS properties of the closed-loop Hamiltonian system and

Table 1. MG parameters

Element Value Element Value Element Value

Cr1 22 µF Lr1 152 µH Rr1 −
Cr2 30 µF Lr2 165 µH Rr2 −
Cr3 37 µF Lr3 155 µH Rr3 −
Cr4 23 µF Lr4 190 µH Rr4 0.85 Ω
Cr5 128 µF Lr5 267 µH Rr5 1.19 Ω
Cr6 31 µF Lr6 225 µH Rr6 0.1 Ω
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Fig. 6. Voltage and frequency behavior in the output of
the inverters.

later on the ISS properties enjoyed by the droop scheme
were considered for stating the aforementioned stability
result. The validity of the analysis was illustrated via a
numerical evaluation.
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