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Abstract: Many applications involving complex multi-task problems such as disaster relief,
logistics and manufacturing necessitate the deployment and coordination of heterogeneous
multi-agent systems due to the sheer number of tasks that must be executed simultaneously.
A fundamental requirement for the successful coordination of such systems is leveraging the
specialization of each agent within the team. This work presents a Receding Horizon Planning
(RHP) framework aimed at scheduling tasks for heterogeneous multi-agent teams in a robust
manner. In order to allow for the modular addition and removal of different types of agents
to the team, the proposed framework accounts for the capabilities that each agent exhibits
(e.g. quadrotors are agile and agnostic to rough terrain but are not suited to transport heavy
payloads). An instantiation of the proposed RHP is developed and tested for a search and rescue
scenario. Moreover, we present an abstracted search and rescue simulation environment, where
a heterogeneous team of agents is deployed to simultaneously explore the environment, find and
rescue trapped victims, and extinguish spreading fires as quickly as possible. We validate the
effectiveness of our approach through extensive simulations comparing the presented framework
with various planning horizons to a greedy task allocation scheme.

Keywords: Scheduling Algorithms, Optimization Problems, Multiagent Systems, Robotics,
Search and Rescue.

1. INTRODUCTION

Multi-robot systems are well suited to solve complex tasks
in dynamic and dangerous environments due to their
redundancy, ability to operate in parallel, and system
level fault tolerance to individual failure as highlighted in
Brambilla et al. (2013); Şahin (2004). Multi-Robot Task
Allocation (MRTA) deals with the assignment of agents
to tasks in order to achieve an overall system goal within
the constraints of the deployment setting. Therefore, in
order to leverage the potential multi-robot systems have
to successfully operate in dynamic and dangerous envi-
ronments to solve complex problems such as disaster re-
sponse, search and rescue, environmental monitoring, and
automated warehousing, effective methods for solving the
MRTA problem are needed (Gerkey and Matarić (2004)).

The MRTA problem becomes more complex when intro-
ducing morphological or behavioral heterogeneity within a
deployed multi-robot system (Dorigo et al. (2013)). How-
ever, this additional complexity comes with the benefit
of improving the overall system efficiency by leveraging
the strengths of individual robots within the collective.
For example, in a Search and Rescue (SaR) scenario,
quadrotors, which are quick and agile, are better suited
for scouting and surveying while ground robots are bet-

? This work was supported by Siemens Corporate Technology.

ter suited for debris clearing and resource extraction. By
leveraging these strengths efficiently and allocating tasks
appropriately the heterogeneous system could out perform
a system comprised of only aerial or ground robots.

Moreover, in many scenarios the MRTA problem is ac-
companied by timing constraints where tasks must be per-
formed sequentially, e.g. a robot must wait for a delivery
before transporting the delivered package. Problems of this
type are typically referred to as scheduling problems and
involve an additional complexity. This class of problems
can be solved with Mixed Integer Linear Programs (MILP)
that attempt to schedule all the tasks at once, however,
this approach suffers from an exponential complexity as
noted in Gombolay et al. (2013). Additionally, when de-
ploying a multi-agent system in dynamic environments,
the system must be able to respond and reschedule tasks
when unavoidable and inevitable environmental distur-
bances occur. Lastly and specific to the SaR operation
following a natural disaster (e.g. wildfires, earthquakes,
hurricanes) is that the team of agents must cover the tar-
geted area and rescue victims amongst other tasks within
a short-time window. This is due to the drastic decrease
in the likelihood of victims surviving after 48 hours as
highlighted in Shah and Choset (2004). Therefore, the SaR
problem can be cast as an instance of heterogeneous multi-
agent system scheduling with the objective of minimizing
the time of completion of all tasks (i.e. the makespan).
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Inspired by the work in Jäntsch et al. (2018), this pa-
per proposes a Receding Horizon Planning framework to
solve the heterogeneous MRTA scheduling problem and
demonstrates its effectiveness in a SaR application. In-
spired by Model Predictive Control, at fixed time intervals,
the proposed framework detailed in Section 3 schedules
tasks for each agent up to a pre-defined time horizon and
leverages a heuristic to estimate the cost to go for each
schedule. As such, this framework does not suffer from
the exponential complexity caused by the scheduling of
the tasks and is robust to changes in the environment.
Moreover, a specialized version of the framework for the
SaR application is presented in Section 4 along with a
simulation environment for an abstracted SaR scenario.
To validate the effectiveness of the proposed approach,
Section 5 presents extensive experimentation comparing
the proposed Receding Horizon Planning based approach
to a greedy scheduling scheme.

2. LITERATURE REVIEW

As mentioned in Section 1, the topic of coordination for
multi-agent teams in SaR scenarios following natural dis-
asters falls under the umbrella of Multi-Robot Task Al-
location (MRTA). A comprehensive taxonomy of existing
methods for MRTA can be found in Gerkey and Matarić
(2004). As highlighted in Khamis et al. (2015), most ex-
isting approaches can be categorized as decentralized or
centralized approaches.

There are two main advantages to decentralized ap-
proaches: their robustness to varying team sizes and com-
munication failures, and their scalability with respect to
the size of the agent fleet thanks to the computational bur-
den being shared amongst the agents. Moreover, market-
based approaches such as Shehory and Kraus (1998); Dias
et al. (2006); Vig and Adams (2006), attempt to combine
the benefits of centralized and decentralized methods by
having the computational burden shared between a central
entity and the remainder of the fleet. For example, in
Shehory and Kraus (1998), the authors suggest a protocol
where agents communicate their respective capabilities
and use this information to form the coalitions in a decen-
tralized fashion. As such, these methods are able to gen-
erate better solutions than fully decentralized approaches
while maintaining a certain level of scalability. However,
since SaR scenarios typically involve a bounded number
of agents and little computational constraints, scalability
with respect to the size of the team is of no concern; thus
making fully-centralized approaches more suitable for this
application.

Moreover, the topic of task allocation specifically per-
taining to SaR scenarios is well-studied, most notably,
by the participants of RoboCup SaR Agent Simulation
competition as highlighted in Sheh et al. (2016). The
competition setup is as follows. A heterogeneous team
is to be deployed to extinguish fires and rescue victims.
Specifically, there are three types of agents: ambulances
which rescue victims, fire brigades which extinguish fires
and police units which remove the road blockades enabling
the two other type of agents to reach their desired targets
faster. The state-of-the-art task allocation strategy utilized
by winning teams such as MRL in the competition is K-

Means clustering of the Fires/Victims followed by a cluster
to agent assignment using the Hungarian Algorithm which
runs in polynomial time. We refer the reader to Bagheri
(2018) for details.

Inspired by the RoboCup competition, the motivation be-
hind the development of the new simulation environment
presented in Section 4 is two-fold. First, the proposed
scenario can be seen as a generalized version of the com-
petition’s scenario. Specifically, instead of having a fixed
number of types of agents each associated with a single
class of tasks (e.g. police units only capable of remov-
ing road blockades), through characterizing each agent
through the capabilities it exhibits, the proposed simu-
lation framework allows for the modular addition of agent
types and the collaboration of a heterogeneous sub-team
of agents in achieving a single task. For example, given
any two agents and their potentially different capacities
to transport water, in the proposed scenario, they can
indeed collaborate to extinguish a target fire. Moreover,
since not all SaR scenarios are identical in nature, the
proposed simulation environment frames the problem as
a dynamic set of pick and place tasks where victims and
resources are to be delivered to target locations.

Based on this abstracted view of SaR problems, the Reced-
ing Horizon Planning framework presented in this paper
aims to leverage the strengths of centralized scheduling
approaches while keeping the problem size tractable and
remaining robust to changes occurring in the environment.
The robustness property is obtained through the repeated
generation of schedules at fixed time intervals; whereas
tractability of the problem size is obtained through only
scheduling tasks up to a certain time horizon and lever-
aging a load-balancing Linear Program as a heuristic to
estimate the cost-to-go. Consequently solutions produced
by the proposed framework are not guaranteed global op-
timality since the schedules are of finite horizon. However,
we present extensive empirical evidence demonstrating the
effectiveness of the proposed approach in Section 5. In
the next section, the proposed Receding Horizon Planning
framework is introduced and presented in detail.

3. THE RECEDING HORIZON PLANNER

In this section, we present an extended version of the Re-
ceding Horizon Planner (RHP), first presented in Jäntsch
et al. (2018), aimed at solving the Single-Task robots,
Single-Robot tasks, Time-extended Assignment (ST-SR-
TA) problem, as defined in Gerkey and Matarić (2004), for
heterogeneous teams of agents. This problem class involves
building a schedule of tasks for each agent that minimizes a
given cost function and is stronglyNP-hard as highlighted
in Brucker (1999).

The brute-force approach for solving this class of problems
is to enumerate all possible schedules and choose the one
with the smallest associated cost. In its simplest form, the
process of generating all possible schedules is done through
iteratively assigning one of the remaining tasks to each
agent’s schedule. As such, a set of partial schedules (i.e.
schedules that do not include all tasks) will be generated
to which the process is applied again. Similarly to Branch
and Bound (Lawler and Wood (1966)), this process can
be depicted as a tree-search where each partial schedule is
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Fig. 1. Example decision tree generated by the Receding
Horizon Planner.

associated to a node Ni, and partial schedules generated
through subsequent assignments are depicted as children
of that node. However, given the set of tasks T and the
set of agents A, the number of possible schedules grows
with O(|A||T |), rendering the enumeration of all schedules
intractable. A scalable alternative is the greedy approach,
which solely considers the next best option given the
current partial schedule. However, this approach suffers
from a reduced performance of the overall system in terms
of optimality.

The RHP is a task allocation scheme inspired by Model
Predictive Control (MPC) which, at fixed time intervals,
computes the optimal schedule for a limited number of
tasks and leverages a heuristic to estimate the cost of
executing the remaining tasks. Thus, the size of the
optimization problem remains constant with respect to the
number of tasks and can be adjusted to the computational
resources available. With regard to this variable look-
ahead time, the receding horizon approach is a superset
of the greedy algorithms (zero look-ahead) and the full-
blown optimization (infinite look-ahead).

Similarly to MPC, the number of assignments planned
by the RHP is larger than the number of assignments
that are executed. This creates an overlap between the
consecutive optimization cycles, which reduces the loss in
optimality due to the neglected future operations. The
cyclic nature of this scheme allows for the incorporation
of the current system state into the optimization. This
feedback loop – as in classic control – provides robustness
against disturbances and model deviations.

As introduced in Jäntsch et al. (2018), The RHP uti-
lizes a branch-and-bound method to generate the optimal
schedule up to the desired time-horizon. As illustrated by
Figure 1, each node Ni in the search tree corresponds to
a partial schedule and the addition of a new assignment
of a task to an agent creates a new node. To enable an
efficient exploration of the tree, the cost J(·) at node Ni

is decomposed into an accumulated cost value g(·) and a
remaining cost estimation h(·)

J(Ni) = g(Ni) + h(Ni). (1)

The accumulated cost evaluates the already assigned op-
erations and is a measure of the consumption of resources.
Since each new task assignment increases the consumption
of resources, the accumulated cost increases monotonically

g(Nj) ≥ g(Ni), (2)

where Nj ∈ Children(Ni). The second summand in (1) is
a lower-bound estimate of the remaining efforts to reach
the overall goal. As each new task assignment reduces the
outstanding efforts the cost of the remaining tasks must
decay

h(Nj) ≤ h(Ni). (3)

Moreover, the estimate h must provide a lower bound of
the true remaining cost at each step, therefore satisfying

g(Nj)− g(Ni) ≥ h(Ni)− h(Nj). (4)

We will show later, how such a lower bound estimation can
be obtained by relaxation of the integer constraints. If h
is chosen such that (4) holds we can conclude that

J(Nj) ≥ J(Ni), (5)

the cost of each node increases as the tree grows. This
allows to stop the further exploration of a branch if at any
time J(Ni) ≥ Jopt (i.e. the cost of node Ni is larger than
the cost of a known solution). This strategy is guaranteed
to find the optimal solution on the tree.

To eliminate symmetries and thus reduce the number of
nodes to be explored in a tree, only one resource (agent)
is chosen for the set of offspring-nodes that are generated
from any node in the tree. The agent is chosen as

a∗ = arg min
t∈T ,a∈A

(yta + Tta). (6)

The indices t and a tally the available tasks T and agents
A respectively. Tta is the duration of task t if performed by
agent a and yta is the potential start time for agent a on
task t. In other words, out of all agents, the RHP chooses
the one with the earliest completion-time of all tasks. Once
the agent is decided upon, all potential tasks that satisfy

yta = min
t∈T

(yta∗ + Tta∗), (7)

are considered as next nodes. That is, we include all tasks
that can be started, before the earliest task can be finished.
This again reduces the search space in the tree exploration
without affecting the optimality of the solution.

The main contribution of this paper is to extend the range
of applications of the RHP to scenarios in which multiple
agents, each exhibiting different capabilities, are needed
to complete a single task or vice-versa. The wildfires in
our SaR scenario represent the former type, where the
combined effort of multiple agents is needed to extinguish
a fire. The rescue operations represent the second type,
where a single agent can carry multiple survivors.

The decision space in the tree search inherently includes
the various agent capabilities and teaming scenarios, if this
is properly described in the set of dispatching rules for each
agent. These dispatching rules describe which possible
tasks an agent can do, given its current location and
occupation, and to what amount the agent can contribute
to the overall task, i.e. its capacity. In the context of the
SaR scenario, the capacity corresponds to the mundane
load capacity for water or victims of each agent.

While the implementation of these dispatching rules is
straightforward, the challenge for the tree search is again
limiting the search space. To avoid the exploration of all
possible combinations of capacities to complete a task, we
make use of the heuristic h(·) to guide the tree search. To
achieve this, we include a high level load balancing into
the heuristic, which breaks the required effort for one large
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task down into a set of sub-tasks that can be handled by
individual agents.

The general approach is to first group all agents with
equivalent capabilities into different classes and then min-
imize the latest finishing time among all agents under the
following constraints

(i) The effort for each task is distributed among the
different agent classes

(ii) The efforts from (i) for each class are distributed
among the individual member agents of this class

The detailed application to the SaR use-case is described
below.

4. USE CASE: SEARCH AND RESCUE

4.1 Problem Setup

Inspired by the RoboCup Search and Rescue Agent compe-
tition, we setup the SaR scenario as follows. A fire breaks
out in a forest near a city and starts spreading. Victims
are hidden within the city and forest themselves. The
objective is to locate and save all victims and extinguish all
fires simultaneously using a heterogeneous team of agents
as quickly as possible. Note that the fires also grow and
spread, therefore solely focusing on rescuing the victims is
commonly a sub-optimal strategy. Moreover, the victims
are initially not visible to the agents. Therefore, exploring
the map is also of paramount importance.

Each fire is represented as a circle of radius proportional
to its health and requires a specific amount of water that
is also proportional to its health. Upon reaching 100%
health, a fire then spread to a nearby territory which is
illustrated through the creation of another circle in that
location. In order to keep the problem setup as general as
possible, we frame the scenario as a pick and place problem
where agents need to repeatedly go back to the base and
deliver water/victims to the fires/hospital. Moreover, we
solely consider each agent’s capabilities when considering
it for a given task. As such, we allow for the modular
addition or removal of agents from the setup as discussed
in the next subsection.

4.2 The Heterogeneous Team

Teams deployed for SaR are typically heterogeneous due
to the variety of the tasks at hand and terrains to be
navigated. Therefore, we chose to create teams composed
of 4 types of agents: Ground Units, Helicopters, Drones
and Autonomous Ground Vehicles (AGVs). It is important
to note that our approach is agnostic to the specific types
of agents and the number existing types. In fact, the
proposed approach solely considers the number of agents
of each type, and each type’s capabilities (as defined
in Gerkey and Matarić (2004)). We restrict the agent
capabilities we consider to two categories. The first type
deals with the mobility of the agents (e.g. what is the
velocity of the agent when navigating in the forest?),
and the second type considers what action the agent can
perform once at the desired location (e.g. can the agent
”pickup” a victim?). A tabulation of the capabilities of
the 4 types of agents is presented in Table 1. As such,

each agent type’s specific capabilities can be accounted
for explicitly by the proposed framework in the process of
generating feasible schedules. Moreover, it is worth noting
that additional capabilities can be modularly added since
the framework solely considers the capabilities required
by each task in the process of generating new nodes. In
the next subsection, we present the load-balancing Linear
Program used to estimate the cost-to-go.

4.3 Estimation of the cost-to-go

We formulate the cost-to-go required for the RHP as a
Linear Program (LP), which added to the accumulated
cost provides a lower-bound on the total cost of each node.
The objective of the LP is to minimize the makespan s,
which is the time of completion of the last task.

In order to compute the makespan, one must be able
to estimate the time taken to complete each task (e.g.
rescuing a victim). This is a non-trivial problem, since the
time of completion of a task by an agent is dependant upon
the previous assignment of the agent. This difficulty also
arises in the travelling salesman problem, where the time
to travel to a given city depends on the last destination
of the salesman. In order to overcome this difficulty,
we assume that the distances between the victims/fires
are negligible compared to their distances to the base.
Therefore by lower-bounding all distances between the
targets and the base, we can obtain a “tight” lower-bound
on the amount of time a given agent takes to complete a
trip to any target tType(a) given the agent’s velocity.

The decision variable for the LP are

• the number of assignments of task t to the agents of
class c, denoted by nc,t

• the number of assignments of task t to the individual
agent j denoted by mj,t

• the total makespan denoted by s

With these constraints stacked into a vector

xT = [nc,t , mj,t , s] (8)

the LP is formulated as follows

min
x

[0 . . . 0 1]x (9a)

subject to
∑
c∈C

C(t)
c nc,t ≥ Rt ∀t ∈ T (9b)

yj +
∑
t∈T

T
(c)
t mj,t ≤ s ∀j ∈ A (9c)∑

j∈A
B

(c)
j mj,t = nc,t ∀c, t ∈ C ⊗ T , (9d)

where T , C and A denote the set of all tasks, agent types
and individual agents respectively. The program aims to
minimize the makespan (i.e. the time of completion of
the last task). Moreover, constraint (9b) ensures that the
required effort for accomplishing task t denoted by Rt

is matched by the agent fleet. The effort provided by
the agent fleet is computed through summing the effort
provided by each agent type. The capacity of agent type c

for task t is denoted by C
(t)
c . Additionally, the makespan is

computed in constraint (9c), where yj denotes the comple-
tion of time of agent j’s current schedule and the execution

time of task t for class c is denoted by T
(c)
t . Lastly,
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Fig. 2. An example scenario in the Search and Rescue Simulator. The heterogeneous team of agents is initially positioned
in the starting zone (left). The orange robots denote the AGVs and the red, green and pink circles denote the ground
units, drones and helicopters respectively. Hidden and identified victims are depicted as pink and green squares
respectively. Fires, which can grow and spread, are depicted as red circles of radii proportional to their respective
strengths. The middle and right figure depict the scenario mid and post execution respectively.

Types G. Unit Heli. Drone AGV

Water Cap. 1 5 0 2

Rescue Cap. 1 4 0 4

Move Forest 0.1 0.5 0.40 0.20

Move City 0.1 0.5 0.40 0.00

Table 1. The capabilities of the 4 types of
agents: Ground Units, Helicopters, Drones and
AGVs. Note for example how AGVs are unable
to navigate through the forest or how the
capacity for carrying water units or victims

vary depending on the type of agent.

constraint (9d) ensures that the sum of contributions of
each individual agent of a given type matches the total

contribution of that type, where B
(c)
j indicates if agent j

is of type c. In the next section, we present experimental
results demonstrating the effectiveness of the SaR special-
ized Receding Horizon Planner presented in this section
compared to a greedy scheduling approach.

5. EXPERIMENTS

In this section, we present empirical results validating
the use of a receding horizon through simulations and
experiments on the Robotarium, a remotely accessible
swarm accessible testbed (Pickem et al. (2017)). The setup
of the experiments is as follows. The team is composed of
6 ground units, 3 helicopter units, 14 drones and 3 AGVs.
Moreover, in each experiment 10 initially hidden victims
are randomly placed in the forest and city along with 3 fires
that were also initialized at random positions. However,
the number of total fires generated in a given experiment
may differ depending on the planner being used. This is
due to the fact that the fires grow and spread over time and
therefore require even more resources to extinguish. This
is an accurate depiction of many real-world SaR scenarios
and serves to emphasize that the time of completion of
tasks is an important measure in such scenarios.

The path-action planning algorithm details the execution
of the generated schedules and is implemented as follows.
First, it generates each agent’s path to its corresponding
task, then ensures that the agent takes the corresponding
required action for the task if feasible. For example, once
an agent tasked with rescuing a victim reaches its location,
it will take the ”pick-up” action if and only if the agent’s

maximum capacity for the number of victims is not already
reached. Since path planning is not the focus of this work,
we assume all agents except the AGVs possess single-
integrator dynamics and use proportional controllers to
guide them to their targets. However, since the AGVs are
presented as robots (GRITSBot X) in the Robotarium
experiments and can indeed collide, we implemented multi-
agent A* to generate way-points the agents can follow to
their targets. Moreover, since we do not explicitly check
for collision-avoidance in the trajectories between way-
points, we also utilize Control Barrier Functions (CBFs) to
instantaneously ensure collision-avoidance at all times as
described in Ames et al. (2015); Ames et al. (2014). This
is achieved through solving a Quadratic Program at each
point in time that generates a minimally altered trajectory
for the agents relative to their nominal trajectory to ensure
collision-avoidance.

A run of 20 simulated experiments with randomized initial
conditions were run to compare several planning depths of
the RHP and a greedy scheduling approach. The greedy
scheduling scheme used for bench-marking the proposed
RHP is a one-step look-ahead planning approach. Specif-
ically, at each scheduling iteration, each idle agent is
assigned to the task that it is closest to. The mean,
median and variance of the makespans of each of the
scheduling approaches over all experiments are presented
in Table 2. As shown in the table, the mean makespan
decreases significantly when the RHP is used. However, the
rate of improvement decreases at higher planning depths,
which highlights the trade-off between computing time and
solution quality.

Moreover, to demonstrate the applicability of the RHP
onto real systems, 10 experiments were conducted on the
Robotarium testbed comparing the RHP using a planning
depth of 10 to the greedy scheduler. The Robotarium’s
robots (GRITSBot X) were used instead of the three
simulated AGVs as depicted in Figure 3. To obtain the
desired frequency of operation on the Robotarium (∼
100 Hz), a separate computing node was used to run the
scheduling algorithms, and the schedules were transmitted
to the agents using a publisher-subscriber protocol. The
results of the experiments are presented in Table 3. Indeed,
the use of the RHP reduces the makespan, thus validating
the applicability of the proposed scheduling approach.
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Fig. 3. Search and Rescue experiment on the Robotarium
using 3 GRITSBot X as the AGVs. The description
of all entities are as in Figure 2.

Types Mean Median σ

Greedy 78.78 53.03 10.63

RHP10 42.54 40.34 9.54

RHP15 40.09 38.56 7.95

RHP20 39.87 36.84 9.39

Table 2. Results over 20 simulations comparing
the mean, median and standard deviation of
the makespans of the Receding Horizon Plan-
ner with different planning depths and greedy

scheduling scheme.

Types Mean Median σ

Greedy 46.70 45.06 9.64

RHP10 39.00 36.72 9.09

Table 3. Results over 10 Robotarium experi-
ments comparing the mean, median and vari-
ance of the makespans of the Receding Horizon
Planner with planning depth 10 and the greedy

scheduling scheme.

6. CONCLUSION

This paper introduces a task allocation framework capable
of scheduling tasks for heterogeneous teams of agents in
a manner that is tractable and robust to changes in the
environment and in the agent fleet. This was achieved
through repeatedly scheduling solely up to a fixed hori-
zon and leveraging a load-balancing Linear Program for
the estimation of the cost to go. Moreover, a simulation
framework for an abstracted Search and Rescue scenario
inspired by the RoboCup Search and Rescue Agent Simu-
lation competition was presented along with a specialized
formulation of the Receding Horizon Planning approach.
Experimental results showcase the efficacy of the proposed
scheduling method in extensive multi-agent simulations
and experiments on the Robotarium.
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