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Abstract: This paper presents the µCar, a 1:18 model-scale vehicle with Ackermann steering
geometry developed for experiments in networked and autonomous driving in research and
education. The vehicle is open source, moderately costed and highly flexible, which allows for
many applications. It is equipped with an inertial measurement unit and an odometer and
obtains its pose via WLAN from an indoor positioning system. The two supported operating
modes for controlling the vehicle are (1) computing control inputs on external hardware,
transmitting them via WLAN and applying received inputs to the actuators and (2) transmitting
a reference trajectory via WLAN, which is then followed by a controller running on the onboard
Raspberry Pi Zero W. The design allows identical vehicles to be used at the same time in order
to conduct experiments with a large amount of networked agents.
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SUPPLEMENTARY MATERIAL

A demonstration video of this work is available at https:
//youtu.be/84R28cSxWQU.
The vehicle software, bill of materials and a produc-
tion tutorial can be found on our website https://cpm.
embedded.rwth-aachen.de.

1. INTRODUCTION

Research on networked and autonomous vehicles is ongo-
ing since multiple decades. When new methods are devel-
oped, the necessity of testing them arises. This can be done
with little effort in simulation as in Naumann et al. (2018).
The meaningfulness of results in simulation is restricted,
as only aspects of reality that are modeled are considered.
More meaningful are experiments in true scale, but those
require a high effort and are expensive, especially when
testing methods on networked vehicles, as multiple test
platforms are required. Midway between those options,
methods can be tested on scaled testbeds. In scaled ex-
periments, many challenges of the true-scale problem are
apparent, e.g. communication delays and losses, synchro-
nization problems or actuator dynamics. Another benefit
compared to the true-scale experiment is that setting up
⋆ This research is supported by the Deutsche Forschungsgemein-
schaft (German Research Foundation) within the Priority Program
SPP 1835 “Cooperative Interacting Automobiles” (grant number:
KO 1430/17-1) and the Post Graduate Program GRK 1856 “Inte-
grated Energy Supply Modules for Roadbound E-Mobility”.

the experiment is simpler and quicker, which allows for
rapid development cycles.
The curriculum at a university should prepare students
for research in networked and autonomous vehicles. This
includes for example the design of algorithms for embed-
ded hardware, designing controllers for nonlinear systems,
or coupling of networked agents for collision avoidance.
Seeing an algorithm one has developed running in an
experiment fills students with enthusiasm about learning
concepts of control by applying it to the cyber-physical
mobility (CPM) system. The modified model-scale vehicle
proposed in this paper enables those experiments.
This paper is structured as follows. Section 2 compares
model-scale vehicles with Ackermann steering geometry
from literature. Section 4 describes how we transform
a model-scale race car to a networked and autonomous
vehicle with off-the-shelf components, excluding a printed
circuit board. The lab environment in which the vehicles
operate is sketched in section 3. In section 5, examples are
given to show in what form the vehicles can be used in
control education.

2. EXISTING PLATFORMS

In the last decade, a number of model-scale testbeds have
been developed. In Paull et al. (2017), 15 platforms for
education and research with a cost lower than $300 are
compared. These differ from the model-scale vehicle we
present, as they are wheeled differential drive platforms or
platforms with slip-stick forwards motion.
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In Table 1, an overview of recently developed model-
scale vehicles with Ackermann steering geometry is given.
Having a scaling factor of 1:43 and 1:24 respectively, the
ORCA Racer (Liniger et al., 2014) and the Cambridge
Minicar (Hyldmar et al., 2019) are smaller than the vehicle
presented in this work. The ORCA Racer is based on the
Kzosho dnano RC race car, but substitutes its original
board with a custom printed circuit board (PCB). This
board features an ARM Cortex-M4 processor, Bluetooth
communication and an inertial measurement unit (IMU).
The vehicles are designed to receive externally computed
control inputs via Bluetooth, and apply these inputs with
an onboard low-level controller (LLC). The Cambridge
Minicar is based on the CMJ RC Cars Range Rover Sport.
Its controlled by a Raspberry Pi Zero W. These vehicles
are controlled by sending externally computed control
inputs via broadband radio.
The Berkeley Autonomous Race Car (BARC) from Gon-
zales et al. (2016), the MIT Racecar from Karaman et al.
(2017) and the F1/10 from O’Kelly et al. (2019) share
the scale of 1:10. The mechanical base for all three vehi-
cles is a Traxxas rally car. At this size, the vehicles are
capable of carrying more computational power and more
sensors additionally to an IMU. In the BARC, 4 rotary
encoders are installed for speed measurement and a camera
is mounted. Optionally, it is possible to install a lidar and a
Global Navigation Satellite System (GNSS) receiver. The
high-level controller (HLC) and main computing unit is
an ODROID-XU4, the LLC, i.e. sensor read and actuator
control, is performed with an Arduino Nano. The setup of
the MIT Racecar and the F1/10 is similar. The speed is
given by a VESC electronic speed controller, and optional
sensors include a 3D stereo cameras and a lidar. The main
computing element is the Nvidia Jetson Tegra X1. The
greater computing power and additional sensors allow for
onboard autonomy. This is also a reason why these setups
cost around $1000. At the scale of 1:10, a lot of space
is required for indoor experiments on cooperative driving
with multiple vehicles. Due to the cost and the size of
the platforms, indoor experiments with a large amount of
vehicles are difficult.
At the largest scale of 1:5, the GATech Auto-Rally from
Williams et al. (2016) and the IRT buggy from Reiter et al.
(2014, 2017) are designed for outdoor experiments. The
Auto-Rally is equipped with two forward facing cameras,
a Lord Microstrain 3DM-GX4-25 IMU, a GNSS receiver,
and wheel speed sensors. The computational power is
provided by an Intel quad-core i7 processor, 16GB RAM,
and an Nvidia GTX-750ti graphics card. With this elabo-
rate hardware setup, the Auto-Rally is used for aggressive
driving. The IRT buggy is designed for versatile use. It
shares the separation of HLC and LLC in two hardware
components with the BARC. Sensors include a GNSS-
sensor, an IMU, and two rotary encoders at the rear
wheels. Its modular setup allows for other sensors such
as a lidar. Similar to the ORCA Racer, this platform is
not open source.
The larger model-scale vehicles are equipped with sensors
and computing power to allow autonomy. The µCar, as
well as the ORCA Racer and the Cambridge Minicar are
reliant on the interaction with a lab environment. This
lab environment provides the positioning of the vehicles
and therefore substitutes the GNSS of the real world

Table 1. Recent model-scale Ackermann-
steering platforms

Vehicle name Scale
ETHZ ORCA Racer 1:43
Cambridge Minicar 1:24
µCar 1:18
F1/10 1:10
BARC 1:10
MIT Racecar 1:10
GATech AutoRally 1:5
IRT buggy 1:5

Map

Router

Camera

Main Comp.

Comp. 1 Comp. 2 Comp. N

μCar 1

μCar 2

μCar N

Fig. 1. CPM lab overview: vehicles communicate via
WLAN with their respective computers and the in-
door positioning system (IPS).

experiment. In the case of the Cambridge Minicar, this
is done with an OptiTrack motion capture system that
requires multiple cameras, while the lab environment of
the ORCA Racer only uses one camera, similar as our
CPM lab. In contrast to those two labs, in addition
to the option of sending control inputs to the vehicle,
a trajectory following mode exists, where an onboard
controller determines the control inputs necessary to follow
a given trajectory.

3. ENVIRONMENT: CPM LAB

The vehicles are used for experiments in a lab environment
as visualized in Fig. 1, which we call CPM lab (Kloock
et al., 2020a). This lab provides a driving area of about
4.5m × 4m. Communication between the vehicles and
this environment is established through Data Distribution
Service RTI Connext DDS. An IPS provides the vehicles
with their pose (position and orientation) with a worst-
case accuracy of 3.25 cm and 2.25°. A camera detects
the position of the three LEDs on the vehicle. These
LEDs define a vehicle’s pose due to their arrangement
on the vehicle in a non-equilateral triangle. The vehicle
corresponding to a detected pose is identified with a signal
code sent by the fourth LED on the vehicle as shown in
Kloock et al. (2020b). Additionally, a reference trajectory
or the actuator inputs for the vehicles are sent via WLAN.
The vehicle returns its current state, which includes the
estimated pose as well as sensor readings and actuator
commands.
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Fig. 2. The µCar, a 1:18 model-scale vehicle

Table 2. Components used in the µCar; cost
rounded to the next integer

Item Application Cost [AC]
XRAY M18 Pro Mechanical platform 170

Gens ace 3500mAh LiPo Battery 30

NF113LG-011 Motor 15

Hitec D89MW Servo 50

PCB Board 15

Raspberry Pi Zero W MLC 18

8GB SD Card Memory 7

ATmega2560 LLC 12

Pololu VNH5019 Motor Driver 23

DeboSens BNO055 IMU 34

Eletronic Parts 21

SUM 395

4. VEHICLE SETUP

The model-scale vehicle presented here is shown in Fig. 2.
It is an Ackermann-steered, non-holonomic mobile robot
in the scale of 1:18 compared to a typical passenger
vehicle. Its length is 220mm, its width 107mm, its height
70mm, its wheelbase L = 150mm and its weight is 500 g.
The vehicle has a maximum speed of 3.7m/s. The power
consumption in standby (without steering or acceleration)
is 250mW. In experiments, the battery powers the car
for about five hours. Table 2 lists the components used
in the model-scale vehicle. The cost calculation refers to
an order of 20 vehicles, as a single PCB would cost 45AC,
but ordering a panel cluster with 20 PCBs on one board
reduces the price of a unit to 15AC. Assembling a vehicle
takes one person around six hours of time.
Using an off-the-shelf mechanical platform allows for a
quick start in building a networked and autonomous
model-scale vehicle. We use the mechanical components
from the XRAY M18 PRO LiPo. It is a 1:18 micro car
that is designed for holding a battery, a servo motor for
steering and a motor for propulsion. The motor drives all
four wheels as the shaft is connected to each one with
differentials. The minimum turning radius given by the
mechanical design is approximately 0.3m.
The vehicle’s hardware architecture is illustrated in Fig. 3.
A Raspberry Pi Zero W takes the role of the mid-level
controller (MLC) on the vehicle. It is responsible for the
communication via WLAN with the HLC, as described in
section 3, and for clock synchronization using the Network
Time Protocol. Additionally, the MLC fuses the sensor

data to obtain accurate localization. The MLC also sup-
plies the LLC with control inputs. This is either realized
by forwarding control inputs received via WLAN, or by
running a controller for trajectory following as described
in the next paragraph. The tasks on the Raspberry are
repeated in a frequency of 50Hz, i.e. a time interval of
20ms.
In order to ensure the most individual and adaptable
handling of the vehicle, we designed a custom PCB con-
necting the components. This PCB serves as an interface
between the actuators, sensors and control electronics. The
PCB with its components is shown in Fig. 4. This PCB
embeds an ATmega2560 microcontroller with a 16MHz
clock rate. The microcontroller functions as the LLC,
reading the sensor data and applying the control inputs
to the actuators. The hardware separation in MLC and
LLC introduces a hierarchical architecture, which creates
a hardware abstraction layer. If the MLC needs to be
changed, the interface to the hardware can remain the
same.
At a frequency of 50Hz, the MLC and the LLC exchange
information via Serial Peripheral Interface (SPI). The
MLC provides the control inputs, while the LLC returns
the sensor readings. A TXB0104 bidirectional voltage-level
translator was installed for level adaptation of the SPI bus.
The 3.3V SPI level of the Raspberry is converted into a
5V SPI signal for the ATmega.
The IMU is a DeboSens BNO055 and provides the required
sensor data using a 9-DOF sensor. The ATmega micro-
controller can retrieve this data via the two wire Inter-
Integrated Circuit bus.
The motor driver board VNH5019 drives the single
brushed DC motor of the vehicle via an integrated
H-Bridge. The ATmega controls the motor driver via a
pulse width modulation signal with a frequency of 20 kHz.
A current sensing output provides the ATmega with a
signal which is proportional to the current applied to
the motor. The power source is a 2000mAh lithium-ion
polymer (LiPo) battery which provides a 7.4V voltage.
This voltage is directly fed to the motor driver unit. Since
the Raspberry and all the other components (except the
motor driver unit) are specified to 5V or 3.3V respec-
tively, the voltage is reduced by an NCP1117 low-dropout
voltage regulator. To protect the LiPo battery as well as
the electronic components a battery protection circuit was
inserted.
Three Hall-effect sensors mounted on a separate odometer
board measure the motor shaft rotation. A diametrically
magnetised disc magnet is attached to the motor shaft
in order to make the rotational motion of the axis mea-
surable. With this setup, it is possible to distinguish six
different motor angles per rotation. The digital signals of
the Hall sensors are directly transmitted to three I/Os of
the ATmega, which translates the signals into a rotation
count.
Four LEDs are installed on the vehicle, which are also
connected to the odometer board and controlled by the
ATmega. The outer three LEDs are used for positioning
with an IPS, while the inner one signals the vehicle’s ID.
The vehicles can operate in the two different modes (1) ex-
ternal control and (2) trajectory following. If a trajectory
is provided to the vehicle, the MLC determines the control
inputs to follow that trajectory. The trajectory is provided
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Fig. 4. The PCB on the vehicle with several components
installed

as a list of tuples (t, x, y, vx, vy). Usually, a trajectory point
is understood to be a tuple of time and position. The
controller needs reference trajectory points at controller-
specific points in time. If the time step between trajectory
points is larger than the control time step, the MLC
interpolates the trajectory to determine a sensible refer-
ence point. By fixing the derivative of the trajectory in
each point, the MLC is enabled to interpolate between
trajectory points with cubic Hermite splines. While it is
possible to substitute a reference trajectory, further trajec-
tory points can also be appended to an existing reference
trajectory. If the MLC receives control inputs, it switches
to directly applying those to the actuators. This behavior
allows for manual control of the vehicle with a gamepad
or a keyboard for example. It is also possible to compute
control inputs depending on the vehicle state and reference
trajectory externally and send those via WLAN.

5. THE VEHICLES IN CONTROL EDUCATION

The vehicle’s hierarchical architecture allows students to
work at different levels of abstraction.
(1) It is possible to learn the basics of embedded pro-

gramming when working with the LLC (the AT-
mega2560). At this level, students need to understand
microcontroller unit data sheets in order to determine
how to read sensors and control actuators correctly in
C-code.

(2) At the level of the MLC (the Raspberry Pi Zero
W), tasks like trajectory control or sensor fusion can
be tackled. Measurements of multiple sensors need

to be fused for vehicle localization in the proposed
setup, which reflects the real world application. The
IPS provides absolute positioning, but its measure-
ment data is transmitted to the vehicle via WLAN,
which makes the measurements relatively slow and
also unreliable. On the other hand, onboard sensors
like the IMU and the odometer are fast and accurate
for short distances, but need a reference. A controller
for trajectory following can be implemented as simple
as a PID-controller, or more advanced as a model
predictive control (MPC). The µCar currently uses
MPC for trajectory following. Restrictions by the
limited computation power of the MLC still apply,
which motivates efficient algorithms and a program-
ming language like C++.

(3) On the highest abstraction level, ideas can be devel-
oped on an external PC with programming languages
common in optimization (e.g. MATLAB, Python). It
is possible to work on trajectory planners as well as
on external controllers for the vehicles, depending on
which mode of operation one wishes to use.

The modularity allows to focus on one specific part of
networked and autonomous vehicles. It is possible to
provide necessary interfaces with working components,
so the content to be taught can be chosen freely and
appropriately.
A system model is the prerequisite of many aspects in
control, e.g. simulation or controller design. The purpose
of the model defines its requirements. For simulation, the
goal might be to represent the system as truthfully as
possible, while for a controller using MPC the ability for
fast computation might be necessary. In the following, we
give an example of how a dynamical system model for
the model-scale vehicles can be obtained. The goal of this
endeavor is to illustrate how the vehicles might serve as a
platform to control engineering education.

5.1 Vehicle dynamics model

In this example, we aim for a model that is suitable
for MPC of a vehicle’s pose and velocity on embedded
hardware. The model needs to be simple enough for quick
computation, while accurate enough for predicting the
states. We propose a kinematic bicycle model with some
added terms to account for various errors.
The model has the states x(t) ∈ R4 and inputs u(t) ∈ R2

x(t) =
(
x(t) y(t) ψ(t) v(t)

)T
,

u(t) =
(
m(t) d(t)

)T
,

(1)

where x(t) and y(t) are the x- and y-position respectively,
ψ(t) is the yaw angle, v(t) the speed at the vehicle rear
axle, m(t) the dimensionless motor command and d(t)
the dimensionless steering command. The model used to
describe the vehicle’s dynamics is a non-linear kinematic
bicycle model according to Rajamani (2011). Similar to
Alrifaee (2017), it is assumed that no slip occurs on the
front and rear wheels, and no forces act on the vehicle.
The velocity dynamics are described with a PT1 behavior,
which results in the following equations
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Fig. 5. Kinematic bicycle model of the vehicle

ẋ(t) = v(t) · cos
(
ψ(t) + β(t)

)
,

ẏ(t) = v(t) · sin
(
ψ(t) + β(t)

)
,

ψ̇(t) = v(t) · 1
L

· tan δ(t),

v̇(t) = − 1

Tv
· v(t) + Kv

Tv
· vin

(
m(t)

)
,

β(t) = tan−1

(
ℓr
L

tan δ(t)

)
.

(2)

The model variables are illustrated in Fig. 5. The time
t is omitted in the figure and in the following for the
sake of readability. ℓr is the distance from the rear axle
to the vehicle’s reference point, L is the distance between
front and rear axle, δ is the steering angle which is related
to the steering command d, Kv and Tv are the gain and
time constant of the velocity’s PT1 behavior and vin is
the input velocity, which is modelled as a function of the
motor command m. The change of the vehicle’s x- and
y-position is dependent on the velocity v at the vehicle’s
reference point. The odometer measures the motor shaft
rotation, which corresponds to the velocity at a certain
point A along the roll axis of the vehicle. From the fact
that the angular velocity ψ̇ is equal at every point of the
vehicle, we get

ψ̇ =
v

R
=

vA
RA

, (3)

where R is the radius of the circular movement at the
vehicle center, RA is the radius of the circular movement
at an arbitrary point A along the roll axis and vA is the
corresponding velocity. With (3), Pythagoras’ theorem and
the distance ℓA from the rear axle to point A we obtain

v = vA ·

√√√√ 1 +
(
ℓr
L · tan δ

)2
1 +

(
ℓA
L · tan δ

)2 . (4)

In order to simplify computational tasks on the model,
we can approximate some terms with Taylor series at the
point δ = 0. The side slip angle β due to steering is
approximated with a first-order Taylor series

β(δ) =
ℓr
L

· δ +O(δ3). (5)

Equation (4) is simplified with a second-order Taylor
approximation:

v = vA ·
(
1 +

ℓ2r − ℓ2A
L2

· δ2 +O(δ4)

)
. (6)

Now substituting the model’s variables with parameters
and introducing some parameters to account for various
inaccuracies, the parameterized bicycle model is given by:

ẋ = p1 · v ·
(
1 + p2 · (d+ p8)

2
)

· cos
(
ψ + p3 · (d+ p8) + p9

)
,

ẏ = p1 · v ·
(
1 + p2 · (d+ p8)

2
)

· sin
(
ψ + p3 · (d+ p8) + p9

)
,

ψ̇ = p4 · v · (d+ p8),

v̇ = p5 · v + p6 · sign(m) · |m|p7 .

(7)

An extra parameters introduced is p1, which compensates
the calibration error between IPS speed and odometer
speed. p2 and p3 substitute the model parameters in (6)
and (5) respectively. p4 contains the model parameter 1

L
as well as the conversion of steering command to steering
angle. p5 substitutes − 1

Tv
in the velocity’s PT1 model. The

steady state velocity is modeled as a power function, where
the constant factor is represented by p6 and the exponent
by p7. Since the exponential function is defined for positive
real bases, the absolute value of the motor command
m is used as the base and the sign of m is multiplied.
p8 is an extra parameter introduced to correct steering
misalignment, while p9 accounts for a yaw calibration error
in the IPS.
This is an end-to-end, grey-box model for the vehicle dy-
namics. The model parameters are not measured directly,
but optimized to best fit the vehicle behavior as shown in
section 5.3.

5.2 Model discretization

The model is discretized with the explicit Euler method,
as follows:

xk+1 = xk +∆t · f(xk,uk,p). (8)
Here, f is obtained from the continuous vehicle dynamics
model (7). This discretization is chosen for its simplicity
and computational efficiency. Measurements are taken in
time intervals of ∆t = 0.02 s. This short time interval
compensates partly for the inaccuracies introduced by the
first order Euler method. This discretization is also used
during the parameter identification.

5.3 Parameter identification

Since the dynamics of nonholonomic vehicles are nonlin-
ear, model identification procedures for nonlinear systems
need to be used. Identifying the vehicle dynamics can be
achieved by formulating the task as an optimal parameter
estimation problem. The optimization tries to find a set of
model parameters that best reproduce the measurement
data. A measurement vector at timestep k contains:

x̂k = (x̂k ŷk ψ̂k v̂k)
T. (9)

Here, x̂ and ŷ is the IPS x- and y-position respectively, ψ̂
is the IPS yaw angle and v̂ the odometer speed.
The optimization problem is then given as

minimize
xj

k
,p

nexperiments∑
j=1

ntimesteps∑
k=0

E(xj
k − x̂j

k)

subject to xj
k+1 = xj

k +∆t · f(xj
k,u

j
k,p)

k = 0, . . . , (ntimesteps − 1)

j = 1, . . . , nexperiments,

(10)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17577



0 1 2 3 4

0

1

2

3

4

Fig. 6. Driven trajectory for measurement data collection

where uj
k are the known inputs, f is the discrete vehicle

model as in (8), p is the vector of model parameters p1 to
p9, ∆t is a constant timestep of 0.02 s and E is the error
penalty function. Since the vehicle pose lives in SO(2),
an adequate error metric needs to be used. We used a
weighted quadratic error function and account for the
period of 2π in the yaw error function using sin2(∆ψ/2).
This kind of optimization problem is not well suited for
identifying the delay times. The optimization problem is
therefore solved multiple times for combinations of delay
times in an outer loop. The delays that create the lowest
objective value are taken as the solution.
The measurement data used in the parameter optimization
is shown in Fig. 6. This data is sliced into parts of 100
consecutive data points, i.e. time intervals of 2 s, which
are fed to the optimization problem as experiments. The
resulting parameters are

p = ( 1.00 −0.12 0.21 3.56

−1.42 6.90 1.34 0.03 −0.01).
(11)

The delays identified are 1 timestep for the IPS data, the
local measurement information and the motor actuation,
and 8 timesteps for the steering actuation.

6. CONCLUSION

This paper presented how a regular RC race car can be
transformed to a networked and autonomous vehicle with
mainly off-the-shelf components. The vehicles are used for
teaching in multiple courses at RWTH Aachen University
at the moment. We are eager to see the impact of applying
concepts on real control systems on the students’ learning
experience.
Currently, a fleet of 20 vehicles is being built up. This
should enable students and researchers alike to perform
various experiments on networked and autonomous driving
in moderately large scale networked systems.
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