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Abstract: In many industrial processes, the setpoint signals present few changes and variations
in the output are due mainly to the disturbances that enter the closed-loop and may be
understood as load disturbances. Even though this is a common problem, the response to load
disturbances is a topic not well covered in the direct data-driven control literature. This work
seeks to fill that gap presenting a direct data-driven method to tune a multivariable controller
in order to achieve certain load disturbance response described by some reference model. This
work extends a previous one dealing with the monovariable case and uses the same correlation
approach employed before in the Correlation-based Tuning (CbT).
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1. INTRODUCTION

There are many approaches to adjust the parameters of
a feedback controller, most of them may be classified
in model-based or direct data-driven approaches. Model-
based approaches rely on a process model previously
crafted from an identification procedure or directly from
first principles equations. That model is then used to
obtain one controller, usually solving some kind of opti-
misation problem. On the other hand, direct data-driven
approaches use process data and an optimisation proce-
dure to adjust the controller parameters directly, without
the need of the process model (Bazanella et al., 2011).

There are two main disadvantages of the model-based
approaches: the first one is that the model must be
identified, what is usually a hard task; the second one
is that usually the controller obtained with model-based
approaches posses high order that makes it difficult to
implement or it needs to be reduced, what degrades
the closed-loop performance. The direct approaches, on
the other hand, compute directly the parameters of low
order controllers yielding better results, as shown by
Campestrini et al. (2017).

Within the direct data-driven control literature, the ref-
erence tracking problem is well explored as indicated by
the number of methods developed. These methods include
the Iterative Feedback Tuning (IFT) (Hjalmarsson et al.,
1998), the Virtual Reference Feedback Tuning (VRFT)
(Campi et al., 2002), the Correlation-base Tuning (CbT)
(van Heusden et al., 2011), the Optimal Controller Iden-
tification (OCI) (Campestrini et al., 2017), among others
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(Bazanella et al., 2011; Hou and Wang, 2013). Conversely,
the problem of load disturbance rejection does not seem
to share the same amount of interest, as proven by the
amount of publications about that matter, or the lack
thereof. The only examples the authors found are the
Virtual Disturbance Feedback Tuning (VDFT) (Eckhard
et al., 2018) and our previous work, the Disturbance
Correlation-based Tuning (DCbT) (da Silva and Eckhard,
2019), both dealing only with the monovariable case. The
latter work shows that DCbT does not need multiple
experiments to deal with noise, unlike VDFT, and al-
ready presents good performance in the monovariable case.
Therefore, that work was selected to be extended here to
the multivariable case.

Another issue concerning data-driven methods is the
closed-loop stability. One approach to deal with that prob-
lem is to add constraints to the optimisation problem as
done by van Heusden et al. (2011). However, it is already
known that a poor load disturbance reference model selec-
tion may be connected to poor closed-loop performance or
even instability, as shown in Bordignon and Campestrini
(2018). Therefore, the present work opted for a flexible
reference model as shown in Bazanella et al. (2011) and
Bordignon and Campestrini (2018), for example.

The remaining of this paper is organised as follows: Sec-
tion 2 introduces the notation and the load disturbance
problem; Section 3 presents the correlation approach pro-
posed; Section 4 presents the least squares solution that
emerges from the linear parametrisation of the controller;
while Section 5 proposes a solution using a flexible ref-
erence model; Section 6 validates the proposal through
simulation of a quadruple-tank water level process; and
finally, Section 7 draws some conclusions from the research
and presents some open issues to be tackled in the future.
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2. PROBLEM DEFINITION

Consider a Discrete-Time (DT) Multi-Input Multi-Output
(MIMO) Linear Time-Invariant (LTI) system described by

y(t) = G(q)u(t) + v(t), (1)

where u(t) ∈ Rn is the input signal, y(t) ∈ Rn is the
output signal and v(t) ∈ Rn is zero-mean random noise.
The process matrix G(q) has dimension n × n and it is
composed of rational functions of q which is the time-
forward operator qx(t) = x(t+ 1).

The system operates in closed-loop with a DT MIMO LTI
feedback controller C(q, ρ) with dimension n×n and that
it is also composed of rational functions of q. The controller
has a set of parameters to be adjusted which are grouped
in a vector ρ ∈ Rp. The set of all possible controllers is
called the controller class and is defined as

C = {C(q, ρ) | ρ ∈ K ⊆ Rp},
where K is a set possibly representing constraints on the
parameter’s values. To present an easily implementable
solution, in this work it is assumed that the controller is
linearly parametrised, or equivalently, each element of the
controller matrix is given by

Ci,j(q, ρ) = ρTi,jβi,j(q), (2)

where ρi,j ∈ Rpi,j is the respective subvector containing
the pi,j parameters for this element, and βi,j(q) is a vector
of pi,j rational functions of q.

The closed-loop connections of the system with the con-
troller are shown in Fig. 1 and are given by[

u(t)
y(t)

]
=

[
U(q, ρ) S̃(q, ρ) −U(q, ρ)
T (q, ρ) Q(q, ρ) S(q, ρ)

][r(t)
d(t)
v(t)

]
, (3)

where r(t) ∈ Rn is the reference input and d(t) ∈ Rn, while

S(q, ρ) = [I +G(q)C(q, ρ)]−1

S̃(q, ρ) = [I + C(q, ρ)G(q)]−1

T (q, ρ) = I − S(q, ρ)

U(q, ρ) = S(q, ρ)C(q, ρ)

Q(q, ρ) = S(q, ρ)G(q)

are the system’s sensitivity functions and I is the identity
matrix with appropriate dimensions. In particular, Q(q, ρ)
is the load disturbance sensitivity that this paper proposes
to shape by tuning the controller’s parameters.

It is assumed that the noise that enters the system is
uncorrelated with other external inputs, which means that,
when performing an experiment in open-loop,

E [v(t)u(s)] = 0, ∀t, s,
while, when performing an experiment in closed-loop,

E [v(t)d(s)] = E [v(t)r(s)] = 0, ∀t, s.
where E [·] is the expected value operator.

In this work, the main objective of the controller is to
attenuate the effect of the disturbance signal d(t) on

C(q, ρ)

d(t)

G(q)

v(t)

uc(t) u(t)r(t) y(t)

-

Fig. 1. Closed-loop block diagram.

the output y(t). The relation between this two signals
is given by Q(q, ρ) which ideally should present fast
dynamics and small norm, in order to reduce the effect of
disturbance signals on the outputs. In a model reference
control approach, a desired behaviour for the closed-loop
system is specified by the reference model M(q) and the
parameters of the controller are obtained as the solution
of an optimisation problem:

ρ?MR = arg min
ρ∈K
‖M(q)−Q(q, ρ)‖ (4)

When the class of controllers C is flexible enough, it is
possible to achieve perfectly the desired performance such
that the objective criterion is null. This is a special case
that can be characterised.

Condition 1. (Matching controller). There is a parameter
vector ρ? ∈ K such that

C(q, ρ?) = M−1(q)−G−1(q),

such that M(q) = Q(q, ρ?).

When the process modelG(q) is known, the ideal controller
C(q, ρ?) can be computed using the above expression.
However, in practice the controller class C is not flexible
enough to include the ideal controller C(q, ρ?), for instance
when the controller class is restricted to PID controllers.
Also, depending on the choice of the reference model M(q)
this ideal controller may not be causal, and therefore
cannot be implemented even when the process model G(q)
is known, and the best controller that can be achieved is
given by C(q, ρ?MR).

It may be very difficult to solve the optimisation problem
(4) because it is non-convex and depends on the knowledge
of the process model G(q). In data-driven control methods,
instead of knowing the process model, the user collects
batches of input-output data from the process which con-
tains information about the dynamics of the system. These
signals feed an optimisation problem which delivers an
estimate for the optimal controller parameters ρ?MR. Some
methods use non-convex data-driven optimisation criteria
as IFT, the iterative version of CbT and OCI, while others
solve a convex one such as VRFT and the noniterative
CbT. The objective of this work is to present a data-
driven control method, which solves a convex optimisation
problem based on the correlation approach to obtain the
parameters of the controller that attenuate the effect of
disturbance signals on the output.

3. CORRELATION APPROACH

Within the data-driven control methods, the user collects
a batch of data from an open- or closed-loop experiment
in order to obtain knowledge about the system. When the
experiment runs in open-loop the user collects input and
output data

Zo = {u(1), y(1), . . . , u(N), y(N)} .
On the other hand, when the experiment runs in closed-
loop it is possible to excite the reference signal r(t) or
to inject fictitious disturbance signals d(t) in the closed-
loop system. In this work we assume that only one of
these external closed-loop signals is excited during the
experiment while the other is kept null. For experiments
exciting the reference signal the user should collect the set

Zr = {r(1), u(1), y(1), . . . , r(N), u(N), y(N)} ,
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while for fictitious disturbance experiments the user should
collect the set

Zd = {d(1), u(1), y(1), . . . , d(N), u(N), y(N)} .

The correlation approch consists of solving an optimi-
sation problem where the correlation between two signals
is minimised. These two signals are filtered versions of the
signals collected from the experiment and the filters should
be carefully chosen to ensure that the correlation between
them reflects the control objective criterion. In this work,
one of those signals is the external input while the other
one being an error signal that depends on the data and
the decision variables, i.e. the controller’s parameters.

3.1 SISO Case

In the SISO case, the controller parameters are obtained
as the solution of an optimisation problem

ρs = arg min
ρ∈K
‖R(ρ)‖2 (5)

where the correlation between the two signals is defined as

R(ρ) = E [ε(t, ρ)ζ(t)]

and ε(t, ρ) is a signal that must depend on the controller’s
parameters ρ and ideally (if there is no noise) should
be null when ρ = ρ?MR. A previous work (da Silva and
Eckhard, 2019) proposes the following signals:

ε(t, ρ) ,M(q)u(t) + [M(q)C(q, ρ)− I]y(t), (6)

for the monovariable problem, i.e. I = 1, and

ζ(t) , [x(t− l) · · · x(t) · · · x(t+ l)]
T
, (7)

where x(t) is the external excitation signal used in the
experiment, i.e x(t) is either u(t), d(t), or r(t) and l is a
design parameter related to the length of the correlation.

Observe that there are three cases:

(1) Experiment performed in open-loop, and set Zo is
collected. Then x(t) = u(t).

(2) Experiment performed in closed-loop, with reference
excited and set Zr is collected. Then x(t) = r(t).

(3) Experiment performed in closed-loop, while the ref-
erence is kept null and a fictitious disturbance signal
excites the system, while set Zd is collected. Then
x(t) = d(t).

Now we can state some properties of the controller pa-
rameters ρs obtained minimising the correlation between
ε(t, ρ) and ζ(t).

Theorem 2. If Condition 1 is met then ρs = ρ?.

Proof. Note that using (1), after some algebraic manip-
ulations we may rewrite (6) in terms of the the process’
input and the noise:

ε(t, ρ) = [M(q)−Q(q, ρ)] S̃−1(q, ρ)ux(t)

+ [M(q)C(q, ρ)− I] v(t). (8)

From Condition 1, replacing M(q) with Q(q, ρ?) and after
more algebraic manipulations, the error (8) calculated
with the ideal parameters becomes only

εol(t, ρ
?) = [Q(q, ρ?)C(q, ρ?)− I] v(t)

= [T (q, ρ?)− I] v(t)

= −S(q, ρ?)v(t),

which is filtered noise and hence is assumed to be uncorre-
lated with signal x(t) for the three cases. Therefore ε(t, ρ?)

is not correlated with ζ(t) and ρ? is the parameter vector
that minimises the correlation between ε(t, ρ) and ζ(t) and
it is the solution of the optimisation problem (5). �

3.2 MIMO Case

In the MIMO case, both ε(t, ρ) and x(t) are vectors, such
that we can define the correlation between an element of
each vector as

Ri,j(ρ) = E [εi(t, ρ)ζj(t)] , (9)

where εi(t, ρ) is the i-th element of ε(t, ρ) and

ζj(t) , [xj(t− l) · · · xj(t) · · · xj(t+ l)]
T
, (10)

where xj(t) is the j-th element of x(t).

In this case, we may define the optimisation problem to
be solved as the sum of all possible correlations:

ρm = arg min
ρ∈K

n∑
i=1

n∑
j=1

‖Ri,j(ρ)‖2. (11)

Observe that for n = 1, (11) is equivalent to (5).

Theorem 3. If Condition 1 is met then ρm = ρ?.

Proof. Using the same arguments of Theorem 2 it is
possible to show that ε(t, ρ?) is filtered noise which is
assumed to be uncorrelated with the external excitation
signal x(t). Therefore, the correlation between εi(t, ρ

?)
and ζj(t) is null for all i, j and ρ? is the minimum of the
optimisation problem (11). �
Remark 4. Even when Condition 1 is not met (under-
parametrization), the resulting controller forces a small
norm in (4), much like CbT (van Heusden et al., 2011).

4. LEAST SQUARES ESTIMATE

In order to obtain an estimate of the controller parameters
using only finite input-output data, it is necessary to ob-
tain an approximate optimisation problem which depends
only on that data. An estimate of the correlation function
(9), is given by:

R̂i,j(ρ) =
1

N

N∑
t=1

εi(t, ρ)ζj(t) (12)

and the approximate optimisation problem is defined as:

ρ̂ = arg min
ρ∈K

n∑
i=1

n∑
j=1

‖R̂i,j(ρ)‖2. (13)

Note that the i-th component of the error variable (6) may
be split in two terms:

εi(t, ρ) = Mi,∗(q)u(t)− yi(t)︸ ︷︷ ︸
ξi(t)

+Mi,∗(q)C(q, ρ)y(t)︸ ︷︷ ︸
fi(t,ρ)

, (14)

where Mi,∗(q) is the i-th row of M(q) and yi(t) is the i-th
component of the output y(t). Now, further developing the
last term of (14) results in

fi(t, ρ) =

n∑
j=1

n∑
k=1

Cj,k(q, ρ)Mi,j(q)yk(t) (15)

=

n∑
j=1

n∑
k=1

ρTj,k βj,k(q)Mi,j(q)yk(t)︸ ︷︷ ︸
φ
(i)

j,k
(t)

(16)

= ρTφ(i)(t), (17)
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where (15) uses the fact that scalar transfer functions
commute, (16) uses the linear parametrization (2), and
(17) uses the definitions of the following vectors:

ρ ,



ρ1,1
ρ2,1

...
ρn,1

...
ρn,n


φ(i)(t) ,



φ
(i)
1,1(t)

φ
(i)
2,1(t)

...

φ
(i)
n,1(t)

...

φ(i)n,n(t)


Observe that the only restriction is that each subvector

φ
(i)
j,k(t) must appear in vector φ(i)(t) ∈ Rp at the same

position as the related subvector ρj,k appears in the
parameters vector ρ ∈ Rp.

From (14) and (17), each component of the error may be
written as

εi(t, ρ) = ξi(t) + [φ(i)(t)]T ρ, (18)

which indicates that the error variable is affine in the con-
troller’s parameters. Then the estimate of the correlation
function becomes

R̂i,j(ρ) = Yi,jρ+ Zi,j , (19)

with

Yi,j ,
1

N

N∑
t=1

ζj(t)[φ
(i)(t)]T Zi,j ,

1

N

N∑
t=1

ζj(t)ξi(t).

Using the above definitions, the following theorem may be
stated along with its proof.

Theorem 5. The solution of the problem (13) is given by:

ρ̂ = −

 n∑
i=1

n∑
j=1

Y Ti,jYi,j

−1 n∑
i=1

n∑
j=1

Y Ti,jZi,j

 (20)

Proof. The problem (13) may be written as

ρ̂ = arg min
ρ∈K

n∑
i=1

n∑
j=1

R̂Ti,j(ρ)R̂i,j(ρ). (21)

Replacing (19) in (21), taking its gradient, equating it to
zero, and solving for ρ results in (20). �

5. FLEXIBLE REFERENCE MODEL

One of the challenges faced by the methods that use the
direct approach and a reference model to design controllers
is the choice of the reference model itself. As mentioned
before, choosing a model that is too far from what can
be achieved may result in poor performance and even
unstable systems (Bazanella et al., 2011). In that sense,
employing a flexible reference model relieves the designer
of that burden, letting the task of selecting the most
achievable model to the optimisation method.

Considering a linear parametrised reference model with s
parameters where each element is given by

Mi,j(q, η) = ηTi,jγi,j(q), (22)

where ηi,j ∈ Rsi,j is a vector of parameters to be estimated
and γi,j(q) ∈ Rsi,j (q) is a vector of si,j fixed rational
functions of q. Notice that all the poles of Mi,j(q, η) are
pre-specified in the function γi,j(q), such that the user still

specifies the “velocity” of the closed-loop system using
a flexible reference model. Also, some of the zeros of
Mi,j(q, η) may also be chosen, for instance it is usual
to include a zero at 1 to ensure null error for constant
disturbances.

Then, the correlation function may be written as

R̂i,j(ρ, η) =
1

N

N∑
t=1

ζj(t)εi(t, ρ, η)

(23)

where it is explicit that the correlation depends on both ρ
and η, which both can be obtained as the solution of

ρ̂, η̂ = arg min
ρ,η

n∑
i=1

n∑
j=1

R̂Ti,j(ρ, η)R̂i,j(ρ, η). (24)

Observe that using (22) the i-th component of the error
variable (14) may be written

εi(t, ρ, η) = Mi,∗(q, η)[ux(t) + C(q, ρ)yx(t)]− yi(t)

=

n∑
j=1

Mi,j(q)[uj(t) + Cj,∗(q, ρ)yx(t)]− yi(t)

=

n∑
j=1

ηi,j γi,j(q)[uj(t) + Cj,∗(q, ρ)yx(t)]︸ ︷︷ ︸
ψ

(i)
i,j

(t,ρ)

−yi(t)

= [ψ(i)(t, ρ)]T η − yi(t), (25)

where the vectors η and ψ(i)(t, ρ) are defined in a manner
similar to the one the vectors ρ and φ(i)(t) were defined
before. Note that the same order restriction presented
before also applies here for these vectors. Also, observe
that

ψ
(i)
k,j(t, ρ) =

{
γi,j(q)[uj(t) + Cj,∗(q, ρ)yx(t)], if k = i, and

0, otherwise.

Considering (25), the correlation may be rewritten as

R̂i,j(ρ, η) = Ai,j(ρ)η −Bi,j , (26)

with

Ai,j(ρ) ,
1

N

N∑
t=1

ζj(t)[ψ
(i)(t, ρ)]T , Bi,j ,

1

N

N∑
t=1

ζj(t)yi(t).

Notice that, for a fixed η = η0, the solution of the
optimisation problem (24) is given by (20). Also, for a
fixed ρ = ρ0, it is easy to show that the solution of the
optimisation problem (24) is given by

η̂ =

 n∑
i=1

n∑
j=1

ATi,j(ρ0)Ai,j(ρ0)

−1 n∑
i=1

n∑
j=1

ATi,j(ρ0)Bi,j


(27)

which was obtained equating the gradient of the criterion
to zero.

Now, we propose the following iterative procedure to
obtain a local minimum of the optimisation criterion:

η̂(i) =

{
η(0), if i = 1

η̂ from (27) using ρ = ρ̂(i−1), otherwise

ρ̂(i) = ρ̂ from (20) using η = η̂(i),

where i indicates the iteration and η(0) is some initial
educated guess for the parameters of the reference model.
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Since each step reduces the norm of the correlation this
iterative algorithm converges to a minimum of the criterion
when the number of iterations tends to infinity. Note that
in pratical cases a stop criterion must be included. Also,
the flexible solution is iterative, but all steps use the same
dataset from a single experiment —the method is one-shot.

6. CASE STUDY

A simulation example to validate the solution will be
presented next. This example considers the quadruple-
tank process described in Johansson (2000). That process
consists of four water tanks (T1 to T4) interconnected,
two electric pumps (P1 and P2) and two valves (V1 and
V2) as shown in Fig. 2.

The valves only split the water flow between the upper and
the bottom tanks in some predefined and fixed fractions.
The input of the system is the electric tension applied
to each pump and the output is the height of the water
column in the bottom tanks. Some nonlinear dynamics are
present, but the model employed represents the system
after linearisation around some operating point. Depend-
ing on the position of the valves this model may have
minimum- or nonminimum-phase characteristics.

For this validation, the linearised minimum-phase model
from Johansson (2000) was chosen. After the discretiza-
tion, using a zero-order holder and a sampling time of 5 s,
the resulting model is given by:

G(q) =


0.2014

q − 0.9225

0.01192q + 0.01079

q2 − 1.727q + 0.7423

0.006022q + 0.005592

q2 − 1.792q + 0.8007

0.1513

q − 0.9460


Note that this model will be employed only to generate
the data from which a controller will be estimated directly
and, then, to validate that controller.

In order to simulate a closed-loop experiment, the follow-
ing decentralised PI controller is used with the model:

C(0)(q) =


0.1 + 0.01

q

q − 1
0

0 0.1 + 0.01
q

q − 1

 , (28)

The system is excited through the reference inputs r1(t)
and r2(t) using two square waves with periods of 100

P1

V1

P2

V2

T1 T2

T3 T4

D1 D2

Fig. 2. The quadruple-tank process.

-1.5
-1

-0.5
0

0.5
1

1.5
2

-1.5
-1

-0.5
0

0.5
1

1.5
2

0 50 100 150 200 250 300 350 400 450 500

C
h
a
n
n
el

1

y1(t) u1(t) r1(t)

C
h
a
n
n
el

2

Sample, t

y2(t) u2(t) r2(t)

Fig. 3. Example of data collected.

and 90 samples, respectively. The simulation considers a
zero-mean white measurement noise v(t) with variance
σ2 = 0.1. All the signals have a length of 5000 samples
and the first 500 samples of the input and output data
collected are presented in Fig. 3 to give an idea of the
signals and the noises involved.

The original model did not consider disturbances. How-
ever, considering additive disturbances (D1 and D2 in
Fig. 2) affecting the flow in the pumps, the closed-loop
load sensitivity Q(q) is easily calculated from (3). The con-
troller (28) yields the initial load sensitivity Q(0)(q) whose
step response is represented by the red dotted lines in
Fig. 4. Constant disturbances are already rejected because
of the PI controllers, however the peak amplitude and the
settling time are large. Also, a disturbance in one channel
affects the other channel significantly. To counteract those
effects, a parametrised reference model is crafted. For a
shorter settling time, the poles of the flexible reference
model are chosen faster than in open-loop:

M1,1(q, η) =
η1(q − 1)

(q − 0.87)(q − 0.9)
, (29)

M1,2(q, η) =
(η2q + η3)(q − 1)

(q − 0.95)(q − 0.92)(q − 0.9)
, (30)

-0.5
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1
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0 20 40 60 80 100 120 0 20 40 60 80 100 120

to
y
1
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from d1(t) from d2(t)

Q(0)(q)
M (0)(q)
M (1k)(q)
Q(1k)(q)

to
y
2
(t
)

Sample, t Sample, t

Fig. 4. Responses of the closed-loop systems to step
disturbances.
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M2,1(q, η) =
(η4q + η5)(q − 1)

(q − 0.95)(q − 0.92)(q − 0.9)
, and (31)

M2,2(q, η) =
η6(q − 1)

(q − 0.9)2
. (32)

To reduce the influence of the disturbance, the initial

model M (0)(q) was constructed considering η
(0)
1 = 0.36,

η
(0)
6 = 0.3, and all the other parameters zero, trying to

force decoupling the channels’ disturbance response. The
step response of this initial model is also presented in Fig. 4
as the blue line. A new centralised controller structure was
chosen comprising two PID controllers in the diagonal and
two PD in the off-diagonal, that is,

C1,1(q, ρ) = ρ1 + ρ2
q

q − 1
+ ρ3

q − 1

q
, (33)

C1,2(q, ρ) = ρ4 + ρ5
q − 1

q
, (34)

C2,1(q, ρ) = ρ6 + ρ7
q − 1

q
, and (35)

C2,2(q, ρ) = ρ8 + ρ9
q

q − 1
+ ρ10

q − 1

q
. (36)

This case study evaluated the results obtained with the
flexible approach. Therefore, the inputs are the data (rx(t),
ux(t), and yx(t)), the reference model structure (29)–(32),
the controller structure (33)–(36), the initial guess for the
model M (0)(q), and the number of lags l, in this case set to
200 samples. After 1000 iterations, the proposed method
identified the following controller C(1k)(q):

C
(1k)
1,1 (q, ρ) = 0.4844 + 0.0530

q

q − 1
+ 0.2638

q − 1

q
,

C
(1k)
1,2 (q, ρ) = −0.0692− 0.3195

q − 1

q
,

C
(1k)
2,1 (q, ρ) = 0.0369− 0.0922

q − 1

q
, and

C
(1k)
2,2 (q, ρ) = 0.4153 + 0.0463

q

q − 1
− 0.9284

q − 1

q
,

along with the following reference model M (1k)(q):

M1,1(q, η) =
0.2267(q − 1)

(q − 0.87)(q − 0.9)
,

M1,2(q, η) =
(0.0481q − 0.0484)(q − 1)

(q − 0.95)(q − 0.92)(q − 0.9)
,

M2,1(q, η) =
(0.0891q − 0.0907)(q − 1)

(q − 0.95)(q − 0.92)(q − 0.9)
, and

M2,2(q, η) =
0.2117(q − 1)

(q − 0.9)2
,

which should be close to what could be attainable. To
see that, observe the step response of the estimated best
reference model M (1k)(q), represented by the orange line
in Fig. 4. Replacing the decentralised controller C(0)(q)
with the new centralised controller C(1k)(q) yielded a load
disturbance behaviour Q(1k)(q) whose step response is
presented as the black dashed line in Fig. 4. Compare the
orange and the dashed lines, observe that the estimated
behaviour M (1k)(q) and the actual behaviour Q(1k)(q) are
very close to each other, while distant from the initial
model M (0), represented by the blue line. Also, comparing
the old response (dotted line) and the new one (dashed
line), note how the disturbance effects have been reduced

and how the settling time is also shorter than before. A
more aggressive disturbance rejection is easily achieved,
for example by changing the poles of the reference model
structure, at the likely cost of poor reference tracking and
a jumpy control action.

7. CONCLUSION

Despite being a very common problem, load disturbance
rejection has not been well covered by the direct data-
driven control literature. In an effort to increase the re-
search concerning that subject, a previous work extended
a well known correlation-based data-driven method allow-
ing it to be employed in the load disturbance rejection
problem. The previous work was developed to deal with
monovariable systems while the present work introduced a
set of modifications that, as far as the authors know, makes
this method the first one-shot direct data-driven method
to deal with load disturbances in the multivariable case.
The proposed method was validated through simulation,
working as expected. Nevertheless, in the future the au-
thors intend to develop a filter to improve the accuracy of
the results and also intend to provide guidance as how to
choose a good reference model, which is still an open issue
for the multivariable case.
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