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Abstract: This paper considers the problem of identifying the linear portion of a Wiener system, for
the case of a known, but non-invertible non-linearity. It is well known that this scenario, common in
many practical applications, leads to NP-hard problems in the number of experiments. Thus, existing
techniques scale poorly and are typically limited to relatively few points. We show that this difficulty
can be circumvented by considering an algebraic motivated approach. Specifically, we show that it is
equivalent to identification of a switched linear system generated from the data. In turn, we can solve
this problem by recasting it as the problem of finding the vanishing ideal of an arrangement of subspaces,
a task that reduces to finding the null space of an embedded data matrix constructed from observed data.

Keywords: Wiener Systems Identification, Nonlinear Systems Identification, Factorization Based
Identification.

1. INTRODUCTION

Wiener systems, consisting of the cascade of a linear time
invariant (LTI) system and a static output nonlinearity are ubiq-
uitous in many application domains ranging from biomedical
(Da Silva et al., 2012; Song et al., 2015), chemical (Norquay
et al., 1998), mechanical (Khan and Vyas, 2001) and control
systems (Wigren, 1994), to communications and computer vi-
sion (Ayazoglu et al., 2010). In addition, they can provide (lo-
cal) approximations to more general nonlinear dynamics (Boyd
and Chua, 1985; Giri and Bai, 2010).

Given their importance, a large research effort has been devoted
during the past decade to identification of Wiener systems. Fre-
quency domain based methods have been proposed in Giri et al.
(2009); Bai (2003); Tan (2013); Giri et al. (2013). However,
these methods rely on a finite impulse response (FIR) approxi-
mation of the linear dynamics, or on a specially designed input
excitation. A potential difficulty here is that FIR models are
inefficient at representing inherently dynamic behavior such as
resonances. Alternative approaches include methods exploiting
specially designed inputs (Tiels and Schoukens, 2014; Zhang
et al., 2015; Ren and Li, 2015; De Angelis et al., 2017; Bottegal
et al., 2018). While these methods work well, it may not be
feasible to implement the required input signals in actual exper-
imental settings. Finally, set membership (or control oriented
identification) of Wiener systems has been addressed in Sznaier
et al. (2009) pursuing a risk-adjusted approach and in Ayazoglu
et al. (2010), recasting the problem into a polynomial optimiza-
tion form. However, the entailed computational complexity is
non-trivial. Yılmaz and Sznaier (2015) improves the time com-
plexity by considering a set inversion of the output data and
exploiting the properties of interval matrices to prune the set
of candidate points. While this approach results in substantial
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computational time reduction, its complexity grows exponen-
tially with the identification horizon, limiting its applicability
to relatively short experimental records.

Motivated by the difficulties noted above, in this paper we seek
to develop a computationally efficient, scalable algorithm for
identifying the linear portion of a Wiener system, in scenarios
where the non-linearity is known, but non-invertible. Note
that in many applications (e.g. biology) the nonlinearity is
dictated by the underlying physics and thus known. Additional
situations where this scenario arises include, among others,
cases where the data is collected using sensors insensitive to
sign such as power sensors, anemometers or pulse counters, and
reconstruction of the 3D geometry from 2D images (Ayazoglu
et al., 2010). It is worth noting that, as shown in Sznaier (2009),
identifying the linear portion of the Wiener system in cases
involving known even nonlinearities (and thus non-invertible),
is generically NP hard, so the scenario considered here is both
practically relevant and far from trivial.

The key observation motivating this paper is the fact that, for
the case considered here, the one-to-many set inversion of the
nonlinearity leads to a collection of points that belong to an
arrangement of subspaces, obtained by considering all possible
sign combinations of the parameters of the ARX model. This
observation allows for recasting the Wiener identification prob-
lem as the identification of the parameters of a switched ARX
system (where each of the subsystems corresponds to one sign
combination). In turn, exploiting the algebraic approach pro-
posed in Vidal et al. (2005) allows for finding the absolute value
of these parameters from the coefficients of the so called hybrid
decoupling polynomial, associated with the null space of an
embedded data matrix constructed directly from the observed
data. Once these values are available, the correct signs for the
internal variables can be determined by minimizing the residual
error over all sign combinations. Finally, a refined estimate of
the ARX model parameters can be obtained from the null space
of the Hankel matrix constructed from the estimated internal
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variables. An important point worth noting is that we explicitly
exploit the structure of the non-linearity and its inverse mapping
to mitigate the growth of the embedded data matrix (and hence
computational complexity) with the order of the system.

This paper is organized as follows. Section 2 introduces no-
tation, background results on the Generalized Principal Com-
ponent Analysis (GPCA) method, and formally states the ad-
dressed Wiener system identification problem. Section 3 shows
that it can be recast as a switched systems identification prob-
lem and solved via algebraic methods. The specific algorithm is
discussed in Section 4. Section 5 illustrates the effectiveness of
the proposed method as a stand-alone method and when com-
bined with existing methods to improve robustness to noise.
Section 6 provides concluding remarks and future directions.

2. PRELIMINARIES

2.1 Notation

Ai ith column of A.
Pn

d,h subspace of nth degree homogeneous
multivariate polynomials in d variables.

sn,d
.
=
(n+d−1

d

)
number of monomials of degree n in d
variables.

vn(x) Veronese map of degree n:
vn (x1 . . . xd)

.
=
[
xn

1 xn−1
1 x2 . . . xn

d

]T
Eµ(x) Expected value of x with respect to the

probability density function µ .
Hr,c

x Hankel matrix with c columns and r rows
associated with a vector sequence x, with
elements (Hx)i, j = xi+ j−1

◦ Hadamard product of matrices where
M = X◦Y has entries mi j = xi jyi j

2.2 Subspace Arrangements

In this section we briefly recall background results on algebraic
approaches to subspace clustering and switched systems identi-
fication (Ma et al., 2008; Ozay et al., 2010; Vidal et al., 2005).
Definition 1. The arrangement A (S) of a set of subspaces S =
{Si}n

i=1 ⊆ Rn is defined as:
A (S) .

= S1∪S2∪ . . .∪Sn (1)
Definition 2. The vanishing ideal I(A ) of a subspace arrange-
ment A ⊆ Rd is the set of all multivariate polynomials in d
variables that vanish on all points in A , that is:

I(A )
.
=
{

P ∈Pd : P(x) = 0 ∀x ∈A
}

(2)

The subset In(A )⊆ I(A ) formed by homogeneous polynomi-
als is known as nth degree homogeneous component of I(A ).
Definition 3. Given a set I of polynomials, Z (I), the zero set
of I is the set of all common roots, that is

Z (I) .
= {x ∈ Rd : P(x) = 0 for all P ∈ I} (3)

The following result shows that the arrangement A is com-
pletely characterized by its associated homogeneous ideal:
Lemma 1. (Lemma 2.8, Ma et al. (2008)). The subspace arrange-
ment A is the zero set of In(A ), e.g. A = Z [In(A )].

2.3 Algebraic Approach to Subspace Clustering

The results from the previous section form the basis of algebraic
based approaches for finding the normals, bi, i = 1, . . . ,n, to

the subspaces, Si, in an arrangement A . Rather than directly
estimating bi, these approaches seek to estimate first In from
data. Under mild conditions, In has dimension 1 (e.g. it is a
principal ideal) and the parameters of each subspace can then
be estimated from its generator, for instance via polynomial
differentiation. Since each point in A satisfies bT

i x = 0 for
some i, it follows (Vidal et al., 2005) that all points in the
arrangement A satisfy the hybrid decoupling constraint:

Pdc(x) =
n

∏
i=1

(bi
T x) .

= cn
T

νn(xt) = 0 (4)

where Pdc(x) is an nth order homogeneous polynomial in d
variables with coefficient vector cn, νn(.) is the Veronese map
of degree n .

= sn,d . Collecting all data into a matrix leads to:

Vncn
.
=
[

vT
n (x1), · · · ,vT

n (xNp)
]T cn = 0 (5)

Thus, cn, the coefficients of the generator of the ideal In(A ),
can be computed by simply finding a vector in the right
nullspace of Vn. The individual normals bi can be recovered
from cn either by factoring the associated polynomial into a
product of linear forms or through polynomial differentiation
(see Vidal et al. (2005) for details).

2.4 Problem Statement

The goal of this paper is to identify the parameters of the linear
time invariant (LTI) portion of a Wiener system of the form
shown in Fig. 1, from noisy experimental data, for the case
where the non-linearity is known. Specifically, we are interested
in solving the following problem:
Problem 1. Consider the SISO Wiener structure shown in Fig.
1 described by a model of the form:

xt =
na

∑
i=1

aixt−i +
nb

∑
i=0

biut−i

ŷt =z(xt) , yt = ŷt +ηt

(6)

where ut and yt denote the system’s input and measured output,
corrupted by additive noise η , and where F(.) is a known
static nonlinearity. Given upper bounds on na and nb, and N
input output pairs (ut ,yt), the goal is to estimate the parameters
r .
=
[
a1, . . . ,ana ,b0, . . .bnb

]
of the linear portion of the system.

In the sequel, we will make the following assumptions:

A.1 z : D −→R is a known, non-invertible even nonlinearity,
that is F(x) = F(−x).

A.2 Consider now the one–to–many inverse mapping of z
defined as

F (y) = {x | z(x) = y} (7)
and assume that, for each y, it has finitely many elements
ny. Let nmax

.
= supy∈F n(y) 1 . In the sequel, we will as-

sume that the input to the system operates in a region
where nmax = 2.

Assumption A.1 (known, even non-linearity), restricts classes
of problems that can be addressed by our framework. However,
as noted in the introduction, it holds in many scenarios of
practical interest ranging from biology to computer vision.
Further, the class of problems considered here are amongst the
most difficult Wiener systems identification problems: recall
that the results in Sznaier (2009) show that these problems are
NP hard in the number of experimental data points.
1 nmax can be considered a measure of the “severity” of non-invertibility for
the nonlinear block.
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ARX model z(·) ∑
ut xt yt

ηt

Fig. 1. General Wiener Identification Setup

Assumption A.2 leads to a simplification of the proposed ap-
proach. If it fails, some of the proposed ideas can still be used,
but at the price of a far more involved algorithm. Note that, in
most cases, the magnitude of the system input can be chosen so
that it operates in a region where the assumption holds.

3. REDUCING THE PROBLEM TO IDENTIFICATION OF
A SWITCHED SYSTEM

This section shows that Problem 1 can be reduced to identifying
a switched ARX model. While in principle this is also a gener-
ically NP hard problem, efficient relaxations whose complexity
is independent of the number of data points, can be obtained by
exploiting the approach discussed in §2.3. The key observation
motivating our approach is the fact that the elements of the
set F (y) belong to a subspace arrangement (defined by hyper-
planes whose coefficients are sign combinations of ai). Thus,
the absolute value of these coefficients can be obtained from
vanishing ideal of this arrangement, and used to determine the
correct signs of internal variables by minimizing the residual er-
ror over all sign combinations. Once these internal variables are
found, finding the ARX model coefficients reduces to a simple
LTI model identification. Before formalizing these ideas, below
is a simple example to illustrate the supporting intuition:

3.1 An Illustrative Example

Consider the following Wiener system composed of the cascade
of a first order LTI system and a square nonlinearity:

xt = axt−1 +b0ut +b1ut−1 = axt−1 +bT ut , yt = x2
t (8)

Since for a (noiseless) first order system it is enough to consider
two consecutive points to identify its dynamics, we consider the
following (block Hankel) data matrix:

X =

[
H|X |
Hu

]
=

 |x1| · · · |xn−1|
|x2| · · · |xn|
u2 · · · un
u1 · · · un−1

=


√

y1 · · ·
√

yn−1√
y2 · · ·

√
yn

u2 · · · un
u1 · · · un−1

 (9)

Next, form an extended data matrix Xext by considering all
possible 22 different sign combinations 2 of each column of X:

Xext =

[ · · · √yt−1 −
√

yt−1
√

yt−1 −
√

yt−1 · · ·
· · · √yt

√
yt −√yt −

√
yt · · ·

· · · ut ut ut ut · · ·

]
(10)

where ut = [ut , ut−1]
T . Note that each sign combination of the

actual intermediate signal indeed satisfies the same ARX model
with different coefficients. Hence, the columns of Xext ∈ R4

belong to the following arrangement of four subspaces

S1∪S2∪S3∪S4 = {x :(xt −axt−1−bT ut = 0)

∨ (xt +axt−1−bT ut = 0)

∨ (xt −axt−1 +bT ut = 0)

∨ (xt +axt−1 +bT ut = 0)}

(11)

It can be easily seen that the following homogeneous quadratic
polynomial generates the vanishing ideal of the arrangement:
2 Entries corresponding to ut are not ”unfolded” since these values are known.

p(xt ,xt−1,ut)
.
=

(x2
t − (axt−1)

2)2−2(bT u)2(x2
t +(axt−1)

2)+(bT u)4 (12)

and that c, the coefficient vector of this polynomial, satisfies
cT ν4(d) = 0, where ν4(d) denotes the Veronese map of degree
four in variables d .

= [xt , xt−1, ut , ut−1]. Thus, as discussed in
§2.3, c can be obtained by creating an embedded data matrix
V, by stacking Veronese maps corresponding to each time
instant, and finding a vector in its null space. The ARX model
paramaters can then be obtained, up to a sign, from elements of
c corresponding to the highest order monomials. Further, note
that (since the nonlinearity is even, with nmax = 2), p(.) contains
only even powers of the variables |xt−1| and |xt |. Thus, only the
14 monomials indicated in Table 1, out of sn,d

.
=
(n+(d−1)

n

)
=(7

4

)
= 35, have non-zero coefficients.

Table 1. Non zero monomials and corresponding
exponents for the simple example

Term# 1 2 3 4 5 6 7 8 9 10 11 12 13 14

|xt | 4 2 2 2 2 0 0 0 0 0 0 0 0 0
|xt−1| 0 2 0 0 0 4 2 2 2 0 0 0 0 0
ut−1 0 0 2 1 0 0 2 1 0 4 3 2 1 0
ut 0 0 0 1 2 0 0 1 2 0 1 2 3 4

It follows that a reduced embedded data matrix Vred(d) can
be constructed directly from the data matrix X, by considering
only the monomials listed in Table 1, resulting in a substantial
complexity reduction. As before, the ARX model parameters
(up to a sign) can be obtained from coefficients of a suitable
normalized vector in the null space of Vred .
Remark 1. In the case of impulse response experiments, the
variable bT u in (12) reduces to a single coefficient b0. Equiv-
alently, (12) can be replaced by a non-homogeneous 2nd order
polynomial in the variables |xt |2 = yt and |xt−1|2 = yt−1. Thus,
the coefficients of the ARX model can be identified from a
reduced data matrix created directly from the measured outputs.

3.2 Exploiting the Subspace Structure of Inverse Mappings of
an Even Nonlinear Function

Consider a trajectory of (6) corresponding to a given input and
define the regressor and model parameter vectors:

rt,LT I
.
= [−xt , ...,xt−na ,ut , ...,ut−nb ]

T

rt,NL
.
= [−yt , ...,yt−na ,ut , ...,ut−nb ]

T

= [z(−xt), ...,z(xt−na),ut , ...,ut−nb ]
T

pAR
.
= [1,a1, ...,ana ,b0, ...,bnb ]

T

(13)

Since pT
ARrt,LT I = 0 holds for all time instants, the correspond-

ing regressor rt,LT I lives in a subspace normal to pAR. Note
that we cannot construct rt,LT I directly from the observed data,
since the internal variables xt , ...,xt−na are not measurable.
However, each measured output yt provides a set of candidates
xt,i

.
= Fi(yt), i = 1, . . . ,nmax defined by the inverse mapping

set F (yi) as in (7). The number of all possible combinations
of the elements F (yt), · · · ,F (yt−na) is nmap

.
= nna+1

max = 2na+1.
Writing these nmap combinations in a matrix form leads to:

Rt =


F1(yt) · · · Fi0(yt) · · · Fnmax(yt)

...
...

...
F1(yt−na) · · · Fina (yt−na) · · · Fnmax(yt−na)

ut · · · ut · · · ut

 (14)
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where ut
.
= [ut , · · · ,ut−nb ]

T and Rt ∈ R(na+nb+2)×nmap . In the
noiseless case, the true combination matching rt,LT I corre-
sponds to one of the columns in Rt and hence lives in a subspace
defined by the normal vector pAR. Further, under Assumptions
A.1 and A.2 ( z(.) even and nmax = 2) the remaining columns
of Rt also live in subspaces whose normals are defined by
suitable permutations of the signs of PAR. Thus, at each time
instant t, the columns of the corresponding matrix Rt belong to
the union of nmap subspaces. In principle, the GPCA approach
discussed in §2.3 could be used to find the vanishing ideal of
the arrangement, that is polynomials of the form:

p(z) = cT
n vn(z) (15)

and such that
cT

n [vn(z1,1) · · ·vn(zt, j) · · ·vn(znmax,N)]
.
= cT

n Vn = 0 (16)

Here zt, j, vn(.) and Vn denote the jth column of Rt , the cor-
responding Veronese map of degree n in na +nb +2 variables,
and the embedded data matrix, respectively.

In this context, finding the coefficients cn simply reduces to
finding vectors in the null space of Vn. A potential difficulty
here stems from the size of Vn in (16), with s .

=
(nmap+na+nb+1

nmap

)
rows and N × nmap columns. As shown next, this difficulty
can be avoided by exploiting the symmetry of the problem.
Note that since the non-linearity is even, the polynomial (15)
contains only even powers of the variables Fi(yt). Hence the
elements of cn corresponding to monomials with odd powers of
variables are zero and corresponding columns can be eliminated
from Vn. Further, once these columns are eliminated, all rows
corresponding to a given matrix Rt become identical. It follows
that the non-zero elements of cn can be obtained by considering
a reduced embedded data matrix Vred containing only the
columns corresponding to even powers of the variables Fi(yt)
and N rows, each obtained from Veronese map of the first
column of the corresponding Rt . As shown in §3.1, this leads to
a substantial reduction in the number of columns/rows of Vn.

3.3 Handling noise

So far, we have considered the ideal case of noiseless data. In
order to show that the same approach extends to the case where
the data is corrupted by noise we introduce the following result:
Proposition 1. Given a vector random variable z with proba-
bilty distribution µ , consider the problem of finding a (normal-
ized) minimum variance polynomial of degree n, that is:

min
cn

Eµ [cT
n vn(z)]2 subject to ‖cn‖2 = 1

Then, the solution is given by:
c∗n = minimum singular vector of Mn

where Mn
.
= Eµ [vn(z)vn(z)T ].

Proof: Follows by noting that

Eµ [cT
n vn(z)]2 = Eµ [cT

n vn(z)vT
n (z)cn]

= cT
n Eµ [vn(z)vT

n (z)]cn = cT
n Mncn

Hence
c∗n = argmin

‖cn‖=1
cT

n Mncn = minimum singular vector of Mn. 2

Remark 2. Note that when the random variable z belongs to an
arrangement of n subspaces, each defined by its normal bi, then

p∗n(z) =
n

∏
i=1

(bT
i z) = cT

n vn(z) = 0

⇒ Eµ [cT
n vn(z)]2 = cT

n Mncn = 0
It follows that Mn is singular, with its null space spanned by
cn. The corresponding polynomial p∗ is precisely a generator
of the vanishing ideal of the subspace arrangement.

In the case of interest to this paper, when yt is corrupted by
noise, the true probability distribution of the pre-images Fi(yt)
is, in general, difficult to compute. Thus, we will replace µ and
its corresponding moments matrix by the empirical distribution:

Memp =
1
N

N

∑
i=1

vn(zi)vT
n (zi) =

1
N

VnVT
n

where Vn is precisely the embedded data matrix in (16), and
find a polynomial that has minimum variance with respect to
this empirical distribution. When applied to noisy data, this
approach can be thought of as finding the coefficients of the
polynomial that minimizes the expected value of the quadratic
fitting error to the associated subspaces arrangement.

4. PROPOSED ALGORITHM

The proposed algorithm, based on the ideas discussed in the
previous sections, has three main components:

(i) Forming a data matrix X for the internal variables xt
(ii) Forming a reduced embedded data matrix Vred from X

(iii) Estimating coefficients of the LTI block and its output

Algorithm 1 Wiener system identification
Require: Hankelized inverse mapping of the output signal

HF1(y), Hankelized input signal Hu, output order na, input
order nb, horizon length N

1: Forming a data matrix X for the internal variables xt
2: nmap← 2na+1 . number of possible inverse mappings
3: X←

[
HF1(y) Hu

]T
. Data matrix

4: Forming a reduced embedded data matrix Vred from X
5: ny← nmap/2 , dy← (na +1))
6: sny,dy+1←

(ny+(dy+1)−1
ny

)
. # of the polynomial p elements

7: Compute Vred,lumped ∈ Rsny ,dy+1×N−na−1 . Reduced
Veronese mapping in na +2 variables as represented by d̃

8: Vred ← Extended Vred,lumped . unfolds ũ in d̃
9: [U,S,V]← svd(VT

redVred)
10: cn← V(:,end) . Coefficients of polynomial p
11: Estimating coefficients of the LTI block and its output
12: (ĉabs)← (cn,i)

1
nmap . ĉabs ∈ Rna+nb+1 estimation of cabs

13: Sk← all possible sign combinations for x
14: ki = argmink |(S(cabs ◦Xi)k|
15: xsign,i← Ski(na +1) where i = 1, · · · ,Np,y
16: x̂← X(na +1)xsign,i . estimate of the internal variables
17: Hx̂←Hna+1,N−2×na−1

x̂ . Hankelize x̂
18: XLT I ← [Hx̂ Hu]

T
. Data matrix with estimated variables

19: [U,S,V]← svd(XLT IXT
LT I)

20: ĉARX← V(:,end)/V(na +1,end) . estimated ARX model

Forming the data matrix. The data matrix is formed as:

X =
[
HF1(y), Hu

]T
=
[
Hna+1,N−na−1

F1(y)
, Hnb+1,N−na−1

u

]T
(17)

Note that in here we consider, for each yt , one element of the
set F . As discussed in Section 3, the reduced embedded data
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matrix can be constructed by considering just the first column
of the matrices Rt . Thus, without loss of generality, we can take
this element to be the one corresponding to i = 1.

Forming the reduced embedded data matrix. As shown ear-
lier in §3, it suffices to consider a reduced embedded data matrix
containing only the columns corresponding to even powers of
variables F1(yt). This reduced matrix can be constructed by
generating monomials of a Veronese mapping of order nmap/2
in na +2 variables d̃ .

= [F 2
1 (yt), · · · , F 2

1 (yt−na), ũ], where the
effects of inputs are lumped in a single variable ũ .

= (bT ut)
2.

The reduced embedded data matrix Vred can then be obtained
by “unfolding” the elements of ũ, leading to a matrix whose
columns correspond to all monomials of degree n in the vari-
ables [F 2

1 (yt), · · · , F 2
1 (yt−na),ut , · · · ,ut−nb ]

Estimating the coefficients of the LTI block and its output.
Once the matrix Vred is available, the next step is to compute
the coefficients cn of the minimum variance polynomial p by
finding the singular vector of Vred associated with its minimum
singular value. The absolute values of ARX model parameters

can be estimated from |ai| = (cn,i)
1

nmap , where cn,i denotes the
element of cn associated with the monomial F

nmap
1 (yt−i), with a

similar expression for |bi|. To obtain the correct signs for these
coefficients, begin by writing the model (6) as:

−sign(xt)|xt |+
na

∑
i=1

sign(aixt−i)|aixt−i|+
nb

∑
j=0

sign(b j)|b j|ut− j = 0

(18)
Define cabs

.
= [|ana | · · · |a1| −1 |bnb | · · · |b0|]T and the matrix

S .
=
[
sg1 · · · sgnmap

]T
where nmap = nna+1

max , the first na + 1 elements of the vectors
sgi contain all possible sign combinations of ±1 and the last
nb elements are 1. Note that as discussed in §3.1, when the
input signal is an impulse, there is no need to generate the sign
combinations for entries corresponding to ut .

Let Xi denote the ith column of the data matrix X in (17) and
consider the vector r .

= S(cabs ◦Xi). In the noiseless case, since
at least one of the elements of the matrix S contains the correct
sign combination, from (18) it follows that there exist at least
one k such that rk, the corresponding entry of r, must be zero.
When k is unique, the corresponding row of S, sgk, indeed
contains the correct signs for elements bi and products (aixt−i).
Particularly, since a0 =−1, the sign of xt , for t ≥ na +1 can be
read directly from this vector. In degenerate cases where more
than one component of r is zero, the correct signs for xt can
be recovered by imposing consistency of signs in additional
columns of X. Once xt estimates are available, from the null
space of its Hankel matrix coefficients ai can be recovered .
In the noisy case where, generically, all elements rk 6= 0, we
propose to select the smallest (in absolute value) element, that
is:

ki = argmin
k
|[S(cabs ◦Xi)]k|

Optional: refining the model. As we will illustrate in §5 the
proposed algorithm successfully identifies the correct model in
scenarios where the noise level is low. However, as shown there,
performance tends to degrade quickly as the noise increases,
due to the lack of robustness of factorization based algebraic
methods. This difficulty can be circumvented by combining the
proposed method with Wiener identification methods that rely

on local optimization, such as the one implemented by MAT-
LAB nlhw(.) command. As shown below, using the proposed
method to provide an initial estimate to nlhw(.) results in both
improved performance and reduced computational time.

5. NUMERICAL EXPERIMENTS AND COMPARISONS

In order to illustrate the advantages of the proposed approach
we benchmarked our algorithm against Matlab’s nlhw(.) com-
mand and the approach recently introduced by Risuleo et al.
(2018) 3 , on the following system, taken from Hagenblad et al.
(2008); Tiels and Schoukens (2014):

xt =−0.3xt−1+0.3xt−2 +ut −0.3ut−1 +0.3ut−2

ŷt = x2
t , yt = ŷt +ηt

(19)

The above system was excited with a Gaussian random input
signal. The identification performance was tested under 40dB,
35dB, 30dB, 25dB and 20dB signal to noise ratio (SNR) values
and horizon length N = 600. The results from 100 random
runs are summarized in Table 2. Performance of the algorithms
was evaluated both in terms of Fitting Accuracy defined as 4

FA .
= (1− ‖ŷ−ỹ‖2

‖ŷ−mean(ŷ)‖2
), where ỹ is the estimated output of

the Wiener system, and parameter estimation error, defined as
PE .

= max‖cAR− c̃AR‖2. Note that since Risuleo et al. (2018) is
a semi-parametric method, it does not estimate the ARX model
parameters and thus the PE criteria is not applicable.

Table 2. Comparisons on Numerical Examples

SNR Method FA PE Time (secs)

Noiseless
W-SA 0.82 N/A 0.5660
nlhw only 0.60 0.5758 0.5801
proposed only 1 1.20e-14 0.0233
proposed&nlhw 0.98 0.0028 0.1894

40dB
W-SA 0.82 N/A 0.6325
nlhw only 0.59 0.6113 0.4981
proposed only 0.35 0.7571 0.0226
proposed&nlhw 0.98 0.0051 0.2000

35dB
W-SA 0.82 N/A 0.5417
nlhw only 0.57 0.6077 0.5734
proposed only 0.33 0.7765 0.0229
proposed&nlhw 0.97 0.0079 0.2225

30dB
W-SA 0.81 N/A 0.6219
nlhw only 0.55 0.5659 0.4761
proposed only 0.29 0.8011 0.0224
proposed&nlhw 0.96 0.0133 0.2001

25dB
W-SA 0.81 N/A 0.5332
nlhw only 0.60 0.5068 0.5331
proposed only 0.24 0.8384 0.0230
proposed&nlhw 0.93 0.0235 0.2262

20dB
W-SA 0.78 N/A 0.6271
nlhw only 0.41 0.6138 0.4788
proposed only 0.17 0.7103 0.0226
proposed&nlhw 0.88 0.0419 0.2043

As shown in Table 2, the proposed algorithm outperforms the
alternatives, both in accuracy and timing, in noiseless scenarios.
However, its performance quickly degrades as the noise level
increases. On the other hand, using the proposed method to
generate an initial estimate to nlhw, provided by MATLAB
System Identification Toolbox to identify Hammerstein-Wiener
systems, leads to both, substantial accuracy improvement and
reduction in the computational time, even for large noise values.
3 In order to have a fair comparison, explicit information about the nonlinearity
was used in all of the methods.
4 From this definition it follows that FA = 1 corresponds to a perfect fit.
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6. CONCLUSION

Wiener system identification problems arise in many domains
from control to biomedical applications. When the output non-
linearity is non-invertible, even if it is known, the problem
is computationally challenging (Sznaier, 2009). To circumvent
this difficulty, we propose a computationally tractable method,
based on an algebraic approach. The main idea is based on the
observation that the one-to-many inverse set mappings of the
output belong to an arrangement of subspaces, whose normals
are sign combinations of true model coefficients. This observa-
tion allows for recasting the problem into a switched systems
identification (or subspace clustering) form, where a polyno-
mial in the vanishing ideal of the arrangement is first found
from the null space of an embedded data matrix, and the model
coefficients are then recovered from this polynomial. While in
principle the size of the embedded data matrix scales combina-
torially with the system order, as shown in the paper, this growth
can be mitigated by exploiting the structure of the nonlinearity
inverse mapping. The proposed approach effectiveness was il-
lustrated on an example taken from the literature. As shown in
the paper, combining the proposed method with existing tools
leads to a substantial improvement in accuracy and computa-
tional time. Note that this combination was needed to robustify
the method, given the fragility of factorization based methods to
noise. Ongoing research seeks a more computationally efficient
approach to achieve robustness against noise by considering the
approach proposed in Sznaier and Camps (2018).
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