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Abstract: The satellite sea surface temperature (SST) measurement is based on the detection of
ocean radiation using microwave or infrared wavelengths within the electromagnetic spectrum.
The radiance of individual wavelengths can be converted into brightness temperatures for using
in SST determination. The calibration and validation of the determined SST data require
reference measurements from in-situ observations. These in-situ observations are from various
platforms such as ships, drifters, floats and mooring buoys and require a high measurement
accuracy. This paper presents an investigation about the possibility of using a glider as in-
situ platform. A glider is a type of autonomous underwater vehicle (AUV) which can log
oceanographic data over a period of up to one year by following predetermined routes. In contrast
to buoys, a glider allows a targeted investigation of regional anomalies in SST circulations. To
assess the quality of SST observations from a glider, logged data from a glider mission in
the Atlantic Ocean from 2018 to 2019 and corresponding satellite SST data were used. The
influence of variables (e.g. measurement depth, latitude, view zenith angle, local solar time) of
the bias between satellite and glider SST data was investigated using sensitivity analysis. A new
and efficient distribution-based method for global sensitivity analyzes, called PAWN, was used
successfully. Interested readers will find information about its operation principle and the usage
for passive observations where only “given-data” are available.

Keywords: Sensitivity analysis, Satellite applications, Bias analysis, Underwater glider, Sea
surface temperature, PAWN method

1. INTRODUCTION

The sea surface temperature (SST) is an important vari-
able in oceanography, meteorology and climatology since
they determine both the thermal circulation in the oceans
and heat exchange with the Earth’s atmosphere. SST is
also an essential indicator for hurricane forecasting. The
first detection of SST occurred from ships using a bucket
and a thermometer in the late eighteenth century. For
nearly four decades, geostationary meteorological satellites
have been used for an exhaustive detection of the SST in
the oceans.
The investigated SST data in this paper came from the
geostationary weather satellite GOES-16. This satellite
uses a multi-channel imaging radiometer called Advanced
Baseline Imager (ABI). The ABI scans the Earth’s surface
with 16 spectral bands, ranging from visible to infrared
(Schmit et al. (2018)). The thermal infrared SST mea-
surements have a good resolution and accuracy. On the
other hand, the infrared band is sensitive to the presence
of clouds and other atmospheric effects. This requires in-
situ observations to calibrate the SST data and to fill the
gaps in the SST maps in the presence of clouds. An under-
water glider could be a possible platform to provide these
reference data. In this paper, logged data from a Teledyne

Webb Research Slocum glider were used. Since a glider
cannot measure the temperature exactly on the water sur-
face and at any time (only during surfacings) it is necessary
to analyze the influence of the glider measurement on the
SST bias (defined as difference between satellite and glider
SST measurements). Thus, the objective of this paper is
to present a sensitivity analysis to determine the influence
of chosen variables on the SST bias.

Fig. 1. Underwater picture of the Slocum glider Silbo18
(Teledyne Marine (2019))
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2. BACKGROUND

2.1 Slocum glider

The Slocum glider, built by Teledyne Webb Research
(Teledyne Marine (2020a)), is an Autonomous Underwater
Vehicle (AUV) designed as sensor platform to operate up
to 1000 m depth for monitoring oceans. Slocum gliders
have proven their efficiency and robustness in the col-
lection of oceanographic data in the last two decades
(Schofield et al. (2007); Glenn et al. (2011); Schofield et al.
(2018); Merckelbach et al. (2019)). The general specifica-
tions of a Slocum glider are shown in Table 1.

Table 1. General Specifications of Slocum glider (Teledyne
Marine (2020b))

Parameter Value

Power Alkaline/Rechargeable/Lithium
Range 350-1200 km/700-3000 km/3000-13000 km
Endurance 15-50 days/1-4 months/4-18 months
Depth Range (4 to 150 m) or (40 to 1000 m)
Navigation GPS, Altimeter, Dead Reckoning
Communication RF Modem, Iridium (RUDICS), ARGOS
Horizontal Speed Buoyancy Engine: 0.35 Cruise, up to 0.5 m/s

Thruster: up to 1.0 m/s
Mass 55 - 70 kg
Dimensions Length: 1.5 m; Hull Diameter: 0.22 m

The glider which was used for the analysis in this paper
is equipped with a conductivity-temperature-depth (CTD)
sensor from Sea-Bird Scientific (Sea-Bird Scientific (2020))
called Slocum Glider CTD. The Slocum Glider Payload
CTD is a low-power profiling instrument with high ac-
curacy designed for integration into Slocum gliders. The
sensor is fitted under the wing on the starboard-side of the
glider (see Fig. 1). The CTD samples continuously every 2
s (0.5 Hz) the temperature with an accuracy of ± 0.002 °C
in calibration range of 1-32 °C. During the surface periods
the glider can use the on-board GPS for referencing the
logged sensor data to its position. The reference system
(map projection) for GPS is WGS84 which corresponds to
the map projection used in GOES-16.

2.2 Data sources

The satellite SST data came from the satellite GOES-
16 operated by NASA and the National Oceanic and
Atmospheric Administration (NOAA). The required data
for the region of interest with latitude of 14.5°N-28.25°N
and longitude of 65.25°W-14.75°W from May 2018 to July
2019 were downloaded from NASA Physical Oceanography
Distributed Active Archive Center (PO.DAAC) (NOAA
Center For Satellite Applications And Research (STAR)
(2019)) from the THREDDS data server as netCDF-4 files.
In addition to the SST data, the quality level was also
downloaded. The sum of all satellite data is 53.2 GB. The
spatial resolution of the datasets is 0.02° (latitude) × 0.02°
(longitude) (equivalent to 2 km × 2 km at nadir) with a
temporal resolution of 1 hour which results in a 2,526 ×
688× 10,965 matrix. The datasets have the level L3C. This
means that the data have the processing Level 3 (L3) and
includes collated data from a single sensor (C) mapped on
a defined space-time grid. This dataset is a gridded version
of a L2P dataset. The preprocessed (P) L2P dataset
is derived from the brightness temperatures of the ABI
infrared channels using the NOAA Advanced Clear-Sky
Processor for Ocean (ACSPO) (Petrenko et al. (2010))
and a non-linear SST regression algorithm (Petrenko et al.
(2014)). L2 or L3 datasets do not use additional in-situ
observations in interpolation algorithms to fill gaps where
no satellite measurements are available. This is carried
out for a L4 dataset to generate gap free maps. Detailed
information about the individual processing levels can be
found in (GHRSST Science Team (2012)). A SST field
from the used data with gaps where clouds or atmospheric
effects impeded an observation is shown in Fig. 2.

In-situ temperature data from the Silbo18-542 mission was
used to evaluate satellite SST data. This mission is part
of the Challenger Glider Mission (Dobson et al. (2013);
RUCOOL (2020)) and was executed from the Canary
Islands to the Virgin Islands from 2018-05-25 to 2019-07-
16. This was the longest successfully completed mission
in which a Slocum glider covered a distance of 6,359 km
during 417 days at sea. Fig. 2 shows Silbo’s track from east
to west in the southern part of the North Atlantic Gyre.

Fig. 2. Silbo’s track (bordeaux red line) from the Canary Islands to the Virgin Islands from 2018-05-25 to 2019-07-16
and a L3-SST field from the 2018-08-23 at 01:00:00 UTC. This SST field is from GHRSST NOAA/STAR GOES-16
ABI (NOAA Center For Satellite Applications And Research (STAR) (2019)).
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During the 14 month mission, the glider completed roughly
1,000 segments (dives followed by a surfacing) and logged
6,545,864 CTD measurements. For most of the mission the
glider was programmed to fly two yos, starting from the
surface and diving to 980 m, climbing to 25 m, diving again
to 980 m and returning to the surface. During the surface
period of normally 20 min the glider sends the logged data
via satellite to the Dockserver, the glider communication
center, and receives new instructions for command and
control for the next dive period. A comparison of the glider
data with the satellite data was only possible after June
2018 where the glider crossed the coverage area of GOES-
16 near the Tropic of Cancer (see Fig. 2 for details).

2.3 Data preparation

Only satellite data with the quality level 5 were used for
the analysis. This is the “best” quality level and corre-
sponds to “clear-sky” pixels. A space-time interpolation
has been carried out to determine satellite SST data at
the same position and time where the glider was surfacing.
To avoid a distortion of the interpolated satellite data
on the one hand and to extract as many samples as
possible on the other hand, a combination of a nearest
neighbor and a linear interpolation were used. The linear
interpolation is used when a sample lies between two valid
pixels. Otherwise, nearest neighbor is used. This combina-
tion allows the extraction of 20% more samples than by
using only linear interpolation without significant other
statistical parameters of the bias (mean, standard devia-
tion, median, robust standard deviation, skewness, kurto-
sis). These statistical parameters are used in NOAA SST
Quality Monitor (SQUAM) (Dash et al. (2010); SQUAM
(2020)) to monitor the quality of L2-L4 SST products
(see also Fig. 7). The resulting error in nearest neighbor
interpolation as a result of the time (1 hour) and spatial (2
km × 2 km) resolution is acceptable in the operation area
of the North Atlantic Ocean. This can be seen in the curve
progression of the measurement temperature of the glider
in the upper plot of Fig. 3. Apart from two phenomena
(peaks in curve) on the 14th September 2018 (16.75°N
31.6-31.9°W) and on the 23th April 2019 (18°N 55°W)
the temperature changes only slightly between neighboring
surface periods. For information; the first phenomenon is
the result of Hurricane Helene which crossed the track of
the glider two days before (Cangialosi, John P. (2018).
A glider SST value was determined at every surface pe-
riod using the mean of five temperature samples SST
where the associated measurement depth was the lowest
and less than one meter (see (8)). The mean values for
depth, position and time of the five samples were used
for analysis and interpolation. The upper plot of Fig. 3
shows the extracted satellite and glider SST data as well
as the corresponding measurement depths of the glider.
The resulting bias defined as:

Bias = SSTGOES−16 − SSTGlider (1)

is shown in the bottom plot of Fig. 3. This plot also
includes the curves of the mean biases using samples from
entire day, daytime and nighttime.

2.4 Data evaluation

In Fig. 3, the evaluation of the bias trend during the
mission shows a high negative bias in the first and the end

Fig. 3. Upper plot: Sea surface temperature (SST) from
the satellite GOES-16 and the glider Silbo18 and
the corresponding measurement depth for the total
mission from May 2018 - July 2019. Bottom plot:
Bias between the satellite and the glider SST and the
curves of the mean biases using samples from entire
day, daytime and nighttime determined with a moving
mean with a sliding window of 21 days.

part of the mission. This correlates with the summertime
period from June till September. The mean bias of the
daytime curve lie over and of the nighttime curve under
the mean bias curve. This is the result of (i) the diurnal
warming effect where solar radiation warms the surface
layer of the ocean during the daytime and (ii) the cool
skin effect where a heat flux exists from the ocean to
the atmosphere throughout the day (see Casey (2002);
Zhang et al. (2019)). Another interesting fact is a possible
correlation between the measurement depth of the glider
and the bias at the end of the mission. This would mean
that a glider cannot always accurately measure the SST.
In the next sections, it will be analyzed if this is the case.
Moreover, additional causes (latitude of the samples, view
zenith angle of the satellite sensor) for the resulting bias
between the satellite and the glider SST, which are used in
SST regression algorithms (Petrenko et al. (2014)) and in
the NOAA SST Quality Monitor (SQUAM) (Dash et al.
(2010); SQUAM (2020)) will be analyzed. The following
variables xi which are based on the visual inspection of
Fig. 3 (Month, LST, Depth) and a literature study about
main causes of SST bias (LAT, VZA) are included in the
analysis:

• Latitude of the samples (LAT)
• View zenith angle of the satellite sensor (VZA)
• Measurement depth of the glider (Depth)
• Month of the sample dates (Month)
• Local solar time of the UTC sample time (LST)

The high accuracy of the temperature sensor and its
fitting position on the glider (see Section 2.1) excluded
a temperature measurement error as a possible cause of
SST bias. Appendix A includes the scatter plots, curves of
the moving mean and standard deviation and histograms
of the used variables.
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3. METHODS

This section presents methods to determine how variations
in the output of a system can be assigned to the variations
of its inputs. This technique is called sensitivity analysis
(SA) and is an important tool for development, improve-
ment, validation and evaluation of complex mathematical
models in Earth’s and environmental science, engineering
and economics. In this paper the SA was used to deter-
mine and to rank the influencing variables of the SST
bias behavior. The presented methods are only a fraction
of possible methods. For a detailed overview about SA
methods, the reader is referred to (Iooss and Lemâıtre
(2015); Iooss and Saltelli (2016); Pianosi et al. (2016)).

3.1 Visual inspection

The visual inspection of graphs is the easiest way to extract
information of the input-output relation of a system.
In case of multiple inputs with high sensitivities to the
output, such an approach cannot figure out the individual
input-output relations. There exist multiple methods for
displaying the data (Shardt (2015)). The art is to find
a compromise between a maximal information gathering
by an easy data interpretation, and avoiding information
overload.
The pairwise comparison of time series was carried out
in Section 2.4 (Month - Bias, Measurement depth - Bias)
to find possible relations between variables and bias. The
samples of output against samples of an examined input
can be plotted in a scatter plot to show their relationship.
This is shown in Appendix A for the included variables and
the bias (middle part) as well as for the satellite and the
glider SST samples with colored markers to indicate the
corresponding variable value (left part). The calculation
of a trend line for the samples in a scatter plot using
regression or moving average can help to show a pattern
or trend more clearly in case of a high data fluctuation
(right part).

3.2 Correlation and regression methods

A possible sensitivity measure is Pearson’s correlation
coefficient r (Trauth (2015)). This coefficient is a measure
of the linear correlation between a variable xi and the
output y and is defined as:

rxiy =

n∑
j=1

(xij − x̄i) (yj − ȳ)√
n∑

j=1

(xij − x̄i)2
√

n∑
j=1

(yj − ȳ)
2

=

n∑
j=1

(xij − x̄i) (yj − ȳ)

(N − 1)sxi
sy

(2)

where N is the sample size, xij and yj are the individual
data samples, x̄i and ȳ are the sample means and sxi

and sy are the standard deviations. The value of rxiy

lies between -1 and 1. Its magnitude corresponds to the
sensitivity Si = |rxiy|. This correlation coefficient can also
be determined using a linear regression model y = ai+bixi.
The standardized regression coefficient βi of the linear
coefficient bi is defined as:

βi = bi
sxi

sy
(3)

and is exactly equal to Pearson’s correlation coefficient
rxiy. This coefficient is applicable as sensitivity measure
for a linear input-output relationship, but not for nonlinear
or seasonal relationships.

3.3 PAWN method

For a better understanding of the influence of the variables
xi, especially the measurement depth of the glider, on the
bias, a distribution based method for global sensitivity
analysis (GSA) is carried out. The method used is based on
cumulative distribution functions (CDFs) and is described
in detail in Pianosi and Wagener (2015). The key idea is
to analyze the differences between the conditional and un-
conditional CDFs of the output y using the Kolmogorov-
Smirnov (KS) statistic:

KS(xi) = max
y

∣∣Fy(y)− Fy|xi
(y|xi)

∣∣ (4)

as a measure of their distances. This distance correlates
to the sensitivity of the input xi to the output y. The
unconditional CDF Fy(y) is the result when all inputs vary
simultaneously in defined ranges, whereas the conditional
CDFs Fy|xi

is the result when all inputs vary except xi
which is fixed at a defined value, called conditioning point.
The KS statistic provides a curve of sensitivity over all

defined conditioning points x̄
(1)
i , x̄

(2)
i , . . . , x̄

(n)
i of xi. A

new density-based sensitivity index, called PAWN was
presented in Pianosi and Wagener (2015) where a defined
statistic stat such as the maximum, mean or median
extracts a single value Si from the KS curve for every
input xi:

Ŝi = stat
k=1, ..., n

K̂S
(
x̄
(k)
i

)
where

K̂S
(
x̄
(k)
i

)
= max

y

∣∣∣F̂y (y)− F̂y|xi

(
y|xi = x̄

(k)
i

)∣∣∣ (5)

This value varies between 0 and 1 and is applicable as
sensitivity measure. A low value of Si implies a smaller
influence of xi on y. The original method in Pianosi
and Wagener (2015) requires a tailored sampling strategy
where three parameters (number of unconditional output
samples Nu, number of conditional output samples Nc,
number of conditioning points n) have to be specified. This
requirement limits their application on active experiments
and excludes applications where existing datasets are
available in cases of previous studies (Pianosi and Wagener
(2018)) or passive observations. This condition exists in
this paper, where only logged glider data are available.
An alternative approximation procedure of the PAWN
method which can handle generic datasets is presented
in (Pianosi and Wagener (2018); SAFE Toolbox (2019))
and is used in this paper. In this procedure each input
xi is split in n equally spaced intervals Ik between its
upper and lower bounds. The samples in these intervals
are the conditional samples. The PAWN sensitivity index
is so defined as:

Ŝi = stat
k=1, ..., n

K̂S (Ik) where

K̂S (Ik) = max
y

∣∣∣F̂y (y)− F̂y|xi
(y|xi ∈ Ik)

∣∣∣ (6)

The number of the conditional output samples Nc cor-
responds with the number of samples in the individual
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conditioning intervals for each input xi. In case of a
uniformly distributed dataset, this value is approximately
equal to N/n for all inputs. The mean value of the number
of samples in all intervals for all inputs was used in the
MATLAB code in SAFE Toolbox (2019) to set a value
for Nu. To identify non-influential parameters in a GSA
a dummy parameter was used in Pianosi and Wagener
(2018). A dummy parameter has no influence on the out-
put y and should have a sensitivity index of zero. The
dummy parameter can be detected using two resamples of
the empirical unconditional CDF F̂y(y):

Ŝdummy= K̂S (xdummy) =max
y

∣∣∣F̂ 1
y (y)− F̂ 2

y (y)
∣∣∣ (7)

Detailed information about the dummy parameter is given
in Pianosi and Wagener (2018). It is important to evaluate
the robustness of the determined sensitivity indices and
the dummy parameter in case of non-normal distributed
datasets or small sample sizes. Bootstrapping is a usual
method to solve this task. Thereby the PAWN sensitivity
indices in (6) were determined Nb times using different
bootstrap resamples. This results in a distribution of Nb

PAWN indices Ŝ1
i . . . Ŝ

Nb
i for each variable xi. The mean

and its confidence intervals for each distribution were
finally determined and characterize the sensitivity indices.

4. RESULTS

A time period from August 2018 till July 2019 was
chosen for the sensitivity analysis. During this period,
the glider surfaced 764 times whereby the satellite had
401 possible observations. The Sensitivity Analysis for
Everybody (SAFE) Toolbox for MATLAB (Pianosi et al.
(2015)) was used to determine the PAWN indices for
three datasets. The determined sensitivity indices for the
variables calculated with Pearson’s correlation coefficient
(PCC) and the PAWN method are shown in Table 2. Fig. 4
shows the PAWN indices for the three datasets.

Table 2. Ranking of the variables derived from PCC and
the PAWN indices for the datasets. The gray level in the

fields corresponds with the ranking order.

Variable N = 401 N = 1 991 N = 21 604
PCC PAWN PCC PAWN PCC PAWN

VZA -0.117 0.414 -0.126 0.353 -0.245 0.398
Month -0.156 0.329 -0.157 0.297 -0.152 0.275
LAT -0.307 0.236 -0.304 0.202 -0.255 0.175
LST 0.060 0.186 0.066 0.142 0.037 0.135
Depth -0.184 0.387 -0.174 0.259 -0.059 0.069

The first dataset includes N = 401 samples using the mean
value of five temperature samples SST for the i-th surface
period where the associated measurement depth was the
lowest and less than one meter:[

Zall, Iall
]

= {zi < 1.0 m} SST all = ϑi
(
Iall
)[

Zsort, Isort
]

= sort(Zall)

SST 5 =
{
SST all

(
Isort(1)

)
, · · · , SST all

(
Isort(5)

)}
SST =

1

|SST 5|

|SST 5|∑
j=1

SST 5
j

(8)
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Fig. 4. PAWN sensitivity indices from the three datasets.
The black vertical lines show the 95% confidence
intervals. The red line shows the KS of the dummy
variable. [Experimental setup: stat = median; number
of bootstrap resamples Nb = 50].

The second dataset includes the five individual samples for
each surface period which results in a dataset with N =
1,991 samples (SST 5 in (8)). The sensitivity index of the
Depth shows for the first two datasets a high influence on
the bias which confirms the results in Section 2.4. Since
the confidence interval (CI) of the Depth is overlapped
with the CI’s of LAT, VZA and Month it is not possible
to make a clear ranking. The partial correlation coefficients
of these variables and the Depth lie also between 0.32
- 0.38 and are statistically significant. This could mean
that the high sensitivity index of the Depth results not
from itself but rather from its correlations. Since the glider
logged temperature data from the surface to 980 m it was
possible to include additional data at the surface and up
to one meter depth in the third dataset with N = 21,604
samples (SST all in (8)). The SA for this dataset shows
the smallest influence of the Depth on the bias. Pearson’s
correlation coefficient can not verify this ranking in detail.
The reason is the nonlinear and seasonal (Month and LST )
behavior of the variables (see right part in Appendix A).
Fig. 5 shows the result of the PAWN method for the third
dataset in detail. It shows clearly that the less influential
variables on the bias are LST and Depth for which the
glider is responsible. The absorption of the radiance by
the atmospheric water vapor is responsible for the high
sensitivities for VZA, Month and LAT. Water vapor con-
tent depends on the latitude and the air temperature. The
sum of water vapor correlates with the line of sight length
between satellite and ocean surface.
Since the number of the samples in the individual condi-
tioning interval and thus the number of conditional output
samples Nc for the individual variables can vary widely
(e.g. for Depth first interval (0.139-0.225 m): Nc = 402,
second interval (0.225-0.310 m): Nc = 6,076, see also
histograms in Appendix A), an additional test using the
third dataset with Nu = Nc =100, 200 and 400 was carried
out. The results in Fig. 6 show the same ranking as the
third dataset with the non-uniform distributed samples.
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Fig. 5. Top panels: Scatter plots of the bias from the
third dataset (SST all in (8)) against the correspond-
ing variable. Middle panels: Cumulative distribution
functions (CDFs) of the bias. The red dashed line
is the empirical unconditional distribution function
F̂Bias(·) of the bias and the gray lines are the em-

pirical conditional distribution functions F̂Bias|xi
(·).

Bottom panels: Kolmogorov-Smirnov statistic K̂S (Ik)
at different conditioning intervals Ik of xi. The red
dashed line shows the KS of the dummy variable.
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Fig. 6. PAWN sensitivity indices from the third dataset
(SST all in (8)) using subsamples of the individual
conditioning intervals with a defined sample size. The
black vertical lines show the 95% confidence intervals.
The red line shows the KS of the dummy variable. The
blue lines and the two black vertical lines correspond
to the sensitivity indices using all available samples of
the individual conditioning intervals (bottom plot in
Fig. 4) [Experimental setup: stat = median; number
of bootstrap resamples Nb = 50; Nu = Nc =100, 200
and 400].

This shows the robustness of the PAWN method when
using a non-uniform dataset.

Finally, a global histogram based on the NOAA SST
Quality Monitor (SQUAM) (Dash et al. (2010); SQUAM
(2020)) was created (see Fig. 7) were all data, daytime and
nighttime, of the first dataset are included. The quality of
the statistical parameters are compatible with used in-situ
platforms (drifter + tropical moorings) in SQUAM.
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Kurt = 4.78
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Fig. 7. Global histogram of Bias between the satellite
GOES16 and the glider Silbo18.

5. CONCLUSION

This paper analyzed the influence of chosen variables of
the bias between satellite and in-situ glider SST data. In
practice used basic methods and a simple and efficient
method called PAWN were used to solve the required task.
The analyzed logged temperature data from a Slocum
glider at the surface up to one meter depth shows that the
measurement depth does not have a significant influence
on the bias, which turns the glider into an additional in-
situ platform for calibration and validation of satellite
SSTs. It can be targeted to regions to analyze anomalies
and phenomena as well as at the margin of the satellite
coverage area.
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Appendix A. INCLUDED VARIABLES IN SENSITIVITY ANALYSIS
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Fig. A.1. Scatter plots, curves and histograms of the used variables (a) Latitude, (b) View zenith angle, (c) Measurement
depth, (d) Month and (e) Local solar time from the first dataset (SST in (8)). Left plot: Scatter plot of the satellite
SST samples against the glider SST samples with markers colored proportionally to the corresponding variable.
The black dashed line is the 1:1 line. Middle plot: Scatter plot of the bias against the corresponding variable.
Right plot: Moving mean (blue line) and standard deviation (red line) curves by sliding a window with the moving
value as the ordinate and the corresponding variable in chronological order as abscissa and a percentage frequency
histogram (gray bars) of the samples for the corresponding variable. The total area under the histogram is 100 %
which corresponds to the sum of the individual bar frequencies.
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