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Abstract: This manuscript describes the design and numerical implementation of a novel
composite differential neural network aimed to estimate nonlinear uncertain systems. A
differential neural network (DNN) with a composite feedback matrix approximates the structure
of non-linear uncertain systems. The feedback matrix is assumed to belong to a convex set as well
as the free parameters of the DNN (weights) at any instant of time. Therefore, l-different DNN
works in parallel. A composite Lyapunov function finds the convex hull approximation of the set
of DNN working together to improve the approximation capabilities of classical neural networks.
The main result of this study shows the practical stability of the estimation error. Numerical
simulations demonstrate the approximation capabilities of the composite DNN implemented in
a Van Der Pol oscillator where the presence of high-frequency components makes difficult a
classical DNN approximation.

Keywords: Composite Lyapunov function, Differential neural networks, nonlinear systems,
uncertain systems

1. INTRODUCTION

The artificial neural networks (ANNs) are complex parallel
structures that emulate how the human brain processes a
large number of data (Poznyak et al., 2019). The ANNs
have been successfully applied to solve the problem of non-
parametric identification. In the case of dynamic systems
oriented to identification, estimation, and control, differ-
ential neural networks (DNNs) offer attractive features to
deal with uncertain and perturbed systems. Among other
characteristics, DNNs provide robustness and practical
stability through the second Lyapunov’s stability method
(Poznyak et al., 2001). Indeed, the learning laws are a
consequence of this analysis. This method guarantees the
stability of the equilibrium point for the identification or
estimation error as well as the boundedness of the DNN’s
weights. The outstanding results have brought about new
structures with original learning processes. Some impor-
tant applications of DNNs are found in delayed systems
(Xu et al., 2019) and sliding mode based learning laws
(Keighobadi et al., 2019), among others.
However, for systems with high-frequency components, the
DNN have problems to reproduce accurately the system
dynamics. The elements of the basis used in classical
theory limit the identification properties of the DNNs
(Poznyak et al., 2001). One possible solution is the im-
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plementation of several DNNs working in a parallel dis-
tribution (Hunter and Wilamowski, 2011). The index to
select which DNN is in the “ON” state can be obtained
by training an additional neural network or a fuzzy logic
approach (Cervantes et al., 2017). In this last methodology,
the defuzzification stage in the fuzzy logic algorithm yields
an appropriate selection of the DNN to apply.
The concept of composite functions can expand the ap-
proximation properties of a DNN. Even when there already
exists in literature the concept of composite neural net-
work (Meng and Karniadakis, 2019), in this manuscript,
the objective is to propose a set of learning laws derived
from a composite Lyapunov function (CLF) while the com-
posite network in (Meng and Karniadakis, 2019) implies a
cascade structure to signal processing.
The CLF has the objective to make less conservative
the estimations of invariant sets compared to ellipsoidal
approximations (Hu and Lin, 2003). The CLFs have been
applied for stability analysis, to estimate the regions of
attraction for input saturated systems and to study the
stability of piecewise linear and switched systems (Hu
et al., 2008; Azhmyakov et al., 2019).
A classical Lyapunov function is commonly defined by a
quadratic structure. A CLF is composed of the convex
hull of a group of individual Lyapunov equations generally
selected as ellipsoids. These are, in general, larger sets than
those corresponding to each Lyapunov quadratic function.
One of the main advantages of working with CLFs applied
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to the DNN theory, is the facility to select the gains
through the solution of a set of linear matrix inequalities.
These gains ensure stability on larger sets than those
obtained by conventional Lyapunov methods (Tingshu Hu
and Zongli Lin, 2003).
The main idea behind this manuscript is the develop-
ment of a so-called Composite Differential Neural Network
(CDNN). The objective of this new structure is to ob-
tain a better approximation despite the presence of high-
frequency components. A set of individual networks run
in parallel. Each DNN converge to a specific ellipsoidal
set, the optimization of the convex hull employing the
concept derived in (Hu and Lin, 2003) will produce a set of
composite structure with composite learning laws for the
CDNN. The classical learning laws derived in (Poznyak
et al., 2001) will be improved with an optimization pro-
cedure over the CLF definition. Therefore the following
contributions are

• The improvement of the identification theory based
on DNN using enhanced composite learning laws
derived from a novel controlled composite Lyapunov
Function (CCLF).

• A numerical algorithm to implement the LMIs ob-
tained from the stability analysis.

• The numerical implementation of this new structure
in a nonlinear academic example.

2. NEURAL NETWORK IDENTIFIER WITH
COMPOSITE LEARNING LAWS

2.1 Problem statement

Consider the following nonlinear system

ẋ(t) = f(x, t) + g(x)u(t) (1)

where, x ∈ X ∈ R
n is the state vector, f : Rn × R → R

n

is a feedback Lipschitz function that describes the system
dynamics; g : Rn → R

m is the matrix function associated
to the external input, which guarantees the controllability
of system (1); u is the control input. This manuscripts
considers the fulfilment of the following assumptions:
Assumption 1. There exists a control signal u which
guarantee the close-loop stability of (1). Therefore,

‖x‖ ≤ x+, ∀t ≥ 0, x+ ∈ R+ (2)

Assumption 2. The control action u belongs to the
following admissible set

Uadm := {u|‖u‖ ≤ u1‖x‖+ u0} ,

u1, u0 ∈ R+

(3)

Notice that assumption 2 includes many control designs,
such as, sliding modes and classical feedback controllers.
The following section describes the possible representation
of system (1) as an adaptive structure based on CDNN.

2.2 Neural Network representation

Let us consider the representation of system (1) as

ẋ(t) = A∗x(t) +W ∗
1 σ(x) +W ∗

2 φ(x)u(t) + f̃(x) (4)

Where A∗ ∈ R
n×n is a unknown Hurwitz matrix. Let

assume that matrix A∗ can be represented by convex
combination of l matrices, that is,

A∗ ∈ co {A1, A2, . . . , Al} (5)

W ∗
i with i = 1, 2 are the best fitted weights to adjust the

adaptive structure in (4) to the nonlinear system in (1).
They are unknown but bounded as

(W ∗
i )

⊤ΛiW
∗
i ≤ W̄i,

W̄⊤
i = W̄i > 0, Λ⊤

i = Λi > 0
(6)

σ : R
n → R

n and φ : R
n → R

n×m are the activation
functions. In this manuscript, sigmoid type functions con-
stitute the basis σ and φ. Indeed, this selections satisfies
the following assumption:
Assumption 4. The activation functions satisfies the
sector condition given by

‖σ(y2)− σ(y1)‖ ≤ Lσ‖y2 − y1‖,

‖φ(y2)− φ(y1)‖M ≤ Lσ‖y2 − y1‖
(7)

Where ‖ · ‖ and ‖ · ‖M represent any vector norm and any
matrix norm respectively (Poznyak, 2008), y1, y2 ∈ X ⊂
R

n. Additionally, the selection of the activation functions
ensure the fulfilment of the following inequalities

‖σ(y1)‖ ≤ σ+, σ+ ∈ R
+,

‖φ(y1)‖M ≤ φ+, φ+ ∈ R
+,

(8)

Assumption 5. The term f̃ describes the modelling error.
This study assumes that f̃ is bounded by

‖f̃‖ ≤ f+, f+ ∈ R+ (9)

Besides, the quadratic bound in (6) allow us to define o
less restrictive representation, similar to matrix A∗, let
represent W ∗

i as a convex composition of a set of ideal
weights

W ∗
i ∈ co

{

W ∗
i,1,W

∗
i,2, . . . ,W

∗
i,l

}

, i = 1, 2. (10)

2.3 Neural network identifier

Based on the representation given in (4), let us propose
the following DNN identifier

˙̂x(t) = A(λ)x̂ +W1(λ, t)σ(x̂) +W2(λ, t)φ(x̂)u(t) (11)

with

A(λ) =
l

∑

j=1

λjAj ,

Wi(λ, t) =

l
∑

j=1

λjWi(t), for i = 1, 2.

(12)

where the scalars λj for j = 1, l are the elements of a vector
λ ∈ Γ. And

Γ :=







λ ∈ R
l :

l
∑

j=1

λj = 1, λj ≥ 0







, (13)

The selection of the individual elements in the set Γ is
obtained by the second method of Lyapunov. This method
is described below in section 3.

2.4 Composite Learning laws

The free parameters of the CDNN are updated by the
following learning laws

Ẇi = −kiP (λ)∆Υ⊤
i ,

Υ1 = σ(x̂), Υ2 = φ(x̂)u(t)
(14)
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Where ∆ = x̂ − x defined as the identification error,
ki ∈ R+ are the learning coefficients of the CDNN, R−1

j

are the solutions of the following Riccati equations

AjR
−1
j +R−1

j A⊤
j +R−1

j SR−1
j +Q ≤ 0

S := W̄1 + W̄2,

Q :=
(

LσΛ
−1
1 + Lφu

+Λ−1
2

)

0 < Λ1 = Λ⊤
1 , 0 < Λ2 = Λ⊤

2 .

(15)

Additionally, defining the positive definite matrix

P (λ) :=





l
∑

j=1

λjR
−1
j





−1

. (16)

The learning laws are obtained by the Lyapunov’s second
method. The analysis is given in the following section.

3. MAIN RESULT

The development of these laws require in the analysis the
concept of a composite Lyapunov function, which is given
in the next definition.

Definition 1. (Composite Lyapunov function). Consider the
elements in the set Γ described in (13) and the set of
positive matrices Rj used to construct the composite set
defined in (16). The Vc defined as

Vc(∆, W̃i) = min
λ∈Γ

∆⊤P (λ)∆+

min
λ∈Γ

2
∑

i=1

kjtr
{

W̃⊤
i (λ)W̃i(λ)

} (17)

With W̃i(λ) := Wi(λ)−W ∗
i . Clearly, Vc is positive. There-

fore, if V̇c is negative semi-definite, along the dynamics of
∆ in any subset of the state space containing the origin, it
is said that Vc is a composite quadratic Lyapunov function.

The next theorem summarizes the main result of this study

Theorem 1. Consider the approximation of system (1) by
the time varying DNN in equation (4), the fulfilment of
assumptions (1-5) and the DNN identifier in (11) updated
with the learning laws (14). If the following LMI is feasible
for a positive scalar α and for the symmetric positive
definite matrix P (λ∗),

Ω0 ≤ 0, (18)
with,

Ω0 =

[

P−1(λ∗)A(λ∗) +A⊤(λ∗)P−1(λ∗) + S I I

I −αI 0

I 0 −Q−1

]

and
λ∗ = argmin

λ∈Γ
max

i
‖Aix−A(λ)x‖. (19)

Therefore, the equilibrium point of the estimation error ∆
is ultimately bounded in neighbourhood around zero.

Proof. The composite Lyapunov function is

Vc := ∆⊤P (λ)∆ +

2
∑

i=1

kitr
{

W̃⊤
i (λ, t)W̃i(λ, t)

}

(20)

The time derivative of (20) is

V̇c := 2∆⊤P (λ)∆̇ + 2

2
∑

i=1

kitr
{

W̃⊤
i (t)Ẇi

}

(21)

The dynamics of the identification error are the following

∆̇ = A(λ)x̂ −A∗x+ W̃1σ(x̂) + W̃2φ(x̂)u(t)+

W ∗
1 σ̃ +W ∗

1 φ̃u(t)− f̃(x)
(22)

where

σ̃ = σ(x̂)− σ(x), φ̃ = φ(x̂)− φ(x),

W̃i := Wi(λ, t)−W ∗
i , i = 1, 2

The substitution of (22) in the first term of (21) yields in

∆⊤P (λ)∆̇(t) = ∆⊤P (λ)A(λ)x̂ −A∗x−

∆⊤P (λ)f̃i(x(t), t)+

∆⊤P (λ)W̃1σ(x̂) + ∆⊤P (λ)W̃2φ(x̂)u(t)+

∆⊤P (λ)W ∗
1 σ̃ +∆⊤P (λ)W ∗

1 φ̃u(t)

Adding and subtracting A(λ)x and rearranging the terms

∆⊤P (λ)∆̇(t) = ∆⊤P (λ)A(λ)∆−

∆⊤P (λ)(A∗ −A(λ))x +∆⊤P (λ)f̃i(x(t), t)+

∆⊤P (λ)W̃1σ(x̂) + ∆⊤P (λ)W̃2φ(x̂)u(t)+

∆⊤P (λ)W ∗
1 σ̃ +∆⊤P (λ)W ∗

1 φ̃u(t)

Applying the inequality 2X⊤Y ≤ X⊤ΛX + Y ⊤Λ−1Y the
following upper bounds are valid (Poznyak, 2008)

−2∆⊤P (λ)f̃ ≤ ∆⊤P (λ)Λ1P (λ)∆(t) + f̃⊤Λ−1
1 f̃ (23)

For the terms containing W ∗
1 and W ∗

2 one has

∆⊤P (λ)W ∗
1 σ̃ ≤ ∆⊤P (λ)W̄1P (λ)∆+

Lσ∆
⊤Λ−1

2 ∆(t)

∆⊤P (λ)W ∗
2 φ̃u(t) ≤ ∆⊤P (λ)W̄2P (λ)∆+

Lφu
+∆⊤Λ−1

3 ∆(t)

(24)

where W̄1 := (W ∗
1 )

⊤Λ2W
∗
1 and W̄2 := (W ∗

2 )
⊤Λ2W

∗
2 .

Taking into account that

∆⊤P (λ)W̃1σ(x̂) = tr
{

W̃⊤
1 P (λ)∆σ⊤(x̂)

}

∆⊤P (λ)W̃2φ(x̂)u(t) = tr
{

W̃⊤
2 P (λ)∆ (φ(x̂)u(t))

⊤
}

(25)
Joining the results in (23)-(25) into the derivative of Vc in
(21), the next result is obtained

V̇c ≤ ∆⊤
(

P (λ)A(λ) +A(λ)⊤P (λ)+
P (λ)SP (λ) +Q)∆−

2∆⊤P (λ) (A∗ −A(λ)) x+

2tr
{

W̃1Θ1

}

+ 2tr
{

W̃2Θ2

}

−∆⊤Q∆+ ς,

(26)

where
Θ1 = k1Ẇ1 + P (λ)∆σ⊤(x̂),

Θ2 = k2Ẇ2 + P (λ)∆ (φ(x̂)u(t))
⊤
.

Although unknown, the term δx(λ) := (A∗ − A(λ))x is
always bounded for any λ ∈ Γ, by convexity and (5), as

‖A∗x−A(λ)x‖ = ‖δx(λ)‖ ≤ δ̄x(λ), ∀x ∈ R
n,

for a positive scalar δ̄x ∈ R. This δ̄x(λ) can be obtained as
follows.

Defining z∗ = A∗x and z(λ) = A(λ)x, and noting that
z∗ ∈ C, C = co{z1, . . . , zl}, where zi = Aix for i = 1, l.
Then for a given λ ∈ Γ

δ̄x(λ) = max
i

‖zi − z(λ)‖.
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Algorithm 1. Algorithm for numerical implementation.

Step 0. Select a suitable sampling period (τ > 0) to
implement an explicit Euler method. The sampling times
tk = τk, k = 0, 1, . . . are the iteration steps.
Step 1. Declare the variables of equation (18) according
the number of DNNs to evaluate.
Step 2. Select the activation functions, the matrix A and
other elements needed for each DNN
Step 3. Compose the set of matrices described in the
main theorem and solved them to find the composite
matrix P (λ). An alternative option is to solved the Ricatti
equation in (15) for each different DNN.
Step 4. Solve (19) to obtain the corresponding elements
λj

Step 5. Feed the CDNN with the resulting learning laws.
Step 6. Let k = k + 1 and Go To Step 4.

So it is possible to select an optimal λ∗ such that δ̄x(λ
∗)

is minimal, this is (19).

Taking this into consideration, and adding an subtracting

α
‖δx(λ)‖

2

δ̄2
x
(λ∗)

, where α is a positive scalar, to (26)

V̇c ≤ ∆⊤
(

P (λ)A(λ) +A(λ)⊤P (λ)+
P (λ)SP (λ) +Q)∆−

2∆⊤P (λ)δx(λ) ± α
‖δx(λ)‖

2

δ̄2x(λ
∗)

+

2tr
{

W̃1Θ1

}

+ 2tr
{

W̃2Θ2

}

−∆⊤Q∆+ ς.

(27)

Defining the extended vector η⊤ :=
[

∆⊤, δ⊤x (λ)
]

, (27) can
be rewritten as

V̇c ≤ η⊤Ωη + 2tr
{

W̃1Θ1

}

+

2tr
{

W̃2Θ2

}

−∆⊤Q∆+ ς̄(λ),

with

Ω =

[

P (λ)A(λ) +A⊤(λ)P (λ) + P (λ)SP (λ) +Q P (λ)

P (λ) −

α

δ̄2
x

I

]

and ς̄(λ) = ς + α
‖δx(λ)‖

2

δ̄2
x
(λ∗)

.

Now, taking Θ1 and Θ1 equal to zero yields in the learning
laws in (14), selecting λ = λ∗, and if Ω ≤ 0, or equivalently
(18) is true, the time derivative of Vc is upper-bounded as

V̇c ≤ −∆⊤Q∆+ ς(λ∗). (28)

By the Barbalat’s Lemma the identification error is prac-
tically stable in a neighbourhood of the equilibrium point
in zero.

✷

4. NUMERICAL RESULTS

4.1 Implementation procedure

To implement the composite approximation, the Algo-
rithm 1 describes an iterative numerical solution to im-
plement the optimization described in (19). The imple-
mentation of the CDNN seems to be complex for the
iterative needed solution. However, notice that the set of
LMI’s described in (18) has to be solved once. The iterative
requirement applies only in equation (19).

4.2 Numerical simulations

The model of the Van der Pol oscillator is given by the
following couple of differential equations (Ahmed et al.,
2018)

ẋ1 = x2

ẋ2 = −x1 + εx2(1 − x2
1) + w(t) + u

(29)

where ε > 0 is an specific parameter for the model, x =

[x1 x2]
⊤

∈ R
2 is the state vector, w ∈ R is an unknown

but bounded and Lipschitz external disturbance, that is,
‖ẇ(t)‖ ≤ w+, for all t ≥ 0 and with w+ a known positive
constant. For simulation proposes,ε = 2. For the model,
the initial conditions were zero. A CDNN was designed
with two different elements, that is, l = 2 in equation
(12). Indeed, to compare the composition obtained, the
two DNN were simulated. The first DNN had the following
elements in its inner structure

A1 =

[

−50 0
0 −50

]

, S1 =

[

50 0
0 50

]

,

Q1 =

[

0.5 0
0 0.5

]

The parameter in the set (18) α1 = 0.2. This parameters
yield in the following matrix R−1

1 as

R−1
1 =

[

0.1385 0.0615
0.0615 0.1385

]

The activation functions for the first network were selected
as

σ1(x̂) =







1

1 + e(−0.10.1]⊤x̂i)

1

1 + e([0.1−0.1]⊤x̂i)







φ1(x̂) =
1

1 + e(1−1]⊤x̂i)

[

1 1
1 1

]

The learning coefficients were k11 = k12 = 25I2×2.
The second DNN had the following elements in its inner
structure

A2 =

[

−3.5 0
0 −5.1

]

, S2 =

[

5 0
0 5

]

,

Q2 =

[

0.7 0
0 0.7

]

The parameter in the set (18) α1 = 0.5. This parameters
yield in the following matrix R−1

2 as

R−1
2 =

[

0.2130 0.0115
0.0115 0.2500

]

The activation functions were

σ2(x̂2) =







1

1 + e(−15−18]⊤x̂2)

1

1 + e([1518]
⊤x̂2)







φ2(x̂2) =
1

1 + e(1−1]⊤x̂2)

[

1 1
1 1

]

The learning coefficients ware

k21 =

[

2 0
0 2.4

]

k22 =

[

1 0
0 1

]

The simulation was performed with an explicit Euler
method with a sampling period of 0.001. Figure 1 shows
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the state identification with the two different DNNs. A
continuous red line represents the real trajectories for the
Van der Pol oscillator. The black dotted line correspond
to the first DNN and the green one corresponds to the
second DNN. Both of them have an acceptable identifica-
tion performance. This issue has been addressed in many
previous works (Poznyak et al., 2001, 2019). An additional
improvement can be obtained with the increment of the
activation functions and the size of the available param-
eters. However, there does not exist an explicit method
to select the parameters (Lewis et al., 1998; Igelnik and
Yoh-Han Pao, 1995) and this procedure sometimes make
difficult to adjust approaches based on DNN. The CDNN
presented in figure 1 is adjusted by means of an LMI
optimization procedure. The approximation of the CDNN
is depicted with a dashed blue line. Even when the three
approximations remain in a small convergence region, the
CDNN takes advantage when the derivative of the signal
increased its value. In the closer view one can notice
that the CDNN approximates better the nonlinear system.
From the second four to the second five is possible to
see how the first DNN is below the real system, and the
second DNN upper estimate the nonlinear trajectories.
The CDNN makes a weighing between them and makes
a more exact identification.

0 1 2 3 4 5 6
-2

-1

0

1

2

5 5.1 5.2 5.3 5.4
-2

-1.8

-1.6

0 1 2 3 4 5 6
-4

-2

0

2

3.8 3.9 4 4.1 4.2
-2

-1.5

-1

-0.5

Fig. 1. State identification based on differential neural
networks: comparison of the composite version against
individual structures

Figure 2 shows the performance index of each network
defined as the Euclidean norm of the identification error.

Both single structures have a similar behaviour. However,
the euclidean norm for the CDNN remains in a smaller
neighbourhood almost all the time. Figure 2 describes with
a red continuous line the Euclidean norm of the CDNN
approximation.
The weights for each sampled time are shown in figure

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 2. Euclidean norm of the identification error for the
two single structures and the CDNN. The CDNN
Euclidean norm is smaller than the other two cases

3. The weights present some variations between 0 to 0.5
for the first CDNN. The second single DNN structure
contributes with values from 0.5 to one. The variations
are more significant when the derivative of the signal
increased. As a consequence, as it was mentioned before,
the CDNN obtains a better approximation.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Weights obtained through the optimization proce-
dure in equation (16)

5. CONCLUSIONS

A CDNN was presented to improve the approximation
characteristics of classical DNN. A new composite con-
trolled Lyapunov function was presented to develop new
learning laws for the CDNN. Even when this structure
needs an on-line computation of the weights included in
an optimization process, the complete procedure can be
alleviated with only periodic calculations. Future research
should be oriented to include noises in the available mea-
surements.
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