
Adaptive Cruise Control with Timed
Automata

Mustafa Yavuz Kara ∗ Ebru Aydin Gol ∗

∗ Department of Computer Engineering, Middle East Technical
University, Turkey (e-mail: myavuzkara@gmail.com,

ebrugol@metu.edu.tr).

Abstract: An adaptive cruise control (ACC) system maintains the vehicle at the given target
speed when there is no leading vehicle in the sensor range. On the other hand, in the presence
of a leading vehicle, the system maintains a safe distance between the vehicles while driving
as close as possible to the target speed. For such an automated system, besides meeting safety
requirements, it is also important to provide a comfortable drive. In this paper, we develop
a formal model for adaptive cruise control system based on timed automata and express
specifications in temporal logics. The proposed model supports different acceleration levels.
Parametric constraints govern the transitions to the states associated with acceleration levels.
The proposed parameter optimization methods generate parameter valuations for particular
driving styles while guaranteeing safety and the specifications over the target speed. Therefore,
the resulting system is guaranteed to satisfy the requirements while the driver comfort is
optimized. The models and the synthesis approach are illustrated with examples.

Keywords: Timed automata, adaptive cruise control, parameter synthesis.

1. INTRODUCTION

A cruise control system is a driver assistance system
that aims at making the driving more comfortable and
convenient for the driver. The only functionality provided
by a conventional cruise control system is keeping the
vehicle at a preset target speed, which is determined
by the driver. An adaptive cruise control (ACC) system
extends the conventional cruise control systems with the
ability to follow a leading vehicle in the same lane at
a safe distance. When there is no leading vehicle within
the sensory range, the ACC system maintains the vehicle
at the target speed (SAE J2399, 2014). However, when
there is a leading vehicle within the sensor range, ACC
system adjusts the speed by accelerating or decelerating
(negative acceleration) and follows the leading vehicle at a
safe distance unless the leading vehicle accelerates beyond
the target speed, in which case the system only accelerates
up to the target speed. Two cars driving on the same lane
illustrating the ACC problem is shown in Fig. 1.

Fig. 1. Two vehicles with speed v, vl and distance d.

While the cruise control systems are considered driver
assistance systems, which implies that the system’s oper-
ation will be supervised by the human driver at all times,

? This work has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Sk lodowska-Curie grant agreement No 798482.

safety is still of paramount importance. Therefore, the
correctness of such automated systems should be guaran-
teed. This paper presents a formal methods approach to
generate ACC systems based on timed automata.

Timed automata (TA) is a formalism for modeling real-
time systems. A timed automaton can simply be viewed
as a finite automaton extended with a set of real-time
variables, called clocks, which capture the time (Alur,
2015). The clocks enrich the semantics and the constraints
on the clocks restrict the behavior of the automaton. An
established approach to verifying correctness of TA models
is model checking, where the specifications are expressed
in a formal language and efficient algorithms are used
to check if the model satisfies the given specification. In
a TA, the clock constraints are defined as inequalities,
e.g., x < 5 for clock x. A TA is called parametric when
parameters are used in place of constants, e.g., x < p.
For a parametric TA, the goal of the parameter synthesis
problem is to find the set of all parameter valuations
such that when the parameters are replaced with the
corresponding valuations the resulting TA satisfies the
given specification. In general, the parameter synthesis
problem is undecidable (Beneš et al., 2015; Étienne, 2019).
However, the integer valued parameter synthesis problem
from a bounded search space is decidable (Beneš et al.,
2015). In addition, efficient parameter synthesis methods
based on monotonicity properties exist for specific classes
of TA such as L/U automata (Hune et al., 2002).

In this paper, the ACC system, the leading vehicle and the
distance between the vehicles are modeled as timed au-
tomata (TA). For the ACC system, the automaton states
represent the acceleration levels. Parametric constraints
are defined to govern the transitions between the accelera-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 1944

tion modes. The leading vehicle has a similar model but it
changes its state (acceleration level), thus its speed, non-
deterministically. Finally, the distance automaton synchro-
nizes these TAs and models the distance between the
vehicles with respect to their speeds. The system speci-
fications including the safety requirements are expressed
formally in Computation Tree Logic (CTL). For example,
the safety requirement is formulated as ∀�(d > dmin), i.e.,
the distance should be greater than the minimum safety
distance dmin at all times. The specification over the target
speed is defined as ∃ � (v = vtarget), i.e., the target speed
can be reached.

The ACC design problem is studied extensively in control
and traffic communities (Jing Zhou and Huei Peng, 2005;
Nilsson et al., 2016; Xiao and Belta, 2019; Magdici and
Althoff, 2017). In earlier works, the control architecture
and low level controller design are studied (Jing Zhou
and Huei Peng, 2005). Considering the critical nature of
the problem, recent works focus on designing correct by
construction systems. Nilsson et al. (2016) designs ACC
system from formal specifications via fixed point compu-
tations. Whereas, Xiao and Belta (2019) employs control
barrier functions for ACC design. In these works, the vehi-
cle is modeled as a lumped point mass and the force to be
applied is computed. As in this paper, Larsen et al. (2015)
presents a TA model for ACC design, where the controller
output is the acceleration level. The TA from (Larsen
et al., 2015) has a single acceleration and a single decel-
eration level. The transitions are non-deterministic and
a feedback control automaton is synthesized to guarantee
safety. Whereas, in this work, a parametric TA is generated
for any given number of acceleration levels. Then the
parameters of the TA are synthesized in an automated
way such that the resulting TA is guaranteed to satisfy
the specifications while the driver comfort is optimized.
Furthermore, even though the parametric TA does not
belong to L/U class, it is shown that the parameters are
monotonic and this property is used to synthesize optimal
parameters in an efficient way.

2. ADAPTIVE CRUISE CONTROL PROBLEM

2.1 System Description

A vehicle is modeled with discrete time motion dynamics:

vk+1 = vk + ak, ak ∈ U (1)

where, at time step k, vk is the speed and ak is the
acceleration (or deceleration for ak < 0) that takes values
from a finite set U with 0 ∈ U. The speed limits are
denoted by vmin and vmax.

The vehicles are equipped with a distance sensor. The
sensor can detect the relative position of a leading vehicle
when it is in the sensor range, which is denoted by drange.
The target speed set by the driver is denoted by vtarget ∈
[vmin, vmax]. In the considered setup, the ACC system
knows its own speed vk, receives the measured distance
d ∈ [0, drange] of the leading vehicle if there is one from
the sensor system, and then sets the acceleration level ak.
The leading vehicle have the same dynamics (e.g. the same
acceleration levels). However, its acceleration, speed and
control logic are unknown to the controlled vehicle. There
are two cases in which a new vehicle enters to the sensor

range. First, a vehicle driving on the same lane enters the
range at drange, e.g. a slower vehicle appears in the front.
Second, a vehicle can enter via a lane switch at a distance
d ∈ [dlane, drange], where dlane denotes the minimum lane
switch distance under normal driving conditions 1 . The
second case is only allowed when there is no other leading
vehicle to avoid too close manoeuvres.

2.2 Specifications

The first specification is the crash avoidance. A safe
distance, dmin, between the controlled and the leading
vehicles should be maintained, i.e,

Safety : d > dmin at all times

Second, the vehicle should reach the target speed when it
is safe.

TargetSpeed : reach vtarget when safe.

Finally, the ACC system should keep the speed within the
limits, i.e.,

SpeedLimits : vmin ≤ vtarget at all times

For the driver comfort, frequent accelerations and deceler-
ations should be avoided and the vehicle should maintain
its speed at the target when it is safe (e.g. no oscillation
around vtarget). In addition, sharp decelerations should be
avoided unless it is necessary.

Problem: Given system (1), design an ACC that satisfies
the specifications while optimizing the driver comfort.

2.3 Example System

The parameters of an example system are defined as
follows. The speed limits are vmin = 10m/s and vmax =
30m/s. The acceleration levels are U = {−2,−1, 0, 1}. The
target speed is vtarget = 20m/s which can be changed
by the driver. The sensor range is drange = 150m. The
minimum allowed lane change distance is dlane = 100m.
The safety distance is 15m (e.g. half of the maximum
distance traveled in a second).

3. TIMED AUTOMATA MODELS FOR ACC

In this section, we describe the developed TA models and
their formal specifications for the adaptive cruise control
problem 2 . For detailed information on TA and temporal
logics, we refer the interested reader to Alur (2015). The
overall model consists of three timed automata. The first
automaton shown in Fig. 2 models the distance measured
by the controlled vehicle and synchronizes the TA network.
The second (Fig. 3) and the third (Fig. 4) automata
model the speed of the controlled and the lead vehicles,
respectively.

1 Other systems such as the emergency brake system should be
active when this assumption is violated.
2 The TA extensions implemented in UPPAAL such as committed
locations and integer variables are used in the models (UPP, 2005).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1945

3.1 The Distance Automaton

The distance automaton can be seen in Fig. 2. It has the
initial location wait and five committed locations marked
with “c”. Time can not pass in a committed location. In
other words, when it is reached, the next transition must
be from there. Thus, in distance TA, time can only pass at
location wait and the transitions through other locations
are all instantaneous.

Fig. 2. Distance TA: Synchronizes the network and up-
dates the distance.

The TA has a single clock named x, it is reset on the
transition leaving wait. wait has invariant x ≤ 1 and x
should be 1 to take the transition. Hence, at every second,
TA leaves wait and makes a loop through either lead or
noLead. First, it goes to update when x is 1 and resets
the clock. Then, it goes to range and updates the distance
between the lead and the controlled vehicles with respect
to their speeds v and vl that are modeled by the control
TA and the lead TA, respectively. Note that the distance,
d, is set to drange when the computation returns a higher
value to mimic the sensor range. Then, it goes to lead
or noLead with respect to the computed d to model the
constraint that a lane switch can only occur when there
is no leading vehicle. In the lane switch case, new lead
signal is sent to the lead TA and the distance is set to a
random value in [dlane, drange] modeling the restrictions
from Sec. 2.1. If there is a leading vehicle, wake lead signal
is sent to the lead TA. After that, it goes to cruise location,
and then finalizes the loop by going to the wait with
wake controlled signal sent to the control TA. Control and
lead TAs compute their speeds only when they receive a
signal from the distance TA.

3.2 The Cruise Control Automaton

First, the control automaton for the example defined in
Sec. 2.3 is described, and then a method to construct a
control TA for any number of deceleration levels is defined.

The example system has two deceleration levels and a
single acceleration level. The corresponding control TA is
shown in Fig. 3. The TA is composed of an initial location
called wait and four committed locations: decide and a
location for each level l0, l1, and l2. It does not have a
local clock. It only leaves wait and goes to decide when it
receives wake controlled signal from the distance automa-
ton. Then it goes to one of the acceleration locations l0,
l1, and l2 or to wait based on the measured distance d
(computed in distance TA) and its current speed v.

Fig. 3. Control TA: Implements the cruise control schema.

We present the control TA construction method for any
number of acceleration levels. Let U = {a0, 0, a1 . . . , am}
be the acceleration levels given in decreasing order, i.e.,
ai > ai+1 for i = 1, . . . ,m− 1 (single positive acceleration
level a0). The control automaton is constructed with 2+m
locations and 1+4m transitions. In particular, in addition
to the wait and decide locations and the wake transition
from wait to decide, 1 new location and 4 new transitions
are introduced for each level except 0 ∈ U. Note that the
only positive acceleration level is a0. For a0, committed
location l0, a transition from decide to l0 with guard
d0 ≤ d, and a transition from l0 to wait with the following
update rule are added to the model:

v =

{
v + a0 if v + a0 ≤ vtarget
vtarget otherwise

For each ai ∈ U\{0, a0}, the following steps are performed
to construct the parametric TA:

• add committed location li
• add a transition from decide to li with guard (slow

down with ai)

di ≤ d && d < di−1 && vui ≤ v

• add a transition from decide to wait with guard (keep
the speed constant at v)

di ≤ d && d < di−1 && vli ≤ v && v < vui
• add a transition from decide to l0 with guard (increase

the speed)

di ≤ d && d < di−1 && v < vli
• add a transition from li to wait with update rule:

v =

{
v + ai if v + ai ≥ vmin

vmin otherwise

The lower bound vli and the upper bound vui partitions
[vmin, vtarget] into three regions: [vmin, v

l
i), [vli, v

u
i) and

[vui , vtarget]. Consider the case when d ∈ [di, di−1). The
vehicle accelerates if v ∈ [vmin, v

l
i) (transition to l0), keeps

its speed constant if v ∈ [vli, v
u
i) (transition to wait), and

decelerates if v ∈ [vui , vtarget] (transition to li).

The distance bounds d0, d1, . . . , dm−1, and the velocity
bounds vl1, v

u
1 , . . . , v

l
m, vlm are the parameters of the TA

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1946

that needs to be set. Whereas, vmin, vmax, a0, . . . , am and
vtarget are initialized with respect to the considered sys-
tem. Note that the guard definitions (transition con-
straints) guarantee that for any parameter assignment
satisfying the ordering defined in (2) and (3), the resulting
control TA will be deterministic since the the constraints
(guards) on the transitions leaving decide are mutually ex-
clusive, and a unique transition leaves every other location.
(4) is imposed to form an ordering in the velocity bounds
for different distance intervals.

di+1 < di, for i = 0, . . . ,m− 1 (2)

vli < vui for i = 1, . . . ,m (3)

vli+1 ≤ vli, v
u
i+1 ≤ vui for i = 1, . . . ,m− 1 (4)

3.3 The Leading Vehicle Automaton

The TA modeling the leading vehicle is shown in Fig. 4.
It has three locations: the initial location wait and two
committed locations decide and lane switch. When it
receives the wake lead signal from the distance TA, it
randomly accelerates, decelerates (within the speed limits)
or maintains its speed and goes back to wait through
decide. If it receives new lead signal, it sets its speed to a
value from [vmin, vmax] randomly through lane switch
mimicking a vehicle switching to the same lane as the
controlled vehicle.

In general, each u ∈ U is represented through a transition
from decide to wait with the corresponding speed update,
e.g. vl = vl +u. There is no guard defined over these tran-
sitions, thus one of them is picked non-deterministically to
model the uncertainty over the lead vehicle’s behavior.

Fig. 4. Lead TA: Models the leading vehicle.

The following parameters of the TA models are initialized
with respect to the considered system:

drange, dlane, vtarget, vmin, vmax, a0, a1, . . . , am
Whereas, the distance thresholds d0, d1, . . . , dm−1 and
the velocity thresholds vl1, v

u
1 , . . . , v

l
m, vlm from the control

automaton should be defined. Our goal is to find these
parameters such that the resulting system optimizes the
driver comfort and satisfies the specifications which are
formalized in the next section.

3.4 Formal Specifications

The specifications are expressed in Computation Tree
Logic (CTL). The ACC specifications given in Sec. 2.2
are described by the following formula

ΦACC = Φsafe ∧ Φtarget ∧ Φdeadlock ∧ Φlimits (5)

Φsafe encodes the safety property, it requires that d >=
dmin is always true:

Φsafe = ∀�d >= dmin (6)

Φtarget encodes the liveness property, it indicates that it
should be possible to reach the target speed:

Φtarget = ∃ � v = vtarget (7)

Φlimits encodes the restrictions over the speed:

Φlimits = ∀�(vmin ≤ v ∧ v ≤ vmax) (8)

Finally, the last one Φdeadlock is a commonly used formula
to check the modeling errors. It ensures that the system
does not stuck at a state, thus a deadlock does not occur:

Φdeadlock = ∀�not deadlock (9)

4. PARAMETER SYNTHESIS

The proposed TA models and formal specifications reduce
the ACC design problem from Sec. 2 into a parameter
synthesis problem for timed automata. While the search
space is bounded, the TA does not belong to the L/U class
since parameters are used as both upper and lower bounds,
e.g, see d1. In this section, we first define the solution space
and enumerate each element in it, which leads to a greedy
solution. Then, we define optimization criteria to improve
the driver comfort. Finally, we present an efficient iterative
heuristic approach to find the optimal parameters.

The search space for the parameter synthesis problem is
defined in (10), i.e., the product of the search spaces over
the distance thresholds and the speed thresholds satisfying
the ordering constraints.

S = {(d,v) = ((d0, . . . , dm−1), (vl1, v
u
1 , . . . , v

l
m, vlm)) |

(10)

di ∈ {dmin, dmin + 1 . . . , drange} for each i ∈ {0, . . . ,m},
vli, v

u
i ∈ {vmin, . . . , vtarget} for each i ∈ {0, . . . ,m},

(d,v) satisfies (2) and (3)} (11)

Note that the parameters are bounded and takes integer
values, thus the search space is finite 3 . In particular, the
cardinality of S is

| S |=
(
drange − dmin

m

)(
vtarget − vmin + m + 1

2m

)
, (12)

where
(
N
k

)
denotes the number of k-combinations of a

set with N elements. As (d,v) ∈ S satisfies the ordering
constraint, the corresponding control TA (e.g see Fig. 3)
is deterministic. However, it might not satisfy the specifi-
cation formula ΦACC (5). The following greedy synthesis
approach finds the set of parameter valuations Sat ⊆
S satisfying the specification. Let T denote the overall
parametric timed automata model (i.e. consists of three
automata), and for a given parameter valuation (d,v), let
T(d,v) denote the TA initialized with parameters (d,v).

GreedyApproach:
Initialize Sat = ∅
For each (d,v) ∈ S,
· Model check the T(d,v) against ΦACC

If satisfied, add (d,v) to Sat

As stated in Sec. 2.2, the objective is to choose the
parameter valuation among Sat that optimizes the driver
comfort. The driving experience can be improved by (1)

3 This is a limitation imposed by UPPAAL. It can be mitigated via
scaling.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1947

avoiding frequent switches between acceleration levels,
(2) maintaining the target speed as much as possible
and (3) avoiding sharp decelerations. Due to the non-
deterministic nature of the overall TA model because of
the lead vehicle, a worst case scenario optimization can be
performed. However, the listed criteria conflicts with each
other. For example, increasing d0 reduces the time driven
at the target speed (thus conflicts with (2)) and decreases
the time spent in a lower deceleration level (improves
(3)). A possible approach is to optimize the weighted
sum of these criteria. Note that the greedy approach is
guaranteed to find the optimal solution for any given
optimization function. However, it is computationally very
expensive. Next, we present an iterative approach that
uses the monotonicity of the parameters to iteratively
optimize each parameter in an efficient way. The variations
in the parameter optimization step generate strategies
optimizing different criteria.

Analysis of Φtarget (7): The model construction guaran-
tees that d0 ≤ drange and the transition to the a0 location
(acceleration) is taken whenever d ≥ drange. Thus, for any
(d,v) ∈ S, T(d,v) satisfies Φtarget.

Analysis of Φlimits (8): The update rules for the speed in
control TA guarantees that v ∈ [vmin, vtarget] at all times.

Analysis of Φdeadlock (9): The property is satisfied when
each state of the timed transition system generated from
the TA has a successor state (Alur, 2015). Due to the
ordering property of the constraint thresholds (10), for any
(d,v) ∈ S, T(d,v) satisfies Φdeadlock.

Thus, the goal is to find a parameter valuation (d,v) ∈ S
satisfying Φsafe while optimizing the driver comfort. The
proposed approach starts from the most strict parameter
valuation (ds,vs) defined in (13).

(ds,vs) ∈ S where (13)

ds = (drange, drange − 1, . . . , drange −m + 1)

vs = (vl1, v
u
1 , . . . , v

l
m, vlm) with

vli = vmin, and vui = vmin + 1 for each i (14)

The parameter valuation (13) is strict in the sense that it
generates the most aggressively decelerating policy from
S. In particular, when d < drange, it decelerates with the
lowest possible a ∈ U allowed by the ordering constraints.
Furthermore, due to the vs definition, from decide loca-
tion, only the transitions to the locations associated with
deceleration (li, i > 0) can be taken when d < drange and
v 6= vmin. The proposed approach iteratively relaxes the
thresholds from (ds,vs) by using the monotonicity of the
parameters, which is defined next.

Monotonicity for the distance parameters: Consider
two parameter valuations (da,v) and (db,v) satisfying
that dai < dbi for some i ∈ {0, . . . ,m} and daj = dbj for

each j 6= i. Then, if T(da,v) satisfies Φsafe, then T(db,v)
also satisfies Φsafe.

The property indicates if two parameter valuations are
the same except the i − th distance parameter, then
if the one with a lower distance threshold satisfies the
safety specification, then the other one also satisfies it.
The property follows from the speed restrictions (4) that
T(db,v) starts decelerating at a higher rate (for ai+1) ear-

lier than T(da,v). Furthermore, for parameter valuations
(da,v) and (db,v), if T(db,v) does not satisfy Φsafe, then
T(da,v) does not satisfy Φsafe as well, which is utilized
to perform a binary search.

Monotonicity for the speed upper bound: Consider
two parameter valuations (d,va) and (d,vb) satisfying

that vu,ai < vu,bi for some i ∈ {1, . . . ,m} and vu,aj = vu,bj for

each j 6= i, and vl,aj = vl,bj for each j ∈ {1, . . . ,m}. Then, if

T(d,vb) satisfies Φsafe, then T(d,va) also satisfies Φsafe.

The property indicates if two parameter valuations are the
same except the i− th speed upper bound, then if the one
with a higher bound satisfies the safety specification, then
the other one also satisfies it.

Monotonicity for the speed lower bound: Consider
two parameter valuations (d,va) and (d,vb) satisfying

that vl,ai < vl,bi for some i ∈ {1, . . . ,m} and vl,aj =

vl,bj for each j 6= i, and vu,aj = vu,bj for each j ∈
{1, . . . ,m}. Then, if T(d,vb) satisfies Φsafe, then T(d,va)
also satisfies Φsafe.

Algorithm 1 ParameterOptimization

1: (d,v) = (ds,vs) from (13)
2: return ∅ if T(d,v) does not Φsafe

3: dm = dmin, vu0 = vtarget, v
l
0 = vtarget (edge

conditions)
4: (dp,vp) = 0 (initialization)
5: while (d,v) 6= (dp,vp) do
6: while i = m to 1 do
7: (dp,vp) = (d,v))
8: Next(Dist-i,T, (d,v), di−1, di,Φsafe) .

Next(p,T, (d,v), c, b,Φ) finds a parameter valuation
for p within bounds c and b such that T(d,v)
satisfies Φ.

9: Next(v-u-i,T, (d,v), vui , v
u
i−1,Φsafe)

10: Next(v-l-i,T, (d,v), vli,min(vui , v
l
i−1),Φsafe)

11: end while
12: end while
13: return (d,v)

The proposed optimization method is summarized in
Alg. 1. First, it checks whether T(ds,vs) satisfies the
specification. By the monotonicity properties of the pa-
rameters, if T(ds,vs) does not satisfy the specification,
then no (d,v) ∈ S satisfies it. If T(ds,vs) satisfies Φsafe,
then starting from the lowest acceleration level (highest
deceleration rate), for each level, the next distance thresh-
old, speed upper bound and speed lower bound are found
in this order. Note that for each of the optimization steps
(lines 8,9,10), a single parameter is found the by virtue
of the monotonicity analysis. The main loop continues
as long as there is a progress in at least one of the
parameters(line 5). The speed bounds creates a buffer
zone between the different acceleration levels, thus relaxing
speed bounds (line 9,10) avoids frequent switches between
the acceleration levels contributing to the first criteria.

Two approaches are used to find the next satisfying
valuation. The first one is to use binary search within
the given lower and upper bounds (e.g. di−1, di). In this
case, the tightest valuation is found for each parameter

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1948

in the order in which the optimization is performed, i.e,
dm−1, dm−2, . . . , d0,vu1 , v

l
1, v

u
2 , v

l
2, . . . , v

u
m, vlm. The order for

the speed bounds is reversed due to the initial condition
and constraint (4). This approach finds the optimal pa-
rameter valuation for avoiding higher deceleration rates.

Algorithm 2 FindNext(T, (d,v), c, b, param,Φ)

1: repeat
2: b = (c + b)/2 (floor for when b > c, i.e.,

maximization, ceiling for minimization)
3: Set param to b in (d,v)
4: until T(d,v) satisfies Φ

The second approach to find the next satisfying valuation
is shown in Alg. 2. Essentially, it is a modified binary
search, where the search is terminated when a satisfying
value is found. This heuristic approach iteratively relaxes
each parameter to find a smooth policy.

4.1 Parameter Synthesis for the Example System

In this section, we present the numerical results for the
system introduced in Sec. 2.3. The safety requirement is
Φsafe = ∀�d ≥ 15. The parameters of the model are
(d0, d1), (vl1, v

u
1 , v

l
2, v

u
2). The most strict parameter valu-

ation is ((150, 149), ((10, 11, 10, 11)) (see control TA in
Fig. 3). The overall system with these parameters satisfies
Φsafe, thus ΦACC (5) which is validated via UPPAAL.

First, binary search is used to find the tightest valuations
in lines 8,9,10. In the first step, for the minimization of
d1, ((150, 15), ((10, 11, 10, 11)) is found to be satisfying.
For this valuation, d1 = dmin, thus the control automaton
completely avoids a2 = −2. Note that for vl2, v

u
2 , the upper

bounds with respect to (4) are 10 and 11, respectively.
Thus their value does not change in lines 9 and 10. Next,
the minimization of d0 returns 70. The optimization of
vl1, v

u
1 for ((70, 15), ((10, 11, 10, 11)) reveals that increasing

any of them results in violation of the specification. Thus
the algorithm returns ((70, 15), ((10, 11, 10, 11)). The re-
sulting strategy is to decelerate at a1 = −1 when there is
a vehicle within 70m. When there is a lead vehicle with a
constant speed of vl = 10m/s(vmin), this strategy matches
the speed of the leading vehicle when d = 15m.

Next, FindNext(·) method given in Alg. 2 is used
in lines 8,9,10. Again, the optimization starts with
((150, 149), ((10, 11, 10, 11)). The satisfying parameters
found in the algorithm are given below. Each line is marked
with the iteration number over the main loop and the
optimized parameter. The new value is highlighted in blue.

It : 1, d1 :((150, 82), (10, 11, 10, 11))

It : 1, d0 :((116, 82), (10, 11, 10, 11))

It : 1, vu1 :((116, 82), (10, 15, 10, 11))

It : 1, vl1 :((116, 82), (12, 15, 10, 11))

It : 2, d1 :((116, 48), (12, 15, 10, 11))

It : 2, d0 :((82, 48), (12, 15, 10, 11))

It : 2, vu1 :((82, 48), (12, 17, 10, 11))

It : 2, vl1 :((82, 48), (15, 17, 10, 11))

It : 3, d1 :((82, 32), (15, 17, 10, 11))

It : 3, d0 :((57, 32), (15, 17, 10, 11))

It : 4, d1 :((57, 31), (15, 17, 10, 11))

It : 4, d0 :((54, 31), (15, 17, 10, 11))

The resulting ACC strategy uses both of the deceleration
levels. Independent of the vehicle’s velocity, when d ≤
31m, the vehicle decelerates with −2 since vu2 = vmin + 1.
When d ≥ 54 the vehicle accelerates to its target speed.
Finally, when d ∈ [32, 54], the vehicle decelerates with
−1 if 17 ≤ v, maintains its speed if 15 ≤ v < 17,
and accelerates if v < 15. This strategy postpones the
deceleration compared to the first one (d0 was 70) by
utilizing the second deceleration level.

5. CONCLUSION

We presented a timed automata model for the adaptive
cruise control problem. We first constructed a template
parametric TA for the given number of acceleration lev-
els. Then, we presented an efficient parameter synthesis
method for the particular parametric TA such that the
resulting TA was guaranteed to satisfy the specifications.

REFERENCES

(2005). Uppaal. URL http://www.uppaal.org.
Alur, R. (2015). Principles of Cyber-Physical Systems. The

MIT Press.
Beneš, N., Bezděk, P., Larsen, K.G., and Srba, J. (2015).

Language emptiness of continuous-time parametric
timed automata. In M.M. Halldórsson, K. Iwama,
N. Kobayashi, and B. Speckmann (eds.), Automata,
Languages, and Programming, 69–81. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Étienne, A. (2019). What‘s decidable about parametric
timed automata? Int J Softw Tools Technol Transfer,
21, 203–219.

Hune, T., Romijn, J., Stoelinga, M., and Vaandrager, F.
(2002). Linear parametric model checking of timed
automata. The Journal of Logic and Algebraic Program-
ming, 52-53, 183 – 220.

ISO (2010). Intelligent Transport Systems-Adaptive Cruise
Control Systems- Performance Requirements and Test
Procedures. ISO Standard 15622:2010 (E).

Jing Zhou and Huei Peng (2005). Range policy of adap-
tive cruise control vehicles for improved flow stability
and string stability. IEEE Transactions on Intelligent
Transportation Systems, 6(2), 229–237.

Larsen, K.G., Mikučionis, M., and Taankvist, J.H. (2015).
Safe and Optimal Adaptive Cruise Control, 260–277.
Springer International Publishing, Cham.

Magdici, S. and Althoff, M. (2017). Adaptive cruise control
with safety guarantees for autonomous vehicles. IFAC-
PapersOnLine, 50(1), 5774 – 5781. 20th IFAC World
Congress.

Nilsson, P., Hussien, O., Balkan, A., Chen, Y., Ames,
A.D., Grizzle, J.W., Ozay, N., Peng, H., and Tabuada,
P. (2016). Correct-by-construction adaptive cruise con-
trol: Two approaches. IEEE Transactions on Control
Systems Technology, 24(4), 1294–1307.

SAE J2399 (2014). Adaptive Cruise Control (ACC) Oper-
ating Characteristics and User Interface.

Xiao, W. and Belta, C. (2019). Control barrier functions
for systems with high relative degree. In IEEE Confer-
ence on Decision and Control, 1–6.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1949

