
Predictive Hybrid Powertrain Energy
Management with Asynchronous Cloud

Update

Junpeng Deng ∗ Luigi del Re ∗ Stephen Jones ∗∗

∗ Johannes Kepler University Linz, Altenbergerstrae 69, 4040 Linz,
Austria (e-mail: junpeng.deng@jku.at, luigi.delre@jku.at).

∗∗ AVL List GmbH, Graz, Austria, (e-mail: Stephen.Jones@avl.com)

Abstract: The optimal energy management of a hybrid powertrain has the task to provide the
required traction power combining both power sources in the best way. This can be achieved
well if the future drive cycle is known/precomputed. However, both speed and traction power
requirement may deviate from the expected ones due to many factors, like traffic, weather etc.
Against this background, it might be sensible to recompute them whenever needed to keep
using the latest future information. Unfortunately, this computation is typically too slow for
real time use. In this paper we propose a control structure in which the real time task is solved
by a predictive controller which tracks the optimal reference from the cloud, and requests an
update of the reference regularly. The update can integrate new information from V2X. This
asynchronous operation allows recovering most of the performance of the perfect prediction,
while removing tight constraints on the offline computation and copes better with interruptions
in communications to the cloud.

Keywords: powertrain control, predictive control, HEV, cloud computing, energy management

1. INTRODUCTION

Higher energy efficiency is a key requirement for new
vehicles, and one of the main motivations of the increasing
interest in hybrid electrical vehicles (HEV). Driving style
is one of the critical factors affecting energy efficiency,
and correspondingly, much work has been done to develop
algorithms to determine the ideal speed profile if the route
is known a priori, the so called eco-driving (see e.g. Scia-
rretta et al. [2015]; Hellström et al. [2009]). For classical
vehicles, eco-driving algorithms usually deliver gear shifts
as well. They mostly rely on dynamic programming (DP),
see e.g. Bertsekas [2016], which provides a global optimum.

In HEVs two kinds of energy sources are used with in-
dependent storage units and components. Optimal energy
efficiency is not as simple to define as in the conventional
vehicle, as both energy kinds cannot be simply added. In
the case of autarchic hybrids, i.e. those who produce all
energy from fuel and only save it temporarily in electrical
form, it is possible to treat all losses equally (Hahn et al.
[2015]). In general the so called Equivalent Cost Minimiza-
tion Strategy (ECMS) is used (Serrao et al. [2009]), which
essentially defines an equivalence factor between electrical
and fuel consumption. However, this equivalence factor is
associated with and sensitive to the specific powertrain
setup and driving cycles, and it is very difficult to deter-
mine it a priori (Onori et al. [2016]).

? This work has been supported by the LCM K2 Center within
the framework of the Austrian COMET-K2 program. The first
author thanks Gian Paolo Incremona for his helpful discussion and
suggestions during the work.

Of course, DP based eco-driving can be applied to HEVs
as well, with the additional inputs (especially State-of-
Charge (SOC)). However, the computation burden of DP
increases exponentially with the number of states and
inputs, thus can offer only a slow reaction to changes in the
driving conditions. A tempting alternative would be to use
nonlinear model predictive control (NMPC) algorithms
which allow to approximate the original problem over a
shorter time horizon, with some loss of performance but
with the possibility to include constraints on traffic (see
e.g. Polterauer et al. [2019]). But the efficiency loss can
be significant, for instance if future slopes are outside the
prediction horizon.

Against this background, there have been several proposals
to do both, i.e. to use a hierarchical structure (Scattolini
and Colaneri [2007]) consisting typically of a slow but more
precise computation for the whole trip, and of a “safe” but
less optimal MPC for the short term operation (see e.g.
Buerger et al. [2018]; Tianheng et al. [2014]).

Having the whole computational power on board may be
prohibitive for vehicles productions, and the increasing
availability of cloud computational power suggests mov-
ing the demanding computations there, with the addi-
tional advantage that the cloud can acquire additional
information at infrastructure level, like traffic jams, road
blocks etc. (Mell et al. [2011]). The use of the cloud to
perform heavy task like DP has already been the subject
of interest. For example, Ozatay et al. [2014] proposes a
cloud-based velocity profile optimization to improve fuel
economy, Grubwinkler et al. [2013]; Yang et al. [2017]
utilize the cloud to predict possible power demand, with

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 14320



the latter work also calculating fuel-optimal power split ac-
tions over a pre-known driving route. Besides these works,
the potential of cloud computing and dual communication
is not yet fully exploited. First, most of the works use the
cloud only once before departure, there is no update or
recalculation to cope with traffic changes, which could be
vital in a long trip. Second, the control is usually placed
in the vehicle layer, but powertrain actions especially gear
shifts, are guided by heuristics.

Eco-driving is usually implemented as an advisory system,
e.g. the optimal speed is suggested, but it is left to
the driver (human or automated) to follow it keeping in
account the actual traffic constraints. In other words, the
two activities — the computation of optimal profile and
the implementation of these suggestions are to some extent
independent control tasks.

In this paper, we propose a dual-layer controller in which
an “upper” layer is responsible of producing and updating
a reference over longer horizon on the cloud. A “lower”
layer uses NMPC to provide in an optimal way the instan-
taneous requested power while tracking this reference com-
patibly with the actual environment. As the availability of
the cloud cannot be always guaranteed, the lower layer has
to work as a fall-back control, and it is also responsible for
sending the request to the cloud asking for an updated
reference based on latest traffic. Furthermore, a potential
analysis of energy savings at the powertrain level resulting
from a reference update is conducted.

2. MODELS

2.1 Drive cycle (actual velocity profile)

The drive cycle comes from measurements by our col-
leagues in a city route in Linz, Austria. It consists of two
signals: geographic altitude h(s) and velocity profile v(s)
along the distance s as shown in Fig.1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

104

0

10

20

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

104

240

260

280

300

Fig. 1. Real drive cycle

2.2 Vehicle model

It is assumed that the powertrain is stiff and there is no
wheel slip. The traction force Fp, depending on the drive
cycle, can be computed by

Fp = Fr(φ, v) + λ(j)ma

Fr(φ, v) = mg (cr + sin (φ(s))) +
cdρairA

2
v2

(1)

where Fr is the resistance force, m is the vehicle mass,
a is the vehicle acceleration, j is the selected gear and
λ(j) is the factor accounting for the rotational inertia, g
is the gravitational constant, cr is the rolling resistance,
sin (φ(s)) is the road grade, cd is the drag coefficient, ρair

is the air density, A is the front area of the vehicle. The
specific parameters are listed in Appendix A.

The engine speed ωe can be related to the vehicle speed v
through

ωe =
γ(j)

r
v (2)

where γ(j) is the gear dependent transmission ratio and
r is the wheel radius. By using equation Eq.1 and 2, the
power demand P can be calculated by

P = Fp · v (3)

2.3 Powertrain model

Fig. 2 illustrates the structure of the P2 parallel hybrid
powertrain studied in this work. The wheel is connected
with brake and gearbox. P is provided by either the engine
Pe or battery Pb, or both, and this power split is decided
by coupler, i.e.

P + PL = Pe + Pb (4)

where PL is the power loss of the whole powertrain.

Fig. 2. P2 parallel hybrid structure

Engine model The engine model is given in Eq.5.

τeff = τ + J · ω̇e

qf = qf(ωe, τeff)
(5)

where τ is the engine torque, J is the inertia, ωe is the
engine speed, qf is the fuel flow rate.

Electric machine The electrical power is determined
based on a electrical power map using effective torque
and rotational speed. The effective torque is the torque
including acceleration of machine inertia.

Battery model The state of charge ξ can be described by
(Tremblay et al. [2007]):

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14321



ξ̇ =
1

Qn
· Ib(ξ, Pb)

Ib(ξ, Pb) =
−Uoc(ξ) +

√
Uoc(ξ)2 − 4PbRi
2Ri

Ub = Uoc +Ri · Ib

Uoc(ξ) =

(
E0 −

K

ξ
+Ae(B(ξ−1))Qn

)
(6)

where Qn is the nominal charge, Ib is the battery current,
Uoc is open circuit voltage, E0 is the battery constant
voltage, K is polarisation voltage, A and B are model
constants, Ub is the battery clamp voltage, Ri is internal
resistance.

3. PROBLEM DESCRIPTION

As already stated, we assume the future velocity profile
estimation and thus—for a known topology and vehicle—
estimated traction power profiles are given. Thus, our goal
is to provide the required traction power profile for a
hybrid vehicle at the minimum cost acting on the power
split and gear shift. We use backward modelling approach
(Hofmann [2014]). The costs include fuel consumption,
number of gear shifts and clutch changes, and we require
a charge sustaining operation.

3.1 Reference updating strategy

Before vehicle starts a trip, it sends a request to the cloud,
the cloud returns the estimated velocity v̂(s) and topology
information of this trip to the upper layer controller, which
is also in the cloud. The upper layer controller computes
the estimated power demand P̂ and a general optimal
reference x∗r(s), which includes the reference gear, SOC
and clutch position over the whole route. Our powertrain
control tracks the powertrain variables using a short-
prediction horizon NMPC.

However, due to the disturbances in traffic, following the
same reference may not be optimal any longer. In these
cases, the local controller can send a request to the cloud
asking for recomputation of the reference based on current
situation. The request of re-calculation can be triggered by
either A fixed distance or time interval, or the deviation
between real states of vehicle x(s) and x∗r(s), or the
deviation between v̂ and actual speed, etc. Next, the cloud
re-estimates and the upper layer controller accordingly re-
calculates the reference x∗r(s) and sends it back to the
vehicle. The vehicle starts following the new x∗r(s) until
the end of the trip or next trigger point. This process is
illustrated in Fig. 4.

4. OPTIMIZATION PROBLEM FORMULATION

The scheme is depicted in Fig.4, and will be explained in
details in the following section.

4.1 Global optimization – upper layer

The upper layer control aims at providing a globally
optimal reference over the whole route, therefore DP is
used as a control method. In our case, the states xk =

[jk, ξk, ck], where jk is the gear position, ξk is the SOC
of the battery, ck is the clutch position. The inputs uk =
[uτ,k, uj,k, uc,k] are the power split between battery and
engine, gear shift command, and clutch shift command
respectively. For the brake strategy, a heuristic is applied,
i.e. all brake torque is used for battery recharging when
the battery is not full. When the battery is full or the
required brake torque exceeds the maximum power of the
battery, the excessive brake torque is “discarded” in the
mechanical brakes.

The cost function and the constraints of optimal control
problem (OCP) of DP is

JDP =

N−1∑
k=0

[qf(k)Ts + β1zj(k) + β2zc(k)]

ωe,min ≤ωe,k ≤ ωe,max

jk ∈{1, . . . , Ngear}
ξmin ∈ξ ≤ ξmax

ξN ∈[ξmin,N, ξmax,N]

ck ∈{0, 1, 2}
uj,k ∈{−1, 0, 1}
uc,k ∈{0, 1, 2}

(7)

where Ts is the sampling time, β1, β2 are weighting factors,
zj is the total number of gear shifts, zc is total number
of clutch shifts, N = T/Ts is predicted number of time
steps, where T is the total time of the driving cycle. The
clutch has three states: closed, slip, and open. The gear
shift action can only be shifted up, down, or remain the
same. To keep charge sustaining, the final value of SOC is
constrained to a range that is more or less equal to initial
SOC. The specific discretization and parameters are listed
in table A.2.

Given initial conditions, the optimal sequence x∗r can be
computed.

4.2 Local optimization – lower layer

In the lower layer, MPC is deployed for global reference
following and disturbances handling over a short horizon.
Due to fast-changing traffic, there may be some discrep-
ancies between predicted power demand P̂ (by cloud) and
actual power demand Pact (by driver). Here we use the
prediction horizon of 10s, assuming that Pact within 10
seconds is known.

The cost function of the lower layer MPC is

JMPC =

t+Np∑
k=t

[m1∆ξ2
k +m2∆j2

k +m3∆c2k +m4qf(k)Ts]

(8)

where ∆ refers to the difference between current value of
states and reference value. m1,m2,m3,m4 are weighting
factors. Np is the prediction horizon.

Apart from the tracking errors, there is an additional cost
term qf . This is added to robustify the controller in order

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14322



O

before departure

from cloud: ˆv(s), x∗r

Cloud

O O
DP request update

send back new: ˆv(s), x∗r

traffic estimation

fast computation

Fig. 3. Graphic rendering of interaction between vehicle and cloud

Fig. 4. Control scheme with DP at cloud level and MPC
at vehicle level

to cope with uncertainties and communication failure—in
uncertainties free case (v = v̂), the output of the MPC is
the solution with minimum tracking error, which is also
the solution with minimum fuel—because they are the
same. If the current reference is not optimal (v 6= v̂), or
when there is interruption in communication, these two
cost terms have conflicts with each other. The controller
has to balance between the general trend (tracking error)
and local optimum (fuel). This is to prevent unreliable
results from MPC due to simply following the inaccurate
reference.

Since the vehicle and powertrain models are the same as
that of DP, the constraints are the same too, except that
the terminal constraint on SOC is no longer required.

5. CASE STUDY AND RESULTS

The case study aims at testing above updating strategy
and exploring the potential of performance improvement
by updates. Here we update the reference based on a fixed
distance interval over the route.

5.1 Predicted speed profiles generation

For the first proof of concept, we consider a simplified
problem as follows. We split the route into several sections

with equal distance, according to the number of updates
n. The section number is then n + 1. For example, if
an update happens twice as shown in Fig.5, the route is
divided into three parts. The actual velocity, taken from a
measurement, is plotted in black dash. The first prediction
is in blue, the second prediction (red line) starts at one
third of the route, and third prediction starts at two thirds
of the route. All predictions are assumed to be accurate at
the beginning, and getting more and more inaccurate as
the distance increases. Here we processed the attenuation
of prediction quality by a scaling factor 1.3, which means
the predicted speed proportionally increases from 1 to 1.3
times of nominal values.

0 2000 4000 6000 8000 10000 12000 14000
0

5

10

15

20

25

30

update1 update2

Fig. 5. Velocity profiles and prediction (update twice)

According to Fig.5, the corresponding power demand is
calculated as well. Then the optimal references of the real
profile x∗r,real and each prediction can be derived by solving
DP. The case study considers two approaches:

• Approach 1: follow non-updated reference, i.e. n = 0.
The powertrain follows the reference based on the first
prediction along the whole route.

• Approach 2: follow updated reference. If n = 2, the
powertrain follows the reference based on the first
prediction for first one third of the road, then switch
to the reference based on second prediction until two
thirds of the route, and then switch to reference
based on third prediction until the end of the route.
x∗r,upn is used for the actual reference followed. Here
we consider the update times up to four times, i.e.
n ∈ {0, 1, 2, 3, 4}.

• To set a baseline, we run a simulation by tracking
x∗r,real. This is the “best” that can be achieved by
tracking—when first prediction is perfect.

Following Fig.6 shows the results of case n = 0 where
the reference is not updated. The powertrain tracks the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14323



reference well in general, despite some small variations
on SOC and clutch during distance range 6000 to 7000.
This is because due to the disturbances, the reference is
no longer optimal—the minimum tracking error solution
is different from the minimum fuel consumption solution.
The controller has to pursue a balance between following
the general trend and local optimization. The tracking
result is able to get closer to the reference, when an update
happens as shown in Fig.7. For all cases, MPC tracks
the reference well generally, but due to limited space only
example plots are shown here.

0 2000 4000 6000 8000 10000 12000 14000

2

4

6

8

0 2000 4000 6000 8000 10000 12000 14000
0

2

4

0 2000 4000 6000 8000 10000 12000 14000
0.4

0.5

Fig. 6. Results of Approach 2: tracking non-updating
reference

0 2000 4000 6000 8000 10000 12000 14000

2

4

6

8

0 2000 4000 6000 8000 10000 12000 14000
0

2

4

0 2000 4000 6000 8000 10000 12000 14000
0.4

0.5

Fig. 7. Results of Approach 2: tracking updated four times
reference

Fig. 8 compares the performances of above approaches.
The upper figure shows the additional fuel consumption
compared with DP offline solution. The lower figure shows
the total cost of the MPC results. To have a fair com-
parison, the cost of MPC is calculated based on DP cost
function JDP using eq.7. It is worth mentioning that,
the final SOC values of all MPC results are within 1%
difference range compared to DP, therefore we regard them
all as charge-sustaining, i.e. no need to consider additional
penalty on final SOC values.

As shown in the upper figure in Fig.8, the baseline case
has more or less the same performance with DP, but

small variation (less than 2%) due to numerical issues
(most likely due to the discretization approximations).
When tracking the non-updated reference, i.e. n = 0, the
additional fuel consumption is up to 10%. Although the
controller tried to minimize the fuel consumption when
the reference is not optimal, it still gives compromised
results due to short prediction horizon. The additional
fuel consumption is 8% when the reference is updated
once, and 6.5% when the reference is updated two or three
times. When n = 4, the additional fuel consumption is
only about 5% more than DP, which is already quite close
to the baseline case. In general, with more updates, the
additional fuel consumption becomes lower. It is noticed
that fuel consumption of n = 3 is slightly higher than
n = 4, but please bear in mind that performance does not
only include fuel consumption, but also gear shifts and
clutch changes. So if we see the lower figure which depicts
the overall cost, it is clear that the more frequent updates
of the reference, the better the overall performance. The
numerical results are listed in table A.3 in Appendix A.

It would be also interesting to look at the performance of
the controller if MPC only tracks the reference without
doing local optimization on fuel. To this end, we set m4

to zero in Eq.8 and run all simulations again. The results
shows 13% additional fuel consumption in average more
than the case where fuel is considered. It illustrates that,
adding the cost term qf helps robustify the controller—
even if the upper layer reference is no longer optimal, the
lower layer controller can still gain back some performance.

Fig. 8. Additional fuel consumption and total cost com-
pared with DP solution

In a nutshell, updating the reference improves the perfor-
mance of the controller. More frequent updates mean more
in-time correction and therefore better results. It is worth
noticing that, proportional scaling is a relatively simplified
way to modify the prediction. In a congested city area,

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14324



the “shape” of real traffic can be much more varied, and
we assumed more potential can be exploited by updating
reference.

6. CONCLUSION AND OUTLOOK

The paper proposed a dual-layer powertrain energy man-
agement strategy for hybrid vehicles, with an upper layer
DP-based optimizer providing an updatable general so-
lution, and a lower layer MPC tracking the reference
while handling the actual situations. Under the structure
of communication between envisioned remote cloud and
local controller, the reference can be more responsive and
closer to the global optimum, without the concerns of
computational burden.

The future work could consider more flexible updating
strategies, for example a trigger condition can be the
detection of significant deviation between actual velocity
and reference one. Adaptive distance/time update strate-
gies can also be practical to accommodate the different
scenarios. Criteria of how to select the strategies could be
built. In addition, a real-world validation using a cloud can
be very interesting.

Appendix A. PARAMETERS

Table A.1. Vehicle model parameters

variable g ρair m r A cb cr
value 9.81 1.2 1585 0.315 2.2 4500 0.0108

units m/s2 kg/m3 kg m m2 Nm -

variable cd η

value 0.2578 0.92

units - -

γ(j) [12.06, 8.05, 5.39, 4.27, 3.29, 2.56, 2.15, 1.71]

λ(j) [1.3, 1.24, 1.16, 1.1, 1.06, 1.04, 1.02, 1 ]

Table A.2. Optimization parameters

variable ωe,min ωe,min Ts β1 β2 ξmin ξmax

value 104.72 366.52 1 2e-4 2e-4 0.1 0.9

unit rad/s rad/s s - - - -

variable ξmin,N ξmax,N m1 m2 m3 m4

value 0.45 0.55 2 2e-3 2e-3 2e-2

discre. disξ disuτ
100 31

Table A.3. Case study results

Case DP Baseline n = 4 n = 3 n = 2

Fuel cons. [kg] 0.2264 0.2299 0.2377 0.2411 0.2409

Total cost 0.2562 0.2601 0.2687 0.2716 0.2717

Case n = 1 n = 0

Fuel cons. [kg] 0.2448 0.2488

Total cost 0.2764 0.2804

REFERENCES

Bertsekas, D. (2016). Dynamic programming and optimal
control, volume 13. Athena Scientific, Belmont, MA,
USA.

Buerger, J., East, S., and Cannon, M. (2018). Fast dual-
loop nonlinear receding horizon control for energy man-
agement in hybrid electric vehicles. IEEE Transactions
on Control Systems Technology, 27(3), 1060–1070.

Grubwinkler, S., Kugler, M., and Lienkamp, M. (2013). A
system for cloud-based deviation prediction of propul-
sion energy consumption for evs. In Proceedings of 2013
IEEE International Conference on Vehicular Electron-
ics and Safety, 99–104. IEEE.

Hahn, S., Waschl, H., Steinmaurer, G., and del Re, L.
(2015). Extension of a linear optimal control strategy
for hev. In 2015 European Control Conference (ECC),
154–159. IEEE.

Hellström, E., Ivarsson, M., Åslund, J., and Nielsen, L.
(2009). Look-ahead control for heavy trucks to minimize
trip time and fuel consumption. Control Engineering
Practice, 17(2), 245–254.

Hofmann, P. (2014). Definitionen und klassi-
fizierung der hybridkonzepte. In Hybridfahrzeuge.
Springer. doi:10.1007/978-3-7091-1780-4 2. URL
http://dx.doi.org/10.1007/978-3-7091-1780-4 2.

Mell, P., Grance, T., et al. (2011). The NIST definition
of cloud computing. Computer Security Division, Infor-
mation Technology Laboratory.

Moser, D., Waschl, H., Schmied, R., Efendic, H., and del
Re, L. (2015). Short term prediction of a vehicle’s
velocity trajectory using its. SAE International Journal
of Passenger Cars-Electronic and Electrical Systems,
8(2015-01-0295), 364–370.

Onori, S., Serrao, L., and Rizzoni, G. (2016). Hybrid elec-
tric vehicles: energy management strategies, volume 13.
Springer.

Ozatay, E., Onori, S., Wollaeger, J., Ozguner, U., Riz-
zoni, G., Filev, D., Michelini, J., and Di Cairano, S.
(2014). Cloud-based velocity profile optimization for
everyday driving: A dynamic-programming-based solu-
tion. IEEE Transactions on Intelligent Transportation
Systems, 15(6), 2491–2505.

Polterauer, P., Incremona, G.P., Colancri, P., and del
Re, L. (2019). A switching nonlinear mpc approach
for ecodriving. In 2019 American Control Conference
(ACC), 4608–4613. Philadelphia, PA, USA.

Scattolini, R. and Colaneri, P. (2007). Hierarchical model
predictive control. In Proc. 46th IEEE Conference on
Decision and Control, 4803–4808.

Sciarretta, A., De Nunzio, G., and Ojeda, L.L. (2015).
Optimal ecodriving control: Energy-efficient driving of
road vehicles as an optimal control problem. IEEE
Control Systems Magazine, 35(5), 71–90.

Serrao, L., Onori, S., and Rizzoni, G. (2009). ECMS as a
realization of pontryagin’s minimum principle for HEV
control. In Proc. American Control Conference, 3964–
3969. St. Louis, Missouri, USA.

Tianheng, F., Lin, Y., Qing, G., Yanqing, H., Ting, Y.,
and Bin, Y. (2014). A supervisory control strategy for
plug-in hybrid electric vehicles based on energy demand
prediction and route preview. IEEE Transactions on
Vehicular Technology, 64(5), 1691–1700.

Tremblay, O., Dessaint, L.A., and Dekkiche, A.I. (2007).
A generic battery model for the dynamic simulation of
hybrid electric vehicles. In 2007 IEEE Vehicle Power
and Propulsion Conference, 284–289. Ieee.

Yang, C., Li, L., You, S., Yan, B., and Du, X. (2017). Cloud
computing-based energy optimization control frame-
work for plug-in hybrid electric bus. Energy, 125, 11–26.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14325


