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Abstract: We present normal forms for nonlinear two-input control systems that become static
feedback linearizable after a two-fold prolongation of a suitably chosen control, which is one of
the simplest dynamic feedback. They form a particular class of flat systems, namely those of
differential weight n + 4, where n is the number of states. We also show that the dynamic
feedback creates singularities in the control space depending on the state and we discuss them.
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1. INTRODUCTION

In this paper, we give normal forms for flat control-affine
systems of the form

Σ : ẋ = f(x) + g1(x)u1 + g2(x)u2, (1)

where x is the state defined on a open subset X of Rn
and u = (u1, u2) is the control taking values in an
open subset U of R2 (more generally, an n-dimensional
manifold X and a two-dimensional manifold U , resp.),
and where f , g1 and g2 are smooth. The word smooth
will always mean C∞-smooth. The notion of flatness was
introduced in control theory in the 1990s, by Fliess, Lévine,
Martin and Rouchon (Fliess et al. [1995], see also Isidori
et al. [1986], Jakubczyk [1993], Aranda-Bricaire et al.
[1995], Pomet [1995]) and has attracted a considerable
interest Fliess et al. [1999], Pomet [1997], Van Nieuwstadt
et al. [1998], Pereira da Silva and Corrêa Filho [2001]
because of its important applications in the problem of
motion planning and constructive controllability (see, e.g.,
Martin et al. [2003], Lévine [2009], Tang et al. [2011],
Kolar et al. [2017]). The system Ξ : ẋ = F (x, u), where
x ∈ X ⊂ Rn and u ∈ U ⊂ Rm, is flat if we can find
locally m functions ϕi(x, u, . . . , u

(r)), for some r ≥ 0,
such that

x = γ(ϕ, . . . , ϕ(s−1)) and u = δ(ϕ, . . . , ϕ(s)),

for a certain integer s and suitable smooth maps γ and δ,
where ϕ = (ϕ1, . . . , ϕm) is called a flat output . Therefore,
the evolution in time of all state and control variables can
be recovered from that of flat outputs without integration
and all trajectories of the system can be completely
parameterized.

Systems linearizable via invertible static feedback are flat
and their normal forms are well known: they are static
feedback equivalent to the Brunovský canonical form. Flat
systems can be seen as a generalization of linear systems.
Namely they are linearizable via dynamic, invertible and
endogenous feedback, see Fliess et al. [1995], Pomet [1995,
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1997]. In Nicolau and Respondek [2019], the authors pre-
sented normal forms for the class of flat systems that are
the closest to static feedback linearizable ones, namely
those that are feedback linearizable via the simplest dy-
namic feedback, which is a one-fold prolongation of a suit-
ably chosen control. The goal of this paper is to generalize
those results to the case of a two-fold prolongation. We
will consider the case of two-input control systems only.
Solving that problem in the simplest case of two controls
is interesting for few reasons; first, it yields a complete
analysis for a well defined class of flat systems, and second,
it shows what kind of difficulties one may face when trying
to give normal forms or to characterize flatness in the
general case. Our aim is to give normal forms for nonlinear
flat control systems of differential weight n+m+2 = n+4
(see Respondek [2003], and Section 2 for the notion of
differential weight) and to discuss how the geometry of
that class of systems is reflected by the normal forms
(necessary and sufficient geometric conditions describing
flatness of control-affine differential weight n+m+2 = n+4
were presented in Nicolau and Respondek [2016a]).

It is well known (see, e.g., Jakubczyk and Respondek
[1980], Hunt and Su [1981]) that any static feedback lin-
earizable and controllable system is feedback equivalent
to the Brunovský canonical form that consists of m inde-
pendent chains of integrators. In Nicolau and Respondek
[2019], we proposed for multi-input systems dynamically
linearizable via a one-fold prolongation (or, equivalently,
flat systems of differential weight n+m+1) a modification
of the Brunovský canonical form that contains at most
m − 1 nonlinearities (at most only one nonlinearity per
each chain). For the particular case of two-input control
systems, one (and only one) nonlinearity is present. In this
paper, we show that two-input systems dynamically lin-
earizable via a two-fold prolongation can be brought into a
normal form generalizing that of Brunovský as well as that
characterizing flatness of differential weight n+3. Namely,
at most two nonlinearities (at most one more than for
flatness of differential weight n+3) are present. Interest in
those normal forms is three-fold. First, to understand that

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 5515



systems linearizable dynamically via a two-fold prolonga-
tion differ from static feedback linearizable ones (resp.,
from dynamically linearizable via a one-fold prolongation)
by at most two (resp., one) non-removable nonlinearities
and to identify where those nonlinearities may appear
and on which variables they may depend. Second, for a
flat system we can express all state and control variables
with the help of flat outputs and their derivatives and the
proposed normal forms allow to express all but at most
two special variables of the transformed system by pure
derivations as well as to identify those special variables
and to compute them via the implicit function theorem.
Third, like for flatness of differential weight n + 3, the
proposed normal forms allow to describe the singularities
that the two-fold dynamic prolongation may create in the
input space and thus to identify the control values at which
the system ceases to be flat. Fourth, like the Brunovský
canonical form, the presented normal forms are compatible
with flat outputs: if (ϕ1, ϕ2) is a flat output, then there
exists an invertible static feedback transformation bringing
the system into that normal form with (ϕ1, ϕ2) playing the
role of the top variables.

In Nicolau and Respondek [2016a], we gave a geometric
characterization of control-affine systems that become
static feedback linearizable after a two-fold prolongation.
The proposed normal forms apply to all systems described
there, but we do not use those results to construct our
normal forms. The paper is self-contained and all presented
results can be proved independently of those of Nicolau
and Respondek [2016a] although can be seen as their
illustration and their continuation. The paper is organized
as follows. In Section 2, we recall the definitions of flatness
and of differential weight. In Section 3, we give our main
results and illustrate them by two examples in Section 4.

2. FLATNESS

For l ≥ −1, denote ūl = (u, u̇, . . . , u(l)), with ū−1 empty.

Definition 1. The system Ξ : ẋ = F (x, u), x ∈ X ⊂ Rn,
u ∈ U ⊂ Rm, is flat at (x0, ū

l
0) ∈ X × U × Rml, for

l ≥ −1, if there exist a neighborhood Ol of (x0, ū
l
0) and m

smooth functions ϕi = ϕi(x, u, u̇, . . . , u
(l)), 1 ≤ i ≤ m,

defined in Ol, having the following property: there exist
an integer s and smooth functions γi, 1 ≤ i ≤ n, and δj ,
1 ≤ j ≤ m, such that

xi = γi(ϕ, ϕ̇, . . . , ϕ
(s−1)) and uj = δj(ϕ, ϕ̇, . . . , ϕ

(s))

for any Cl+s-control u(t) and corresponding trajectory
x(t) that satisfy (x(t), u(t), . . . , u(l)(t)) ∈ Ol, where
ϕ = (ϕ1, . . . , ϕm) and is called a flat output.

If ϕi = ϕi(x), for all 1 ≤ i ≤ m, we say that the system is
x-flat. The minimal number of derivatives of components
of a flat output, needed to express x and u, is called
differential weight Respondek [2003] of that flat output
and is formalized as follows. By definition, for any flat
output ϕ of Ξ there exist integers s1, . . . , sm such that

x = γ(ϕ1, ϕ̇1, . . . , ϕ
(s1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(sm)
m )

u = δ(ϕ1, ϕ̇1, . . . , ϕ
(s1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(sm)
m ).

(2)

Moreover, we can choose (s1, . . . , sm), γ and δ such
that (see Respondek [2003]) if for any other m-tuple

(s̃1, . . . , s̃m) and functions γ̃ and δ̃, we have

x = γ̃(ϕ1, ϕ̇1, . . . , ϕ
(s̃1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(s̃m)
m )

u = δ̃(ϕ1, ϕ̇1, . . . , ϕ
(s̃1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(s̃m)
m ),

then si ≤ s̃i, for 1 ≤ i ≤ m. We will call
∑m
i=1(si +

1) = m +
∑m
i=1 si the differential weight of ϕ. A flat

output of Ξ is called minimal if its differential weight is
the lowest among all flat outputs of Ξ. The differential
weight of a flat system equals the differential weight of
a minimal flat output. The differential weight is n +
m + p, where p ≥ 0 can be interpreted as the minimal
dimension of a precompensator that dynamically linearizes
the system. Indeed, p = 0 corresponds to static feedback
linearizable systems, while the case p = 1 corresponds
to systems linearizable via a one-fold prolongation of a
suitably chosen control Nicolau and Respondek [2016b,
2017]. Presenting normal forms for the case p = 1 was
the subject of Nicolau and Respondek [2019]. The goal of
this paper is to give normal forms for two-input flat control
systems of differential weight n+m+ 2 = n+ 4.

We say that control-affine systems Σ and Σ̃ given, resp.,
by ẋ = f(x) +

∑m
i=1 uigi(x), x ∈ X, u ∈ Rm and

˙̃x = f̃(x) +
∑m
i=1 ũig̃i(x), x̃ ∈ X̃, ũ ∈ Rm, with X and X̃

open subsets of Rn, are (locally) static feedback equivalent
if there exist a (local) diffeomorphism x̃ = φ(x) and
an invertible static feedback transformation of the form
u = α(x)+β(x)ũ which transform Σ into Σ̃, i.e., f̃(φ(x)) =
∂φ(x)
∂x (f(x) + α(x)g(x)) and g̃(φ(x)) = ∂φ(x)

∂x g(x)β(x),
where g = (g1, . . . , gm) and g̃ = (g̃1, . . . , g̃m).

The control-affine system Σ is static feedback linearizable
if it is static feedback equivalent to a linear controllable
system Λ : ˙̃x = Ax̃ + Bũ. The problem of static feedback
linearization was solved by Brockett [1979] (for a smaller
class of transformations) and then by Jakubczyk and Re-
spondek [1980] and, independently, by Hunt and Su [1981],
who gave the following geometric necessary and sufficient
conditions. Define the distributions Dj+1 = Dj + [f,Dj ],
where D0 = span{g1, . . . , gm} and [f,Dj ] = {[f, ξ] : ξ ∈
Dj}. The system Σ is locally static feedback linearizable
if and only if for any j ≥ 0, the distributions Dj are of
constant rank, involutive and Dn−1 = TX. Therefore,
the following nested sequence of involutive distributions
summarizes the geometry of static feedback linearizable
systems: D0 ⊂ D1 ⊂ . . . ⊂ Dn−1 = TX. It is well known
that systems linearizable via invertible static feedback
are flat. Their description (2) uses the minimal possible,
which is n+m, number of time-derivatives of the compo-
nents ϕi. Indeed, a feedback linearizable system is static
feedback equivalent to the Brunovský canonical form (see
Brunovský [1970], and also Aranda-Bricaire et al. [1995],
Pomet et al. [1992] for related works)

(Br) :

{
żji = zj+1

i
żρii = vi,

where 1 ≤ i ≤ m, 1 ≤ j ≤ ρi − 1, and
∑m
i=1 ρi = n, and is

clearly flat with ϕ = (ϕ1, . . . , ϕm) = (z11 , . . . , z
1
m) being a

minimal flat output (of differential weight n+m). In fact,
an equivalent way of describing static feedback linearizable
systems is that they are flat systems of differential weight
n+m, see Theorem 2.2 in Nicolau and Respondek [2017].

Assumption (A1). We will work under constant ranks
assumption implying that all results are valid on an open
and dense subset of X and hold locally, around any given
point x0 of that set, where all involved ranks are constant.
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We study flat systems of differential weight n + m + 2,
thus Σ is not static feedback linearizable (not flat of
differential weight n + m). It follows that there exists
the smallest integer 0 ≤ k ≤ n − 1 such that the
linearizability conditions (either involutivity or constant
rank) are not satisfied for Dk (flat systems are always
accessible so Dn−1 = TX holds). Under Assumption (A1),
only the case Dk noninvolutive can occur and we denote

by Dk its involutive closure. Any two-input flat system
of differential weight n + m + 2 = n + 4 becomes static
feedback linearizable after a two-fold prolongation of a
suitably chosen control, as asserted by the following result.

Proposition 1. The following are equivalent:

(i) Σ is flat at (x0, u0, u̇0, . . . , u
(l)
0 ), of differential weight

n+ 4, for a certain l ≥ −1;
(ii) Σ is x-flat at either x0 or (x0, u0), of differential

weight n+ 4;
(iii) There exists, around x0, an invertible static feedback

transformation u = α(x) + β(x)ũ, bringing Σ into

the form Σ̃ : ẋ = f̃(x) + ũ1g̃1(x) + ũ2g̃2(x), such that
the prolongation

Σ̃(2,0) :

 ẋ = f̃(x) + y1g̃1(x) + v2g̃2(x)
ẏ1 = y2
ẏ2 = v1

is locally static feedback linearizable around (x0, y0),

with y1 = ũ1, v2 = ũ2, f̃ = f+αg and g̃ = gβ, where
g = (g1, g2) and g̃ = (g̃1, g̃2).

A system Σ satisfying (iii) will be called dynamically lin-

earizable via an invertible two-fold prolongation. Σ̃(2,0) is,
indeed, obtained by applying an invertible static feedback
u = α+ βũ and then prolonging the first control ũ1 twice
as v1 = ¨̃u1 and not prolonging ũ2 (which explains the no-

tation Σ̃(2,0)). Before giving our main results, we introduce
the notion of corank, and state Proposition 2 needed in the
proofs, but also having an independent interest.

Notation 1. (Corank). Let A and B be two distributions
of constant rank. Denote [A,B] = {[a, b] : a ∈ A, b ∈ B}.
If A ⊂ B, the corank of the inclusion A ⊂ B equals the
rank of the quotient B/A, i.e., cork (A ⊂ B) = rk (B/A).

Proposition 2. Suppose that Σ is dynamically linearizable
via invertible two-fold prolongation and let Dk be its first
noninvolutive distribution. Then the distribution Dk is
feedback invariant and satisfies cork (Dk ⊂ Dk) ≤ 2.

Moreover, if cork (Dk ⊂ Dk) = 2, then rkDk = 2k + 2.

According to Proposition 2, at most two independent

directions of Dk stick out of Dk. In this paper, we study
only the case when the noninvolutivity of Dk is maximal,

i.e., cork (Dk ⊂ Dk) = 2. The normal forms for the

particular case cork (Dk ⊂ Dk) = 1 remind those for
flatness of differential weight n + 3 (for which the first
noninvolutive distribution necessarily satisfies cork (Dk ⊂
Dk) = 1), but are slightly different and will be treated
elsewhere. To sum up, we make the following assumption:

Assumption (A2). The integer k is the smallest such
that Dk is not involutive and, moreover, we suppose

cork (Dk ⊂ Dk) = 2.

3. MAIN RESULTS: NORMAL FORMS

The main results are given by Theorems 1 and 2 that
present four normal forms for the class of flat two-input
control-affine systems of differential weight n+m+2=n+4.

3.1 Normal forms. Given a system Σ : ẋ = f(x)+u1g1(x)+
u2g2(x) that is flat at x0 (at (x0, u0), if k = 0 or k = 1),
the normal forms are obtained under local static feedback
transformations

z = φ(x), u = α(x) + β(x)ũ, (3)
and are flat at z0 (at (z0, ũ0), if k = 0 or k = 1), where

z0 = φ(x0), u0 = α(x0) + β(x0)ũ0. (4)
For k ≥ 2, we will give two normal forms NF1 and NF2,
that are static feedback equivalent, each of them having
its advantage: for NF1 we see immediately the control to
be prolonged, whereas for NF2 the role of k is explicit.
The integers ρi and µi that show up in the normal forms
are such that ρ1 + ρ2 + 2 = n and µ1 + µ2 + 2k = n. For
i = 1, 2, denote z̄ji = (z1i , · · · , z

j
i ) and w̄ji = (w1

i , · · · , w
j
i ).

Theorem 1. Suppose k ≥ 2. The following are equivalent:

(i) Σ is flat at x0 of differential weight n+ 4;
(ii) Σ is locally, around x0, static feedback equivalent in

a neighborhood of z0 ∈ Rn to:

NF1 :


żj1 = zj+1

1 żj2 = zj+1
2

żρ11 = ũ1 żρ22 = zρ2+1
2 + b(z)ũ1

żρ2+1
2 = zρ2+2

2 + d(z)ũ1
żρ2+2
2 = ũ2

where 1 ≤ j ≤ ρi−1, ρi ≥ k+1, and the functions b =

b(z̄ρ1−k+2
1 , z̄ρ2−k+2

2 ) and d = d(z̄ρ1−k+3
1 , z̄ρ2−k+3

2 )
and are such that k is as in Assumption (A2);

(iii) Σ is locally, around x0, static feedback equivalent in
a neighborhood of w0 ∈ Rn to:

NF2 :


ẇj1 =wj+1

1 ẇj2 =wj+1
2

ẇµ1−1
1 =wµ1

1 ẇµ2−1
2 = p(w) + q(w)wµ1+2

1

ẇl1 =wl+1
1 ẇl2 =wl+1

2

ẇµ1+k
1 = ũ1 ẇµ2+k

2 = ũ2
where 1 ≤ j ≤ µi − 2, µi ≤ l ≤ µi + k − 1, µ1 ≥ 1,
µ2 ≥ 3, the functions p = p(w̄µ1+1

1 , w̄µ2

2 ) and q =

q(w̄µ1+1
1 ,w̄µ2

2 ) are such that
(
∂p
∂w

µ2
2

+ ∂q
∂w

µ2
2

wµ1+2
1

)
(w0) 6=

0 and verify additional regularity conditions such
that k is as in Assumption (A2).

Moreover, the functions (ϕ1, ϕ2) = (z11 , z
1
2) for NF1, and

(ϕ1, ϕ2) = (w1
1, w

1
2) for NF2, are flat outputs of differential

weight n+ 2 + 2 = n+ 4.

The functions b and d of NF1 (resp., p and q of NF2) are
briefly discussed in Section 3.1.1 below.

Flatness described by Theorem 1 (treating the case k ≥ 2)
is local around x0 but, like for flat systems of differential
weight n + m or n + m + 1 (with k ≥ 1), is global with
respect to the control u. This changes if k = 1 or k = 0,
in which cases we have to consider flatness at (x0, u0) as
described by Theorem 2. Observe that we face a similar
situation for flatness of differential weight n+m+ 1 when
k = 0, Nicolau and Respondek [2017, 2019]. Below, ũ10
stands for the first component of ũ0 given by (4).

Theorem 2. Assume k = 0 or k = 1. The following are
equivalent:

(i) Σ is flat at (x0, u0) of differential weight n+ 4;
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(ii) Σ is locally, around x0, static feedback equivalent in
a neighborhood of z0 ∈ Rn to:

NF3 :


żj1 = zj+1

1 żj2 = zj+1
2

żρ11 = ũ1 żρ22 = zρ2+1
2 + (ũ1 − ũ10)b(z)

żρ2+1
2 = zρ2+2

2 + (ũ1 − ũ10)d(z)

żρ2+2
2 = ũ2

where 1 ≤ j ≤ ρi − 1, ρi ≥ k + 1, the functions
b = b(z̄ρ11 , z̄

ρ2+1
2 ) and d = d(z̄ρ11 , z̄

ρ2+2
2 ) are such

that k is as in Assumption (A2), that is, satisfy
additionally the conditions of Section 3.1.2 below;

(iii) Σ is locally, around x0, static feedback equivalent in
a neighborhood of z0 ∈ Rn to:

NF4 :


żj1 = zj+1

1 żj2 = zj+1
2

żρ11 = ũ1 żρ22 =A(z, ũ1)

żρ2+1
2 =B(z, ũ1)

żρ2+2
2 = ũ2

where 1 ≤ j ≤ ρi − 1, ρi ≥ k + 1, and
∂A

∂zρ2+1
2

(z0, ũ10) 6=0,
∂B

∂zρ2+2
2

(z0, ũ10) 6=0, and (5)

- either k = 0 and then

A(z, ũ1) = a(z̄ρ11 , z̄
ρ2+1
2 ) + zρ2+1

2 ũ1, (6)

B(z, ũ1) = c(z̄ρ11 , z̄
ρ2+2
2 ) + zρ2+2

2 ũ1, (7)

- or k = 1 and then

either A(z, ũ1) = a(z̄ρ11 , z̄
ρ2+1
2 ) + zρ2+1

2 ũ1

or A(z, ũ1) = zρ2+1
2 + b(z̄ρ11 , z̄

ρ2+1
2 )ũ1, (8)

and B(z, ũ1) = zρ2+2
2 + d(z̄ρ11 , z̄

ρ2+1
2 )ũ1, (9)

where the function b of the second case of (8)
satisfies some regularity conditions assuring that
k = 1 is as in Assumption (A2).

Moreover, for NF3 and NF4, (ϕ1, ϕ2) = (z11 , z
1
2) is a flat

output of differential weight n+ 4.

3.1.1 Nonlinearities and invariants of NF1 and NF2. For
NF1, the value of k is encoded when looking more precisely

at the functions b and d, which depend on z̄ρ1−k+2
1 and

z̄ρ2−k+2
2 for b and on z̄ρ1−k+3

1 and z̄ρ2−k+3
2 for d. The

involutivity of the distributions Dj , for 0 ≤ j ≤ k − 1,
imposes on b and d three more conditions (which can
be computed by a straightforward calculation) that we
do not present here. Moreover, by Assumption (A2), the

distribution Dk is noninvolutive and cork (Dk ⊂ Dk) = 2
implying, see Proposition 2, rkDk = 2k + 2. Hence the
integers ρi of NF1 are such that ρi ≥ k+1, the integers µi
of NF2 are such that µ1 ≥ 1 and µ2 ≥ 3, and the
functions b and d of NF1, resp., p and q of NF2, should also

satisfy some regularity conditions assuring rkDk(x0) =
2k + 4. One may also distinguish the subcase when the
grow vector of Dk is (2k + 2, 2k + 3, 2k + 4) from that
when the grow vector of Dk is (2k + 2, 2k + 4).

3.1.2 Conditions on the functions b and d of NF3. If k = 0,
the first distribution D0 is noninvolutive which, together
with Assumption (A2), implies that rk (D0 +[D0,D0]) = 3

and rkD0
= 4 (equivalently, the grow vector of D0 is

(2, 3, 4)). The first condition implies ∂d

∂z
ρ2+2

2

(z0) 6= 0

and the second implies ∂b

∂z
ρ2+1

2

(z0) 6= 0. If k = 1, then

b = b(z̄ρ11 , z̄
ρ2+1
2 ) and d = d(z̄ρ11 , z̄

ρ2+1
2 ) and have to satisfy

additionally some conditions assuring that D1 is indeed

noninvolutive and that cork (D1 ⊂ D1
) = 2. As for NF1,

one may also distinguish the cases D1
= D1 + [D1,D1]

(corresponding to the grow vector of D1 being (4, 6)) and

cork (D1 + [D1,D1] ⊂ D1
) = 1 (corresponding to the grow

vector of D1 being (4, 5, 6)).

3.2 Discussion of the normal forms. All normal forms are
valid around z0 ∈ Rn, which may be zero or not. Thus all
forms can be used around any point (equilibrium or not).

All forms and the minimal x-flat outputs are compatible,
that is, for a given flat system Σ of differential weight
n + 4, we can always simultaneously normalize Σ and a
priori given minimal flat output ϕ, as asserted by:

Proposition 3. Let Σ be flat at x0 (at (x0, u0), if k = 0 or
k = 1) and ϕ a minimal flat output of differential weight
n + 4 of Σ. Then Σ is locally around x0 static feedback
equivalent to NF1 or NF2, if k ≥ 2, (resp. to NF3 or NF4,
if k = 0 or k = 1), where ϕ = (z11 , z

1
2) for NF1 (resp. for

NF3 and NF4) and ϕ = (w1
1, w

1
2) for NF2.

All normal forms become locally static feedback lineariz-
able after a two-fold prolongation of ũ1. In the cases
k = 1 and k = 0 (and only in those two cases!), the
precompensator creates singularities in the control space
(depending on the state), see Section 3.3 below.

Normal forms NF1, NF3 and NF4 always contain a linear
chain dρ1

dtρ1 z
1
1 = ũ1, called z1-chain whose control has to

be prolonged twice. For each form there are (at most) two
nonlinearities of different possible forms (see Table 1) asso-
ciated to the z2-chain (which is called nonlinear). Observe
that the normal forms for k ≥ 1 may actually present
only one nonlinear function (see Example 2): this happens

only if the function d involved in the expression of żρ2+1
2

is identically zero. On the other hand, the normal forms
for k = 0 always involve two nonlinearities. The number
of possible nonlinearities of the forms presented in this
paper, is due to the fact that the first noninvolutive dis-
tribution Dk is actually squeezed between two involutive

ones, namely Dk−1 ⊂ Dk ⊂ Dk and both inclusions are of
corank two, see Nicolau and Respondek [2016a].

NF2 also contains a linear w1-subsystem that is a chain of
pure ρ1-fold integrator dρ1

dtρ1 w
1
1 = ũ1 (we actually have ρ1 =

µ1+k). The w2-chain has two nonlinearities p(w̄µ1+1
1 , w̄µ2

2 )

and q(w̄µ1+1
1 , w̄µ2

2 ) defining the only nonlinear component

ẇµ2−1
2 = p(w)+ q(w)wµ1+2

1 . In NF2, the integer k appears
explicitly, so the noninvolutive distribution Dk is easier
to be analyzed with the help of NF2. From NF2, it is
obvious that in the case k ≥ 2, the flat outputs provide
a parametrization of system’s trajectories that is global
with respect to controls. If k = 1, then the system is static
feedback equivalent to a form that reminds NF2, namely to

NF2k=1 :


ẇj1 = wj+1

1 ẇj2 = wj+1
2

ẇµ1−1
1 = wµ1

1 ẇµ2−1
2 = p(w) + q(w)ũ1

ẇµ1

1 = wµ1+1
1 ẇµ2

2 = wµ2+1
2

ẇµ1+1
1 = ũ1 ẇµ2+1

2 = ũ2
(the only difference with NF2 is that the control ũ1
replaces the variable wµ1+2

1 in the only nonlinear equation

ẇµ2−1
2 = p(w̄µ1+1

1 , w̄µ2

2 ) + q(w̄µ1+1
1 , w̄µ2

2 )wµ1+2
1 ).
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3.2.1 Comparison with flat systems of differential weight
n + 2 and n + 3. For two-input flat control systems of
differential weight n + m + 1 = n + 3 (or equivalently,
linearizable via a one-fold prolongation), we proposed
in Nicolau and Respondek [2019], without constant rank
assumption, four normal forms that are analogous to those
presented here. Each of them contains only one nonlinear
function and they differ notably by the role played by
the first distribution destroying feedback linearizability
(k being defined as the smallest integer such that either
involutivity or constant rank is not satisfied for Dk). We
distinguished the cases k ≥ 1 and k = 0. To summarize
normal forms NF1, NF3 and NF4 as well as those for
differential weight n+ 2 and n+ 3, we state:

Proposition 4. Σ is flat at x0 or (x0, u0) of differential
weight at most n+ 4 if and only if it is locally, around x0,
static feedback equivalent in a neighborhood of z0 ∈ Rn to:

NF0 :


żj1 = zj+1

1 żj2 = zj+1
2

żρ11 = ũ1 żρ22 = a(z̄ρ11 , z̄
ρ2+1
2 ) + b(z̄ρ11 , z̄

ρ2+1
2 )ũ1

żρ2+1
2 = c(z) + d(z)ũ1
żρ2+2
2 = ũ2

where 1≤ j≤ρi−1, a, b, c, d are smooth functions verifying

∂(a+ bũ10)

∂zρ2+1
2

(z0) 6= 0,
∂(c+ dũ10)

∂zρ2+2
2

(z0) 6= 0.

Moreover, (ϕ1, ϕ2) = (z11 , z
1
2) is a minimal flat output of

differential weight at most n+ 4.

Normal form NF0 presents four nonlinearities, but we can
always normalize at least two of them. Table 1 (where d.w.
stands for differential weight) presents all possible cases.

Table 1. Comparison

d.w. Form Nonlinearities

n + 2 (Br) a = zρ2+1
2 b ≡ 0

c = zρ2+2
2 d ≡ 0

n + 3 All forms a = zρ2+1
2 b ≡ 0

NF1, k ≥ 1 c = zρ2+2
2 d(z̄ρ11 , z̄ρ2+1

2 ) any

NF3, k = 0 c + ũ10d = zρ2+2
2 d(z) any

NF4, k = 0 c(z) any d = zρ2+2
2

or∗

c = zρ2+2
2 d(z) any

n + 4 NF1, k ≥ 2 a = zρ2+1
2 b(z̄ρ11 , z̄ρ2+1

2 ) any

c = zρ2+2
2 d(z) any

NF3, k = 0 or 1 a + ũ10b = zρ2+1
2 b(z̄ρ11 , z̄ρ2+1

2 ) any

c + ũ10d = zρ2+2
2 d(z) any

NF4, k = 1 a(z̄ρ11 , z̄ρ2+1
2 ) any b = zρ2+1

2
or

a = zρ2+1
2 b(z̄ρ11 , z̄ρ2+1

2 ) any
and

c = zρ2+2
2 d(z̄ρ11 , z̄ρ2+1

2 ) any

NF4, k = 0 a(z̄ρ11 , z̄ρ2+1
2 ) any b = zρ2+1

2

c(z) any d = zρ2+2
2

∗Under the constant rank assumption, only the first form shows up.

3.3 Identifying singularities in the control space. When
k = 0 or k = 1, the system exhibits flatness singularities
in the control space and we will explain that, according
to Theorem 2, there are two ways to deal with them
(reminding very much the case of flatness of differential
weight n + m + 1 with k = 0, Nicolau and Respondek
[2019]). Normal forms NF3 and NF4 are local, around z0,
but global with respect to ũ = (ũ1, ũ2) ∈ R2 and thus

allow to identify all points (z, ũ) at which the system is x-
flat and distinguish them from (zs, ũs) at which it is not.
Let u0 be a nominal control. Its value is involved in NF3
in such a way that NF3 is flat around (x0, u0). On the
other hand, NF4 does not use the knowledge of u0 and in
order to verify that NF4 is flat around (x0, u0) one needs
to check conditions (5). More precisely, the value of ũ10
appears explicitly in NF3 and it yields, at the nominal
point (z0, ũ0), a zero multiplying the functions b and d and

allowing us to normalize a(z)+b(z)ũ10 as zρ2+1
2 and c(z)+

d(z)ũ10 as zρ2+2
2 . The value of ũ10 does not appear in NF4

and the normalization of the nonlinearities is different. In
the case k = 0, due to noninvolutivity of D0 whose grow
vector is (2, 3, 4), we can always normalize b and d to

b = zρ2+1
2 and d = zρ2+2

2 , resp. If k = 1, the function d

does not depend on zρ2+2
2 (so we can always normalize c to

c = zρ2+2
2 ) and from ∂(a+ũ10b)

∂z
ρ2+1

2

(z0) 6= 0, it follows that we

can normalize either a or b. Forms NF3 and NF4 hold on
O×R2, whereO is a neighborhood of z0. The identification
of all points at which the system is not flat can be
performed as follows. Define by a(z) + b(z)ũ1 and c(z) +

d(z)ũ1 the expressions for żρ2+1
2 and żρ2+2

2 , resp., for both
NF3 and NF4, independently of the normalization. Set

S1(z, ũ1) = ∂(a(z)+ũ1b(z))

∂z
ρ2+1

2

and S2(z, ũ1) = ∂(c(z)+ũ1d(z))

∂z
ρ2+2

2

,

which depend (in an affine way) on ũ1, and fix z ∈ O. For
k = 1, flatness singularities are (z, ũs(z)) ∈ O×R2, where
ũs(z) = (ũs1(z), ũs2(z)), with ũs1(z) being the unique root
of S1(z, ũ1) = 0 and any ũs2(z) ∈ R. Those singularities
always exist and form, for a fixed z, one line in the control
space R2. Similarly, if k = 0, flatness singularities are
(z, ũs(z)) ∈ O × R2, where ũs1(z) is a root of the product
S1(z, ũ1) ·S2(z, ũ1) = 0. Notice that, for each fixed z ∈ O,
the above product admits either two or one distinct real
roots. Therefore for a given z ∈ O, the values of the
singular controls form, resp., two lines or one line in R2.

4. EXAMPLES

Example 1. Flatness of differential weight n + 4 for four-
dimensional control systems. The simplest two-input con-
trol system that may satisfy the assumptions under which

we work (that is cork (Dk ⊂ Dk) = 2) are those in di-
mension four. The problem of flatness for four-dimensional
control systems with two inputs has been solved by Pomet
[1997] whose results can be interpreted in terms of dynamic
linearizability via a p-fold prolongation of a suitably chosen
control with p ≤ 3 (or equivalently in terms of flatness of
differential weight n + m + p = 6 + p). While the cases
p ≤ 2 correspond to x-flatness (which is consistent with
Proposition 1 and Nicolau and Respondek [2017]), the
last case p = 3 describes (x, u)-flatness (i.e., all possible
flat outputs depend explicitly on u). We will focus on
the case p = 2 (which is the subject of this paper). For
four-dimensional two-input control systems that satisfy
Assumption (A2), the first noninvolutive distribution is
necessarily D0, i.e., k = 0, and as we have already seen,

under the hypotheses cork (D0 ⊂ D0
) = 2, only the grow

vector (2, 3, 4) for D0 is possible (and in particular, D0
=

TX). In fact, if a system with four states and two controls

satisfying cork (D0 ⊂ D0
) = 1 is flat, then it is necessarily

dynamically linearizable via a one-fold prolongation (and
thus of of differential weight n + 3 = 7). Therefore the
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condition cork (D0 ⊂ D0
) = 2 is actually necessary for the

differential weight n+ 4 = 8 and, according to Theorem 2,
all systems of differential weight 8 admit, around (x0, u0),
one normal form that can be taken as either

NF3n=4 :

{
z11 = ũ1 ż12 = z22 + (ũ1 − ũ10)b(z11 , z̄

2
2)

ż22 = z32 + (ũ1 − ũ10)d(z11 , z̄
3
2)

ż32 = ũ2,
where ∂b

∂z22
(z0) 6= 0 and ∂d

∂z32
(z0) 6= 0, or

NF4n=4 :

{
z11 = ũ1 ż12 = a(z11 , z̄

2
2) + z22 ũ1

ż22 = c(z11 , z̄
3
2) + z32 ũ1

ż32 = ũ2,
where ∂a

∂z22
(z0) + ũ10 6= 0 and ∂b

∂z32
(z0) + ũ10 6= 0. Form

NF4n=4 agrees with that of Pomet [1997] corresponding
to linearizability via a two-fold prolongation and our
regularity conditions coincide with one case of Pomet
[1997] while the other case of Pomet [1997] is excluded
by the constant rank Assumption (A1).

Example 2. The PVTOL aircraft. The following model of
a planar vertical take off and landing (PVTOL) aircraft
was introduced in Hauser et al. [1992] and has attracted
a lot of attention in the last years (see, e.g., Martin
et al. [1996], Lozano et al. [2004]). The configuration of
the system is (θ, x1, y1), with θ the angle the aircraft
makes with the horizontal axis and (x1, y1) the position
of its center of mass. After normalisation of m and J , the
dynamics of the PVTOL aircraft is given by:

θ̇=ω ẋ1 =x2 ẏ1 = y2
ω̇=u2 ẋ2 =−u1 sin θ ẏ2 =−ag + u1 cos θ

+εu2 cos θ +εu2 sin θ,
where u1 and u2 correspond, resp., to the body vertical
force (minus the gravity) and to forces on the tips of
the wings, ag is the gravity acceleration and ε 6= 0 is a
fixed constant related to the geometry of the aircraft. The
PVTOL aircraft has been shown to be locally flat with ϕ =
(x1− ε sin θ, y1 + ε cos θ) a flat output of differential weight
n+ 4, see Martin et al. [1996]. By a direct calculation we

get k = 1 and D1
= D1 + [D1,D1] = TX. We show that

the PVTOL model can be brought into NF4. Suppose that
we work around a nominal point such that sin θ0 6= 0. By
introducing the local coordinates x̃1 = x1 − ε sin θ, x̃2 =
Lf x̃1, ỹ1 = y1 + ε cos θ, ỹ2 = Lf ỹ1, θ̃ = − cot θ, ω̃ = Lf θ̃,
followed by a suitable invertible feedback transformation
(where ũ1 = εω2 sin θ − u1 sin θ), we get

˙̃x1 = x̃2 ˙̃y1 = ỹ2
˙̃x2 = ũ1 ˙̃y2 = −ag + θ̃ũ1

˙̃
θ = ω̃
˙̃ω = ũ2.

This is normal form NF4 for k = 1 for which, with respect
to the Brunovsý canonical form, only one component (the
third from the bottom) of the second chain is modified.
In these coordinates, we have ϕ = (x̃1, ỹ1) and in order to
express all states and controls, we need to differentiate ũ1
twice (thus obtaining the differential weight n + 4). The
input ũ1 is also the control that has to be prolonged twice
in order to obtain a static feedback linearizable prolonged
system. Finally, notice that ũ10 = 0 is a singular control
for flatness of differential weight n+ 4.
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Fliess, M., Lévine, J., Martin, P., and Rouchon, P. (1995). Flatness
and defect of non-linear systems: introductory theory and exam-
ples. Internat. J. Control, 61(6), 1327–1361.

Fliess, M., Lévine, J., Martin, P., and Rouchon, P. (1999). A Lie-
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