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∗Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP
UMR 5007, 43 boulevard du 11 novembre 1918, F–69100,

Villeurbanne, France (e–mail:bernhard.maschke@univ-lyon1.fr)
∗∗ Bernoulli Institute for Mathematics, Computer Science and AI,

University of Groningen, the Netherlands
(e-mail: a.j.van.der.schaft@rug.nl)

Abstract: Recently Port Hamiltonian systems have been extended to encompass an implicit
definition of the energy function of the system, by defining it in terms of a Lagrangian
submanifold. In this paper, we extend the definition of Port Hamiltonian systems defined
with respect to Lagrangian submanifold to a class of infinite-dimensional systems where the
Lagrangian submanifold is defined by first-order differential operators. We show that this adds
some port boundary variables and derive the energy balance equation. This construction is
illustrated on the model of a flexible nanorod made of composite material.
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1. INTRODUCTION

Boundary Port Hamiltonian systems have been introduced
as an extension of Hamiltonian systems of conservations
laws to open systems admitting energy flow through their
boundary by [van der Schaft and Maschke 2002, Duindam
et al. 2009, chap.4]. The extension consists in defining
a Boundary Port Hamiltonian system on a Dirac struc-
ture, called Stokes-Dirac structure and derived from an
Hamiltonian differential operator, and encompassing pairs
of conjugated external variables, called port variables.
Thereby the Port Hamiltonian System is defined in an
implicit way, using an image representation of the Dirac
structure.

However, recently it has been suggested that Port Hamil-
tonian systems and their implicit representation, could be
related to descriptor systems [Beattie et al. 2018]. One
motivation for using descriptor representations, is that the
energy function is not determined in the energy variables
but in the coenergy variables, another motivation is that
certain constitutive relations are non-local; for instance
the elasticity relation are defined by an integral relation
[Heidari and Zwart 2019]. This has led to a generalization
of the definition of Port Hamiltonian systems with the
more geometric perspective that the energy is no more
defined by a function but rather by a Lagrangian subman-
ifold [van der Schaft and Maschke 2018a, 2020] following
a usual approach in Hamiltonian dynamics [Abraham and
Marsden 1987]. Note that a similar perspective has been
suggested for open Irreversible Thermodynamic systems
where the state space is defined as a Legendre submanifold
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of the Thermodynamic Phase Space [Eberard et al. 2007,
Favache et al. 2009, 2010, Ramirez et al. 2013b,a, van der
Schaft and Maschke 2018c,b].

In this paper, we shall extend the definition of Port
Hamiltonian systems defined on Lagrangian submanifolds
from finite-dimension [van der Schaft and Maschke 2018a]
to infinite-dimensional systems and introduce boundary
port variables associated with the differential operators
defining the Lagrangian submanifold. However, as a first
step towards a general definition, we shall restrict the
paper to the class of linear Hamiltonian systems defined
on a 1-dimensional spatial domain.

2. BOUNDARY PORT HAMILTONIAN SYSTEMS

In this section, we shall recall the definition of Stokes-
Dirac structure associated with differential Hamiltonian
matrix operators of order 1 [Le Gorrec et al. 2005, Jacob
and Zwart 2012] and the definition of boundary Port
Hamiltonian systems defined on this structure.

2.1 Dirac structures associated with first-order Hamiltonian
matrix operators

We first recall the definition of Dirac structures defined
on vector spaces. Let F and E be two real vector spaces
and assume that they are endowed with a non degenerated
bilinear form, called pairing and denoted by:

〈.| .〉 : F × E → R
(f, e) 7→ 〈e| f〉 (1)

On the product space, called bond space:

B = F × E
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the bilinear product leads to the definition of a symmetric
bilinear form, called plus pairing as follows:

� ·, · �: B × B → R
((f1, e1) , (f,2 e2)) 7→ � (f1, e1), (f2, e2)�

:= 〈e1| f2〉+ 〈e2| f1〉
(2)

Definition 1. A Dirac structure is a linear subspace D ⊂ B
such that D = D⊥, with ⊥ denoting the orthogonal
complement with respect to the bilinear form �,�.

Let us recall the definition of Stokes-Dirac structures asso-
ciated with first-order Hamiltonian differential operators

J =
∂

∂z
J1 + J0 (3)

where J1 ∈ Rn×n is symmetric and J0 ∈ Rn×n is skew-
symmetric and the 1-dimensional spatial domain is the
interval defined Z = [a, b], a, b ∈ R and a < b .

Note that these operators naturally arize in models of
physical systems, written in the form of systems of balance
equations [van der Schaft and Maschke 2002, Maschke and
van der Schaft 2005, Baaiu et al. 2009] and appear also
in models of mechanical systems such as the Timoshenko
beam model [Le Gorrec et al. 2005, Macchelli and Maschke
2009] and the formulation of fluid models [Hamroun et al.
2006].

Proposition 2. [Villegas 2007, p.156] Consider the flow
space F = L2 (a, b, Rn) × Rn and the effort space being
is its dual E = F∗ ∼ L2 (a, b, Rn)× Rn . The bond space
B = F × E is equipped with the symmetric pairing〈(

f1, f1∂ , e
1, e1∂

)
,
(
f2, f2∂ , e

2, e2∂
)〉

+
=〈

f1, e2
〉
L2

+
〈
f2, e1

〉
L2
−
〈
f1∂ , e

2
∂

〉
Rn −

〈
f2∂ , e

1
∂

〉
Rn

where
(
f i, f i∂ , e

i, ei∂
)
∈ B i ∈ {1, 2} and 〈, 〉L2

denotes

the Hilbert space inner product and 〈, 〉Rn the Euclidean
inner product.
For any Hamiltonian operator J defined in (3) with k =
rank J1, there exist a symmetric matrix S1 ∈ Rk×k and
a full-rank matrix M ∈ Rk×n , defining reduced effort
variables ẽ = Me , such that the vector subspace

DJ =


 f
f∂
e
e∂

 ∈ B
∣∣∣∣∣∣∣ e ∈ H1 (a, b, Rn) ,

f = J e,
(
f∂
e∂

)
=

(
S1 −S1

Ik Ik

)
tr (M e)

}
(4)

is a Dirac structure in B , called Stokes-Dirac structure
associated with the operator .

Note that when the matrix J1 is full-rank, then M = In
and S1 = J1 [Le Gorrec et al. 2005] but the general case
is treated in [Villegas 2007, p.156] where the expression of
S1 and M may be found.

2.2 Boundary Port Hamiltonian System

Using these Dirac structures, one defines models of open
conservative physical systems including port variables (i.e.
interface variables with the environment) as port Hamil-
tonian systems [van der Schaft and Maschke 2002]. In
the sequel, we recall their definition in the particular case

when the energy is a quadratic functional and with Stokes-
Dirac structure (4) associated with first-order Hamiltonian
differential operators.

Definition 3. [Linear First Order Boundary Port Hamil-
tonian System] The Boundary Port Hamiltonian System
on the state space X = L2 (a, b, Rn) generated by the
functional

H [x] =

∫ b

a

1

2
x (z)

>Qx (z) dz (5)

where Q ∈ L1 (a, b, Rn×n) is a positive symmetric real-
valued matrix operator, is defined by

∂x

∂t
f∂
Qx (z)
e∂

 ∈ DJ
These Boundary Port Hamiltonian systems have proven
to posses remarkable properties and to lead to passivity-
based control of distributed parameter systems controlled
through their boundary [Jacob and Zwart 2012].

Example 4. Example of the vibrating rod

Let us briefly recall the model of an elastic body as a
Boundary Port Hamiltonian System, following [van der
Schaft and Maschke 2002, Maschke and van der Schaft
2005]. Denote the displacement of the elastic body by
u(t, z), the velocity by v(t, z) = ∂

∂tu(t, z), the strain

ε(t, z) = ∂u
∂z (t, z) and the momentum density p(t, z) =

(ρA) v(t, z) where (ρA) denotes the lineic mass density
(product of the section A and the the mass density ρ).
The total energy of the system is given by the Hamiltonian
functional

H0 (u, ε, p) = Ug (u) + Uel (ε) +K(p)

with the kinetic energy

K(p) =

∫ b

a

1

2

1

(ρA (z))
p2 dz (6)

Ug (u) being a potential energy depending on the displace-
ment (e.g. the gravity force: ρA (z) g or here for simplicity

some linear elasticity Ug (u) =
∫ b
a

1
2 k (z) u (z) dz ) and

Uel (ε) being the structural elastic energy density

Uel(ε) =

∫ b

a

1

2
T (z) ε (z)

2
dz (7)

where T (z) denotes the elasticity modulus. The coenergy
variables are then the position-dependent potential force:
k (z) u (z), the structural elastic force corresponding to
the elasticity law: T (z) ε (z) and the velocity: p

(ρA(z)) . The

dynamics of the elastic rod may then be formulated as
a Boundary Port Hamiltonian System generated by the
Hamiltonian functional H0 (u, ε, p) with respect to the
Stokes-Dirac structure associated with the operator (of the
type (3))

J0 =

(
0 0 1
0 0 ∂z
−1 ∂z 0

)
This amounts to writing the Hamiltonian system con-
sisting in the kinematic relation relating the velocity to
the momentum, its derivative and the momentum balance
equation
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∂t

(
u
ε
p

)
=

(
0 0 1
0 0 ∂z
−1 ∂z 0

)
︸ ︷︷ ︸

=J0

 k 0 0
0 T 0

0 0
1

(ρA)


︸ ︷︷ ︸

=Q0

(
u
ε
p

)
(8)

augmented with the definition of the boundary port vari-
ables(

f∂
e∂

)
=

(
0 0 1
0 1 0

)
trQ0

(
u
ε
p

)
= tr

( p

(ρA (z))
T (z) ε (z)

)
which reduce to the stress and the velocities at the bound-
aries.

3. BOUNDARY PORT HAMILTONIAN SYSTEMS ON
A LAGRANGIAN SUBMANIFOLD

In this section, we extend the definition of a Boundary
Port Hamiltonian System of the definition 3 to a more
general definition of the Hamiltonian functional in terms of
a Lagrangian subspace. This definition is classically used
in the definition of Hamiltonian systems [Abraham and
Marsden 1987, chap. 5.3] and has been recently adapted
to linear and nonlinear Port Hamiltonian systems [van der
Schaft and Maschke 2018a, 2020]. In this section we shall
extend the definition of Lagrangian subspace that allows
to include boundary port variables.

3.1 Lagrangian subspace with boundary energy variables

Definition 5. Let X be a vector space and X ∗ its dual
space. A Lagrangian subspace is a subspace L ⊂ X × X ∗
such that

L = L⊥−
where ⊥− denotes the orthogonal with respect to the
alternate bilinear form on X × X ∗

〈(x1, e1) , (x2, e2)〉−
.
= 〈e1|x2〉 − 〈e2|x1〉

In analoguous way to the Dirac subspaces which char-
acterize graphs of skew-symmetric mappings, Lagrangian
subspaces characterize graphs of symmetric mappings.
Example 6. As the most simple example, take the graph
of a positive symmetric matrix operator Q ∈ L1

(
a, b, Rn×n

)
L =

{
(x, e) ∈ L2

(
a, b, Rn

)
s.t. ∀z ∈ [a, b] e (z) = Q (z) x (z)

}
It is the graph of the constitutive relation of the effort

variables

e (z) = Q (z)x (z) =
δH

δx
derived from the definition of the energy H in (5) where
δH
δx denotes the column vector of the variational derivatives
of H with respect to xi , i ∈ {1, . . . , n}

In the sequel, we shall show that using Lagrangian sub-
spaces, one may enlarge the constitutive relations of the
energy in in (5) to differential symmetric differential op-
erators Q. Inspired by the finite dimensional case [van der
Schaft and Maschke 2018a], we shall now define a class of
Lagrangian subspaces associated with first order differen-
tial symmetric matrix operators.

Therefore consider two first order, constant coefficient,
n× n matrix differential operators:

P =
∂

∂z
P1 + P0 and S =

∂

∂z
S1 + S0 (9)

where Pi ∈ Rn×n and Si ∈ Rn×n i ∈ {1, 2}, are real
matrices.

Let us compute, using the formal adjoint
(
∂
∂z

)∗
S∗P − P∗S =

(
S
>
1

(
∂

∂z

∗)
+ S
>
0

)(
∂

∂z
P1 + P0

)
−
(
P
>
1

(
∂

∂z

∗)
+ P

>
0

)(
∂

∂z
S1 + S0

)
=
(
S
>
1 P1 − P>1 S1

)(
−
∂2

∂z2

)
+
(
S
>
0 P0 − P>0 S0

)
+
(
−S>1 P0 + S

>
0 P1 + P

>
1 S0 − P>0 S1

)(
−
∂

∂z

)
which leads to the following lemma.

Lemma 7. The first-order linear operators in (9) satisfy
the formal symmetry condition S∗P − P∗S = 0 if and
only if the matrices S>1 P1 and S>0 P0 are symmetric and(
S>0 P1 − P>0 S1

)
is skew-symmetric.

These symmetry conditions calculated above, are true for
functions with support strictly included in Z = [a, b]. In
general, using integration by parts, one obtains for any
pair of functions (ζ1, ζ2) ∈ H2 (a, b, Rn)

2
,

〈Sζ1, Pζ2〉L2
− 〈Sζ2, Pζ1〉L2

=

∫ b

a

Sζ1 (z)
> Pζ2 (z) dz +

∫ b

a

Sζ2 (z)
> Pζ1 (z) dz

=

[
∂ζ2

∂z

> (
S
>
1 P1 − P>1 S1

)
ζ1

]b
a

−

∫ b

a

ζ
>
1

(
S
>
1 P1 − P>1 S1

) ∂ζ2
∂z

dz +
[
ζ
>
1

(
S
>
0 P1 − P>0 S1

)
ζ2
]b
a

−

∫ b

a

∂ζ1

∂z

> (
−S>1 P0 + S

>
0 P1 + P

>
1 S0 − P>0 S1

)
ζ2 dz

+

∫ b

a

ζ1 (z)
>
(
S
>
0 P0 − P>0 S0

)
ζ2 (z) dz

Assuming that the operator S∗P is formally symmetric
(Lemma 7), this reduces to the boundary terms

〈Sζ1, Pζ2〉L2
− 〈Sζ2, Pζ1〉L2

=
[
ζ>1
(
S>0 P1 − P>0 S1

)
ζ2
]b
a

(10)

which is, by lemma 7, indeed skew-symmetric. The bound-
ary term is characterized by the skew-symmetric matrix

Jb = S>0 P1 − P>0 S1 (11)

Lemma 8. Denote the rank of the matrix Jb by 2m =
rank Jb and define r = n−2m. Then the matrix associated
with the bilinear product in (10) is contragradient with the
matrix

Jb = Π>
(

Jsm 02m×r
0r×2m 0r×r

)
Π

where is Jsm =

(
0m Im
−Im 0m

)
and Π ∈ Rn×n is full-rank.

Then the boundary term (10) may be written[
ζ>1
(
S>0 P1 − P>0 S1

)
ζ2
]b
a

=

[(
Π̃ ζ
)>

Js

(
Π̃ ζ
)]b

a

(12)

where Π̃ = ( I2m 0r ) Π .

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7830



Now we may define a Lagrangian subspace associated
with energy functionals involving derivatives of the state
variables in the following way, using the permutation
matrix

Σ =

 Im 0 0 0

0 0 Im 0

0 Im 0 0

0 0 0 Im


Define the port variables(

φ∂
ψ∂

)
= Σtr

(
Π̃ ζ
)

(13)

then the boundary term (10) may be written in terms of
the port variables[

ζ>1
(
S>0 P1 − P>0 S1

)
ζ2
]b
a

= ( φ1∂ , ψ1∂ ) Js2m

(
φ2∂
ψ2∂

)
(14)

Proposition 9. Consider the vector space V = L2 (a, b, Rn)×
Rn , the subspace L ⊂ V × V∗ with V∗ ∼ V,

L=
{

(x, φ∂ , e, ε∂)V × V∗ / ∃ζ ∈ H1 (a, b, Rn) ,

s.t.

(
x
e

)
=

(
P
S

)
ζ;

(
φ∂
ψ∂

)
= Σtr

(
Π̃ ζ
)}

(15)

with the operators defined in (9) and satisfying the as-
sumptions of the lemma 7, is a Lagrangian submanifold
with respect to the skew-symmetric product for (v1, v2) ∈
V2

〈v1, v2〉− =∫ b

a

(
x>1 e2 − x>2 e1

)
dz − ( φ1∂ , ψ1∂ ) Js2m

(
φ2∂
ψ2∂

)
(16)

The proof is closely analoguous to the proof for Stokes-
Dirac structures presented in Le Gorrec et al. [2005].

Proof 10. The first step consists in proving the inclusion
L ⊂ L⊥− . Therefore it sufficies to evaluate (16) for
any pair (v1, v2) ∈ L2 and use the definition of the port
variables (13) and the expression of the boundary term
(14) and one obtains 〈v1, v2〉− = 0.

The second step consists in proving L ⊃ L⊥− . Consider
an element v2 ∈ L⊥− then, by definition, for any v1 ∈ L,
〈v1, v2〉− = 0 . Using (16) and the definition of the
Lagrangian subspace (15), one computes

〈v1, v2〉− =

∫ b

a

(
(Pζ)

>
e2 − x>2 (Sζ)

)
dz

−
(
Σtr

(
Π̃ ζ
))>

Js2m

(
φ2∂
ψ2∂

)
(17)

Choosing an element v1 ∈ L, generating by a function
ζ1 ∈ H1 (a, b, Rn) with support strictly included in [a, b],
hence ζ (a) = ζ (b) = 0, one computes

〈v1, v2〉− =

∫ b

a

(
(Pζ1)

>
e2 − x>2 (Sζ1)

)
dz

=

∫ b

a

(
ζ>1 (P∗e2 − S∗x2)

)
dz

By surjectivity of the operators P and S and the sym-
metry condition on S∗P, this implies that the first con-
stitutive equation in (15) is satisfied: there is a function

ζ2 ∈ H1 (a, b, Rn) such that

(
x2
e2

)
=

(
P
S

)
ζ2 . Hence

computation (17) may be continued

〈v1, v2〉− =

∫ b

a

(
ζ>1 (P∗e2 − S∗x2)

)
dz

−
(
Σtr

(
Π̃ ζ1

))>
Js2m

[(
φ2∂
ψ2∂

)
−Σtr

(
Π̃ ζ1

)]
(18)

As the matrix Js2mis full-rank, the condition 〈v1, v2〉− = 0

for any ζ1 , implies that

(
φ2∂
ψ2∂

)
−Σtr

(
Π̃ ζ1

)
= 0 . This

implies that the second constitutive equation in (15) is
satisfied. Hence v2 ∈ L and L ⊃ L⊥− is proven.

In the sequel, we shall call the Lagrangian submanifold
defined in this proposition Stokes-Lagrangian submanifold.

3.2 Boundary Port Hamiltonian systems defined on a
Stokes-Lagrangian submanifold

Using the previously defined Lagrangian submanifold,
the definition 3 of linear Boundary Port Hamiltonian
systems may be generalized by considering Hamiltonian
(or energy) functionals defined in (5) from real-valued
symmetric matrix operators Q to first-order differential
symmetric operators.

Definition 11. [Linear First Order Boundary Port Hamil-
tonian System on a Lagrangian submanifold] The Bound-
ary Port Hamiltonian System on the state space X =
L2 (a, b, Rn) with respect to the Stokes-Dirac structure
defined in Proposition 3 and on the Lagrangian subspace
of proposition 9 is defined by the dynamical system

∂x

∂t
f∂
e
e∂

 ∈ DJ and (x, φ∂ , e, ε∂) ∈ L

with (x, φ∂ , e, ε∂)V × V∗ where V = L2 (a, b, Rn) × Rn
and (f∂ , e∂) ∈ R2n.

Using the constitutive relations of the Stokes-Dirac struc-
ture DJ in (4) and the kernel representation (15) of the
Lagrangian subspace L, the Boundary Port Hamiltonian
system of definition 11 may also be expressed in terms of
the following Differential-Algebraic system

∂

∂t
P ζ =JS ζ, ,(
f∂
e∂

)
=

(
J1 −J1
In In

)
tr (S ζ)(

φ∂
ψ∂

)
=Σtr

(
Π̃ ζ
)

This definition encompasses the definition of energy func-
tion which depends not only on the state variable but
also on its spatial derivatives as for instance the vibrating
string written on the classical symplectic space of displace-
ment and momenta.

It allows also to consider non-local constitutive relation
of the energy functional as it had been considered in
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[Dorfman 1993] and that will be illustrated on the example
of a model of nanorod [Heidari and Zwart 2019] in the next
section.

3.3 Energy balance equation

The Hamiltonian of the Boundary Port Hamiltonian sys-
tem of definition 11 is the generalized version of the explicit
expression (5) with Hamiltonian which may be expressed
as

H =

∫ b

a

1

2

(
ζ>S∗P ζ

)
dz

Let us now compute the time derivative of the Hamiltonian
functional, using the boundary relations of a Lagrangian
submanifold (10) and (12) then the properties of a Stokes-
Dirac structure

dH

dt
=

d

dt

∫ b

a

1

2

(
ζ
>S∗P ζ

)
dz

=
1

2

∫ b

a

(
∂ζ

∂t

>
S∗P ζ + ζ

>S∗P
∂ζ

∂t

)
dz

=

∫ b

a

(
ζ
>S∗P

∂ζ

∂t

)
dz +

(
dφ∂

dt

>
,
dψ∂

dt

>)
J

s
2m

(
φ∂

ψ∂

)
= e

>
∂ f∂ +

dφ∂

dt

>
ψ∂ −

dψ∂

dt

>
φ∂

If H is bounded from below, the system is dissipative with
respect to the pair of port variables (e∂ , f∂) defined by the
Stokes Dirac structure and, in addition, the pairs of vari-

ables
(
ψ∂ ,

dφ∂

dt

)
and

(
φ∂ ,

dψ∂

dt

)
composed of the boundary

energy variable (and their time derivative) associated with
the Lagrangian subspace.

4. ILLUSTRATION ON A MODEL OF NANOROD

In this section, we shall illustrate the suggested definition
with the example of the elasto-dynamical model developed
for modelling carbon nanotubes [Cemal Eringen 1983] and
treated in[Karličic̀ et al. 2015] where the spectral analysis
of a set of coupled beams is analyzed and in [Heidari
and Zwart 2019] where a descriptor Port Hamiltonian
formulation was used to prove the well-posedness of the
model.

4.1 Nonlocal elasticity relation

Compared with the model of elastic rod presented in the
section 4, the constitutive relation of elasticity is nonlocal
and given by is written

σ =
(
1− µ∂2z

)−1
T ε (19)

where the coefficients µ and T are positive real numbers.
This elasticity relation may be written in the image
representation using the operators Pel =

(
1− µ∂2z

)∗
and

Sel = T (
ε
σ

)
=

( (
1− µ∂2z

)∗
T

)
ε (20)

where the internal variable ε may be interpreted as a
virtual strain and the elastic potential energy is

U (ε, ∂zε) =

∫
Z

1

2
σ εdz =

∫
Z

1

2
T
(
ε2 + µ (∂zε)

2
)
dz

which variational derivative

δεU (ε, ∂zε) = T
(
1− µ∂2z

)
ε

However the operator Pel is of order 2 which leads us to
extend the space of internal variables with ς =

√
µ∂zε and

write the elastic energy as

U0 (ε, ς) =

∫
Z

1

2
T
(
ε2 + ς2

)
The total energy of the system U0 (ε, ς) + Ug (u) + K (p)
with the definition of the variables, amounts to consider
the (formal) Lagrangian subspace generated by the oper-
ators

P =

 1 0 0 0
0 1 −√µ∂z 0
0
√
µ∂z −1 0

0 0 0 1

 and S =


k 0 0 0
0 T 0 0
0 0 0 0

0 0 0
1

(ρA)


(21)

which satisfy obviously the symmetry conditions of lemma
7. The boundary port variables are a linear combination of
the local strain ζ and it derivative ς and the two associated
stress variables at the boundary of the system(

φ∂
ψ∂

)
=

(
Jb −Jb
I2 I2

) ζ (a)
ς (a)
ζ (b)
ς (b)

 (22)

with Jb = −√µT
(

0 1
1 0

)
.

4.2 The port Hamiltonian dynamics

Inserting the image representation of the energy and co-
energy variables in (8) and adding the definition of the in-
ternal variables ς(third line), the dynamics of the nanorod
may then be expressed as the Differential-Algebraic Hamil-
tonian system

∂tP

 u
ζ
ς
p

 =

 0 0 0 1
0 0 0 ∂z
0 0 0 0
−1 ∂z 0 0

 S
 u
ζ
ς
p


In order to include the power flows stemmming from the
interconnection of the nanorod with its environment, this
system extends to a Port Hamiltonian systems defined
with respect to the Stokes-Dirac structure DJ generated
by the Hamiltonian operator

J =

 0 0 0 1
0 0 0 ∂z
0 0 0 0
−1 ∂z 0 0


on the Stokes-Lagrangian subspace (15) associated with
the operators (21).The boundary port variables associated
with the Stokes-Dirac structure are (a linear combination
of) the pairs of stress Tζ and velocities p

(ρA) at the bound-

ary and the port variables associated with the boundary
energy variables are (a linear combination of) the stresses

and their time derivatives
(
∂ζ
∂t ,
√
µTς

)
and

(
∂ς
∂t ,
√
µTζ

)
at the boundary.
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5. CONCLUSION

In this paper, we have suggested an extension of Boundary
Port Hamiltonian systems by considering that the energy
of the system is implicitely defined as a Lagrangian sub-
manifold. We have considered the particular case when this
Lagrangian submanifold is defined by an image representa-
tion based on two first-order linear differential operators.
We have then derived port variables associated with this
Lagrangian submanifold and stated the energy balance
equation of the Boundary Port Hamiltonian systems. The
right-hand side of this energy balance equation which con-
sist in terms being the pairing of the power port variables
of the Stokes-Dirac structure plus the pairing of the port
variables of the Lagrangian submanifold and their time-
derivative. This definition has been illustrated with the
model of a voibrating nanorod with a non-local elasticity
relation.

Of course this construction may be extended to higher-
order linear differential operators and it would be inter-
sting to see how the results on the well-posedness and
the stabilizing control, based on the semi-group approach
could be extended to this class of systems. A more abstract
approach, valid on higher-dimensional domains may also
be developed based on the suggested approach.

REFERENCES

Abraham, R. and Marsden, J.E. (1987). Foundations of
Mechanics. Benjamin Cummings Publ. Comp., Reading,
MA, U.S.A., ii edition. ISBN 0-8053-0102-X.

Baaiu, A., Couenne, F., Eberard, D., Jallut, C., Le Gorrec,
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