
  

Effect of Uncertainty in SOC Estimation on the Performance of Energy 

Management for HEVs 
 

Susenjit Ghosh*,1, Dhrupad Biswas*,2, DeshamMitra*,3, Somnath Sengupta**,4, 

Siddhartha Mukhopadhyay*,5 

*Electrical Engineering Department, Indian Institute of Technology Kharagpur, India **Advanced Technology Development 

Centre, Indian Institute of Technology Kharagpur,India e-mail:1susenjit@iitkgp.ac.in, 
2dhrupad@iitkgp.ac.in,3ddesham@iitkgp.ac.in, 4sengupta.s@atdc.iitkgp.ac.in, 5smukh@ee.iitkgp.ac.in 

Abstract: Existing energy management strategies of HEVs do not consider the inaccuracy of SOC 

estimation during optimal control formulation.  In this paper, the importance and effect of considering this 

discrepancy in SOC values are analyzed and a mathematical relationship has been established. A 

sensitivity-based approach is adopted to analyze the problem. Finally, it is demonstrated through theoretical 

justifications and realistic simulation results that without incorporation of this discrepancy, not only does 

this lead to exceeding safe boundary conditions for battery but it also substantially affects fuel 

economy/energy consumption. 
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1. INTRODUCTION 

Among the electrified vehicles, Hybrid Electric Vehicle 

(HEV) is one type of vehicle range extenders which reduces 

fuel consumption, emissions and overall energy consumption. 

To achieve these, all propulsion sources have to be operated at 

a specified range of operating points characterized by their 

torque-speed combinations. Therefore, along with other useful 

functionalities, the Supervisory Controller (SC) of an HEV 

implements optimal energy management based torque split 

strategy. On the other hand, rechargeable lithium-ion batteries 

are widely used in automotive because of their high energy 

density and low self-discharging capabilities. To ensure the 

safe and efficient operation of batteries, an onboard embedded 

platform named Battery Management System (BMS) is used. 

It is responsible for estimating battery State of Charge (SOC) 

and State of Health (SOH), balancing cell charges, identifying 

faults in the battery cells/packs etc. However, SOC estimation 

accuracy of an individual cell has a direct influence in cell 

balancing, SOH estimation, energy management, fault 

detection and isolation etc. which in turn affects the 

performance of other subsystems (like Engine Control Unit, 

Motor Control Unit, Transmission Control Unit etc.). The 

battery SOC estimation continuously deteriorates because of 

the degradation of battery cell parameters like a loss in battery 

capacity and increase in resistances which further leads to a 

reduction in battery energy and power density. This 

degradation of battery is captured using SOH. Several 

literatures (Vetter et al. (2005), Barré et al. (2013)) addresses 

this lithium-ion battery cell ageing issue. However, SOC 

estimation has a strong correlation with vehicle energy 

management strategy. The existing energy management 

strategies can generally be classified into two categories, 

namely heuristic strategies and optimization-based strategies. 

Heuristic strategies such as rule-based ones (Baumann et al. 

(2000)) use the boundary limits of SOC in the strategy 

whereas, optimization-based strategies use the absolute value 

of SOC along with its boundary limits during optimization. 

Some predictive strategies also use the battery dynamics in 

optimization. Offline optimization-based     strategies (e.g. 

Dynamic Programming, Scordia et al. (2005)) use the 

knowledge of past, present and future torque demands. In 

contrary to these, Equivalent Consumption Minimization 

Strategy (ECMS) (Paganelli et al. (2002)), Model Predictive 

Control (MPC) Borhan et al. (2011) are well-known online 

optimization-based torque split strategies. Estimating accurate 

SOC is a challenge for BMS, especially under high current 

operating conditions. An equivalent electrical model-based 

SOC estimation approach (Plett (2004)), is being widely used 

because of its closed-loop nature, which takes care of 

measurement noise and unmodeled dynamics. Model-based 

SOC estimation algorithms provide an expected SOC along 

with some standard deviation. However, all in the previous 

literatures related to the energy management of HEVs, it has 

been assumed that the estimation of battery SOC, is perfectly 

accurate. Whereas, the SOC estimation accuracy of BMS has 

significant influence in energy management performance and 

degradation of battery life. One such effect on the operation of 

battery and battery management system (BMS) had been 

studied in T. Lee et al. (2011). In this paper, the effect of 

inaccurate SOC estimation on energy management strategies 

is investigated and analysed with proper illustrative counter 

examples and its adverse consequences. Thereafter, realistic 

scenarios having valid extreme operating conditions which can 

lead to drastic SOC uncertainty which in turn has detrimental 

effects on the energy management performance, are explored. 

This paper has been organized into five sections. Section 2 

contains the description of the HEV architecture, dynamical 

models of vehicle and battery, the conventionally used 

Extended Kalman Filter (EKF) based battery SOC estimation 

strategy and ECMS. Section 3 theoretically analyses the effect 

of SOC estimation error on energy management. The 

simulation environment and results are shown in Section 4. 

Finally, the conclusion of the study is given in Section 5.  
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2. HEV MODEL AND ENERGY MANAGEMENT 

STRATEGY 

In this paper, the system having a parallel HEV of P1 

architecture is considered for implementation and analysis. 

The architecture of the same is depicted in Figure 1 (Biswas et 

al. (2018)), where Engine and Motor are rotating on the same 

shaft and connected via torque coupling. A brief description of 

models, BMS and energy management strategy are illustrated 

in the later part of this section. 

 

2.1 Description of Dynamical Models 

A control-oriented longitudinal dynamics model of the vehicle 

and a dynamical model of battery required for state estimation 

are derived in this section. All thermal phenomenas and 

transient dynamics in the powertrain are neglected. 

2.1.1. Vehicle Dynamical Model 

Vehicle longitudinal dynamics can be modelled using (1) 

(Onori et al. (2016)). 

 

sin
2

2
cos

;  /

and ( )

C A VDF ma mg mgn f l r g g

n wh n wh l wh

n
g g wh

r F V r

i
i


 

 


   



   

  

  

      (1) 

where, ‘m’ denotes the total vehicle mass, ρ is the air density, 

𝜇𝑟 is the rolling resistance, 𝜃𝑔 is the road gradient, 𝑟𝑤ℎ  is the 

radius of the wheel and κ(i) is the ith gear ratio. Similarly, 𝜏𝑔 

and 𝜔𝑔, used by energy management strategies are the torque 

and speed reflected to the propulsion side of powertrain, 

respectively. Desired vehicle longitudinal velocity, Vl can be 

obtained from the drive cycle.  

2.1.2. Battery Dynamical Model 

A LiFePO4 battery (Li(2013)) is considered for developing the 

equivalent electrical circuit model of an individual battery cell. 

An electric equivalent model of the battery cell is shown in 

Figure 2. The OCV–SOC characteristics of the average battery 

model (using charging and discharging models) is depicted in 

Figure 3. This characteristic is flat when the SOC value is in 

between 0.4 and 0.6. Whereas, the voltage reduces drastically 

after the SOC reduces below 0.2 and increases rapidly when 

the SOC value increases beyond 0.96. Similarly, from R0 – 

SOC characteristics (in Figure 4), it is observed that the 

internal resistance of cell increases when the SOC value 

reduces beyond 0.2. The state and output equations (Idaho, 

(2001)) for the electrical equivalent model of the battery pack, 

consisting of sn  number of cells connected in series, are given 

by (2).   
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Where I is the instantaneous current drawn from battery (in A). 

η is the couloumbic efficiency which is dependent on 

temperature T, Qc is the nominal capacity of battery, 
OCVV  is 

the open-circuit voltage (OCV) which is a function of SOC and 

T, R0 is the series internal resistance of each cell which is also 

a function of SOC, T and 𝑃𝑏𝑎𝑡𝑡  is the power delivered at the 

inverter terminal by the battery. 

 

 

2.2. Estimation of Battery SOC 

EKF based framework, (Plett (2004)), is used for SOC 

estimation. This algorithm compares the estimated battery 

voltage with load terminal voltage and uses this difference to 

adapt the state of the estimator in a closed loop. In each 

iteration, the system model, given in (2), is linearized about the 

current estimates after partially differentiating w.r.t SOC. It is  

 

then used to get system matrices which will be required to 

update Kalman gain and error covariance matrix. Euler’s 

method is used for discretization of system equations. The 

overall estimation scheme is shown in Figure 5. Here, battery 

pack voltage V (as measurement) and battery pack current I 

(as input) are sensed from the battery pack and fed to the 

estimator. Whereas, T is the temperature of the battery pack. 

The load considered in this paper is the traction motor 

connected the vehicle. 

Figure 1 Parallel HEV Configuration 
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2.3. HEV Energy Management Strategy 

 A parallel HEV operates on five different traction 

modes. In the engine only mode, the engine meets the net 

torque demand alone. On the other hand, motor meets the net 

torque demand in motor only mode. Whereas, in hybrid 

motoring mode, the net torque demand is jointly contributed 

by the engine and the motor. In hybrid generating mode, 

engine not only meets the net torque demand alone but also 

runs the motor as a generator to charge the battery. In 

regenerative braking mode, the motor runs as a generator to 

recover braking energy and store it in the battery. Therefore, 

an optimal Torque Split Ratio (TSR) is required to distribute 

the net torque demand (𝜏𝑛) among engine and motor. The 

relation of TSR with engine torque (𝜏𝑒) and motor torque (𝜏𝑚) 

is shown in (3). Various HEV operating modes based on the 

value of TSR are shown in Table 1. 
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Table 1 Working Modes of HEVs based on TSR value 

TSR Value Mode 

TSR=0 Motor Only Mode 

0<TSR<1 Hybrid Motoring Mode 

TSR=1 Engine Only mode 

TSR>1 Hybrid Generating Mode 

Among many optimal energy management strategies, ECMS, 

(Onori (2016)) is considered for this study. This strategy 

reduces the overall fuel consumption of the engine and fuel 

equivalent electrical power consumption of motor at each 

torque-speed demand. The overall optimization problem is 

given by (4) and (5). 
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Here, J(t) is the cost function of optimization representing the 

weighted overall instantaneous fuel consumption of the engine 

and fuel equivalent electrical power consumption of the motor 

and 𝜏𝑒(t) is the decision variable. Whereas, 𝜔𝑒  and 𝜔𝑚 are the 

engine speed and motor speed respectively. Similarly, 𝜂𝑒 and 

𝜂𝑚 are the engine and motor efficiency respectively. The 

equivalence factor or penalty factor 𝑆(·), which is a function 

of SOC, is updated in run-time. This updation can be done by 

taking input of current SOC, vehicle coordinates, the health 

status of different subsystems etc. It can also vary with driving 

conditions. Without such updates, the optimization will run in 

open loop. Torque split ratio, given by (6) is the outcome of 

this algorithm. The overall instantaneous power consumption 

of the vehicle utilizing this strategy at a particular TSR is given 

by (7). A general framework of ECMS implementation is 

depicted in Figure 6. One approach to update the parameter S 

(Onori (2016)) is included in the highlighted section of Figure 

6 and the same is computed using (8).  
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Here, 𝑆∗ and 𝐾𝐼 are tunable constants. The advantage of this 

strategy is that it is real-time implementable which a dynamic 

programming based strategy may not guarantee. However, it 

provides a suboptimal solution as compared to corresponding 

dynamic programming based implementation. 

3. THEORETICAL ANALYSIS OF ECMS WITH SOC 

ESTIMATION UNCERTAINTY 

In this section, the importance of the accuracy of SOC 

estimation on energy management is analysed. For that, a real-

time implementable ECMS algorithm is considered.  
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This literature targets to analyse the strategy using the 

sensitivity of the cost function to change in SOC. Total energy 

consumption and battery health degradation are two major 

aspects of this study. Therefore, the cost function’s sensitivity 

to the variation of SOC is given by (9). For a fixed 𝑚̇𝑏𝑎𝑡𝑡, the 

variation of sensitivity to various operating SOC at different t 

is plotted in Figure 7. It is evident from Figure 7, that the 

sensitivity increases when SOC approaches towards the 

boundary limits. This increase in sensitivity together with 

uncertainty in SOC estimation results into a substantial change 

in cost function (can be seen from Figure 8). Therefore, at the 

boundaries, inaccuracy in SOC estimation will result in a 

substantial change in the solution of the optimization problem. 

This further results in the wrong optimal TSR. 
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Battery SOC will reach to the boundary limits in some realistic 

high load driving conditions like road gradient, hilly regions, 

highway driving etc. Whereas, the possible factors of 

inaccuracy in SOC estimation are cell capacity degradation 

and internal resistance increment. These will occur due to 

ageing and temperature effects. The estimation provided by the 

estimator becomes inaccurate as the estimator is ignorant 

about those changes. Thereafter, the uncertainty in SOC 

estimation results in a change in equivalence factor which in 

turn results in a corresponding change in cost function J. The 

modified cost function 𝐽𝑡 is given by (10). Further, this leads 

to the change in the minimization argument 𝜏𝑒
𝑡  of the new 

optimization problem which uses the modified cost function. 

As the minimizing argument changes, the overall torque split 

ratio given by (12), also changes. This new solved TSR is fed 

as torque commands to the engine and motor. Finally, it results 

in a change in the instantaneous power of the strategy (given 

by (14)). Hence, the optimal command receives by motor and 

engine is different from the actual optimal operating points of 

those, thereby the overall equivalent fuel consumption changes 

from optimal one. As a whole, it may result in poor fuel 

economy for the vehicle. 

       

     

,f battJ t m t S SOC SOC t m t

J t J t J t





    

  
       (10) 

         *
,=argmin     

e

e m n eJt t t t t   



            (11) 

 
 

 
     

*
* * *,  -

e

n

t
TSR t TSR t TSR t TSR t

t


 


          (12) 

 
   

 
   

( )
*

* *
*

* *, ( , )m

e m

sign
e e LHV m m LHV

m

e m

e m

t t t t

H H

P t
 


 


 

   

     


 

 

         (13) 

     * *P t P t P t             (14) 

Another adverse effect of this algorithm due to inaccuracy of 

SOC estimation is on the state of health of the battery. Because 

of wrong SOC estimation of battery, energy management 

strategy operates the battery in such a manner that the 

estimated SOC stays within boundary. However, the actual 

battery SOC might exceed the boundaries. Therefore, the 

voltage at the terminal may increase/ decrease at a faster rate 

because of its OCV–SOC nature, shown in Figure 3. This type 

of behaviour accelerates the loss of battery capacity. A large 

number of charge-discharge cycles also results in faster 

degradation of the battery. 

4.  RESULTS AND ANALYSIS 

A validated HEV model of HONDA INSIGHT(Markel et al. 

(2002)), in ADVISOR (NREL, 2001), is considered for the 

simulation. All the necessary model parameters, used for the 

simulation work presented in this paper, are given in Table 2. 

Table 2 Used Vehicle Parameters 

Engine peak power 50 kW at 5700 rpm 

Engine peak torque 89.5 Nm at 4800 rpm 

Motor power 10 kW at 3000 rpm 

Peak torque of motor + engine assist 123.4 Nm 

Pack voltage & Number of Cells 160 V & 48 

Battery rated capacity 7.035Ah at 250 C 

The battery of the HEV model is replaced using a LiFePO4 

battery of specifications given in Table 2. The OCV–SOC and 

R0–SOC characteristics of the battery is shown in Figure 3 and 

Figure 4, respectively. The initial state of the EKF based SOC 

estimator is chosen as 0.7 and the value of Q (Process error 

covariance) and R (Measurement error covariance) matrices 

are selected as 10−6 and 1 respectively. However, the true 

value of SOC is obtained using Coulomb counting with initial 

SOC 0.6. The minimum and maximum permissible limits of 

SOC is taken as 0.2 and 0.8, respectively. To study the effect 

of inaccurate SOC estimation on energy management, the 

actual battery capacity is degraded to 90% of its nominal value 

and the internal resistance of the battery is increased by 5%. 

At this SOH, the conventional estimator uses the parameters 

and characteristics of the healthy battery model. This study is 

performed in a standard EUDC drive cycle.  

Figure 9 shows the results generated using the ECMS 

algorithm as an energy management strategy which takes the 

estimated SOC as an input. In the figure, “*” in superscript 

denotes that the result corresponds to energy management 

strategy when the BMS has not updated its model parameters 

based on SOH. In the later part of the discussion in this paper, 

it is denoted as a conventional method and the other one which 

updates the battery model based on SOH is denoted as an ideal 

method. 

It can be observed from the first subplot that the actual 

drivecyle is perfectly following the desired one which 

confirms drivability. From the second subplot, it is evident that 

the TSR still decreases at low SOC region because of wrong 

SOC estimation, using the conventional method. And it results 

in a further decrease in SOC. Whereas, in the ideal method, the 

TSR value starts increasing in low SOC regions and prevents 

the actual battery SOC to cross the boundary limits. Thereafter, 

the actual SOC decreases much faster than its estimated one in 

low SOC region using the conventional method (from the third 

subplot). It can be attributed to two causes. One is the slower 

rate of decrement of SOC in the estimator model (given by (2)) 

compared to the actual battery model. Another is the increase 

Figure 7 Sensitivity vs SOC 

Figure 8 Change in Cost Function Vs Change 

in SOC and Sensitivity 
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in resistance of the actual battery at low SOC region (from 

Figure 4) which results in a high drop in terminal voltage. 

Whereas, the ideal method (in fourth subplot) is able to meet 

the SOC boundary constraints properly by using the accurate 

SOC information from BMS with actual degradation model of 

battery. It also helps to use the battery efficiently. The fifth 

subplot establishes the fact that the sensitivity of the cost 

function increases at low SOC region in both cases. This is due 

to the nature of cost function and is explained in Section 3. 

However, current demand at low SOC region demanded by the 

supervisory controller is more for the conventional method 

(from the sixth subplot) due to inaccurate SOC information. 

Finally, high sensitivity at low SOC region, together with high 

current demand and faster decrement of actual SOC lead to a 

high change in cost function near low SOC region, using the 

conventional method. It can be seen from the seventh subplot 

of Figure 9. It also supports the theoretical justifications 

explained in Section 3. As a whole, the fuel consumption is 

also more using the conventional approach as compared to the 

ideal method (evident from the eighth subplot). 

 
The effect of change in TSR (ΔTSR(t)) due to the change in 

cost function (ΔJ(t)) at different cost function value obtained 

using true SOC (J(t)) is shown in Figure 10. It can be seen that 

the change in TSR is influenced much at higher values of ΔJ(t) 

and J(t). High J(t) is due to high torque demand and high value 

of ΔJ(t) occurs at low SOC region with the presence of SOC 

uncertainty (explained in Section 3). Therefore, there is a huge 

deviation of optimal TSRs in low SOC regions in the presence 

of SOC uncertainty. 

 
Similarly, Figure 11 depicts the change in total input power 

delivered (ΔP(t)) to change in TSR (ΔTSR(t)) at different cost 

function values obtained using true SOC (J(t)). The 

instantaneous input power change is substantially high in 

conventional method compared to the ideal one when the 

change in TSR is high. And from the previous paragraph, it is 

clear that high torque demand at low SOC region will lead to 

deviation in optimal TSRs under SOC uncertainty. This new 

TSRs finally result in a deviation of optimal operating point 

selection for engine and motor which finally leads to a change 

in instantaneous power consumption. It is also evident that this 

effect is more at higher values of J(t) or at high torque demand 

regions. 

Table 3 Summary of Total Energy Consumption on the 

Different SOH States under Different Drive Cycles 

DC 
SOH 

Qc 100% 

R0 100% 

Qc 90% 

R0 105% 

Qc 85% 

R0 107.5% 

Parameter ECMS  
*ECMS  ECMS  

*ECMS  
ECMS  

E 

U 

D 

C 

Total 

Energy 
5084.7 kJ 

5531.3 

kJ 

5203.7 

kJ 

5624.8 

kJ 

5258.4 

kJ 

a
SOC  0.011 0.0534 0.0013 0.1046 0.0014 

SOC


  0.0038 0.2209 0.0014 0.4007 0.0047 

criticalT  0% 21.45% 0% 23.69% 0.5% 

U 

D 

D 

S 

Total 

Energy 
9410.6 kJ 

10796 

kJ 

9621.7 

kJ 

10990 

kJ 

9698.7 

kJ 

a
SOC  0.00077 0.2097 0.00088 0.2292 

0.0008

8 

SOC


  0.0045 0.4821 0.0041 0.5095 0.0044 

criticalT  0% 46.13% 0% 49.27% 0% 

A qualitative summary of different performance parameters 

under different SOH is shown in Table 3. The initial SOC for 

each case is taken as 0.6. Let, ΔSOC=|Actual SOC – Estimated 

SOC|, |𝛥𝑆𝑂𝐶|𝑎 is the average of ΔSOC, ||𝛥𝑆𝑂𝐶||∞  𝑖s the 

maximum value of  ΔSOC and 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 is the percentage of the 

time, the actual SOC is not within its permissible boundary 

limits. 𝐸𝐶𝑀𝑆𝑡 denotes an ECMS based energy management 

Figure 9 Effect of 10% Capacity Fade and 5% Internal Resistance 

Increment on Energy Management 

Figure 10 Effect on Change in TSR due to Change in Cost 

Function at Different Cost Function Value 

Figure 11 Effect on Change due to Total Input Power 

Change at Different Cost Function Value 
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strategy when the BMS has updated its model parameters 

based on its SOH. Drive Cycle is abbreviated as DC in Table 

3. From Table 3, it is evident that both |𝛥𝑆𝑂𝐶|𝑎 and 

||𝛥𝑆𝑂𝐶||∞ are high in all drive cycles when the BMS is 

ignorant about SOH and normal ECMS is used as an energy 

management strategy. The total energy consumption during 

that increases substantially in all drive cycles. Similarly, it can 

also be seen from the table that true SOC of the battery remains 

outside its boundary limits for a significant percentage of the 

time. This will further reduce the battery SOH. On the other 

hand, it can also be observerd from the table that the total 

energy consumption can be reduced if the energy management 

strategy will be provided with the accurate SOC estimation 

values. From this quantitative analysis, it can also be 

concluded that the above-mentioned effects are more when 

SOH values deteriorate further. 

Table 4 Effect of Constant SOC error in Energy Management 

SOC error = Actual 

SOC – Estimated SOC 

Change in Total Energy 

Consumption w.r.t Actual 

- 0.05 + 2.98 % 

-0.1 + 6.11 % 

-0.15 + 9.27 % 

-0.20 + 11.7 % 

Additionally, the effect of constant minimum SOC estimation 

error on the total energy consumption has been studied. The 

results are generated at a drive cycle with constant velocity of 

60 km/h (CYC_CONSTANT_45 drive cycle in ADVISOR) 

and tabulated in Table 4. It is observed from Table 4 that the 

total energy consumption increses significantly with the 

increase in SOC estimation error. This is because of the 

selection of wrong optimal TSR by the supervisory controller.  

5. CONCLUSION 

In this paper, effect of SOC estimation error due to various 

factors like degradation of battery capacity and increment of 

internal resistance on energy management performance of 

HEV as well as battery health was analysed. A sensitivity-

based approach was taken to theoretically analyse the effect of 

change in SOC on various performance parameters like change 

in TSR, total input power to motor and engine, fuel 

consumption and total energy consumption. Simulation results 

confirmed that due to the uncertainty in SOC, not only the TSR 

and total input power changes by a substantial amount but also 

total energy consumption increases, irrespective of drive 

cycles. Apart from that, it was also shown that battery health 

would degrade further if the battery is forced to operate beyond 

safe operating limits for a significant amount of time. 

Therefore, the estimation of the equivalence factor in ECMS 

becomes a challenge under SOC uncertainty. This SOC 

uncertainty will also have a significant impact on prediction 

based energy management strategies like MPC. Future works 

may attempt to mitigate this effect either by developing a more 

robust energy management strategy .or include an additional 

SOH model of battery in the estimator to reduce the 

uncertainty of SOC estimation. 
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