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Abstract: It is a well-established fact that an unstable zero may appear when a minimum-phase
continuous-time system is discretized by a zero-order hold. Therefore, a feedforward controller
cannot be obtained based on the inverse system; this is because it becomes unstable. Herein, an
exact linearization method for a continuous-time system with a pulse-width modulation-type
(PWM-type) input has been proposed showing that unstable zeros of the linearized discrete-time
system can be moved to the stable region by altering the pulse-centers location. This enables
the construction of a stable feedforward controller that achieves an output perfect tracking
control. However, the current paper shows a trade-off between the stability of the stabilized
zero and the maximum pulse-width. This prevents the unstable zero from moving to a high
stability region, and shows some oscillation at the output of the feedforward controller. To
address this, a zero-phase error filter has been introduced to reduce the oscillation. Further, a
nonlinear deadbeat controller is also proposed, which can be applied to second and higher order
systems. The effectiveness of the proposed methods are presented in this paper by performing
simulations.

Keywords: Pulse-width modulation, Perfect tracking control, Discrete-time unstable zeros,
Feedforward control

1. INTRODUCTION

A controller that computes the controlling input for track-
ing with a zero error on sampling instants is classified as a
perfect tracking controller (PTC) (see (Tomizuka, 1987)).
For a given discrete-time plant model P , if the zeros of P
are stable, a simple approach to achieve a PTC is to use the
inverse model and employ a feedforward (FF) controller
z−d/P (z); wherein, d is the relative degree of P . However,
discrete-time models have the possibility of possessing
unstable zeros even if the original continuous-time plants
do not (see (Åström et al., 1984)). Although the double
integrator system 1/s2 is frequently involved in the motion
control field, its zero-order-hold (ZOH) discretized model
has an unstable zero at z = −1; this is regardless of
sampling rate. Furthermore, the behavior of the double
integrator system with a pulse-width modulation (PWM)
input, in which each pulse is located at the center of the
control interval, coincides with the ZOH model on the
sampling instants. Hence, the inverse of the plant cannot
be used.

The zero-phase error tracking controller (ZPETC) pro-
posed by Tomizuka (1987) is a FF controller that can-
cels all of the poles and stable zeros of the plant, and
compensates for the phase characteristics arising from the
unstable zeros. There is no phase error from the reference
to the output when applying the ZPETC. However, the
tracking error cannot be eliminated completely in the high-
frequency region because the high-frequency gain is less
⋆ This work was partially supported by JSPS KAKENHI Grant
Numbers JP19K04438 and JP17K14698 .

than 0 dB. In contrast, Wen and Potsaid (2004) proposed
zero-magnitude error controller (ZMETC), which guaran-
tees that gain is equal to unity at every frequency, but
there are phase errors instead. Meanwhile, Fujimoto et al.
(2001) have succeed in the perfect tracking by construct-
ing a multi-sampling rate control system. However, this
method requires preparing reference orbits for whole state
variables.

In this paper, a novel FF controller for the double integra-
tor system with the PWM-type input is used to achieve the
output PTC, which only requires output references. The
authors have proposed an exact linearization 1 method
for continuous-time systems with the PWM-type input in
(Suzuki et al., 2019). Based on (Suzuki et al., 2019), it
can be shown that the zero of the linearized discrete-time
double integrator system can be moved to the stable region
by fixing the center of the pulse to the first half part of the
control interval. This enables the construction of a stable
FF controller for achieving the output PTC.

However, because there is a trade-off between the stability
degree of the zero and the maximum pulse-width, the
unstable zero cannot be moved to a high stability region;
this results in some oscillation at the output of the FF
controller. For this problem, we employ a model matching
control with a zero-phase error filter to reduce the oscilla-
tion. Further, we also propose a nonlinear output deadbeat
controller in which the pulse-center is no longer fixed and
there is no restriction for the pulse-width. The output

1 In general, PWM-type input systems exhibit nonlinear behavior
in terms of the pulse parameters, even on the sampling instants.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 8453



u(t)

t/Ts0

w0

−w0

k (k + 1) (k + 2)

δ[k]

c[k]

−δ[k + 1](= |δ[k + 1]|)−δ[k + 1](= |δ[k + 1]|)

c[k + 1]

Fig. 1. Example of PWM-type input u(t): Each pulse is
determined by the pulse center c and pulse width δ.

deadbeat approach can be used for not only a second-
order system but also higher-order systems. A high-order
continuous system is introduced by taking into account the
turn-on/off dynamics of the pulses, to which the nonlinear
deadbeat control is applied.

2. DOUBLE INTEGRATOR WITH PWM-TYPE
INPUT

2.1 Problem formulation

Consider the following double integrator system (Ac, Bc, C)
with scalar-valued input u and output y:

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t), (1a)

x(0) = [0, 0]⊤, (1b)

y(t) = [1 0]x(t). (1c)

The input u is given as a sequence of positive/negative
pulses whose heights are w0(> 0)/−w0, respectively. At
most one pulse is located in each control interval of period
Ts. The width and center of each pulse in the kth control
interval are denoted by δ[k] ∈ [−1, 1] and c[k] ∈ [0, 1],
respectively, where δ[k] < 0 means that the pulse is
negative. Therefore, u can be represented as follows (see
also Fig. 1):

u(t) =

{
w0sgn(δ[k]), t/Ts − k ∈ ∆[k],
0, otherwise,

(2a)

∆[k] :=

[
c[k]− |δ[k]|

2
, c[k] +

|δ[k]|
2

]
⊂ [0, 1]. (2b)

Let r[k], k = 1, 2 . . . , be the reference signal for the output
y. The objective is to design a control system that achieves
the perfect tracking of the output y for reference r. To
this end, we employ a two-degree-of-freedom controller as
shown in Fig. 2. While the feedback (FB) controller is
assigned to compensate modeling errors and to suppress
disturbances, the feedforward (FF) controller plays a sig-
nificant role in improving the tracking response.

This present paper focuses on the FF design aspects such
as, the cascade system of the FF controller, pulse genera-
tor, plant, and sampler. This paper will also addresses an
issue of determining the pulse generating rule (i.e., c and
δ in (2)).

FB
controller

FF
controller

Pulse
generator

1
s2

r[k + d]

+ +

+

e[k]

v[k]

u(t) y(t)

v[k] to y[k]; discretized plant

−

y[k]

Fig. 2. Two-degree-of-freedom control system.

2.2 Behavior on sampling instants

The behavior of (1) with the PWM-type input of (2) on
sampling instants is governed by the following discrete-
time equations:

x[k + 1] = Ax[k] + I(c[k], δ[k]), (3a)

y[k] = Cx[k], (3b)

where

A := exp (AcTs) , (4a)

I(c, δ) := w0

∫ Ts(c+δ/2)

Ts(c−δ/2)

eAc(Ts−τ) Bcdτ

= w0

[
T 2
s (1− c)

Ts

]
δ. (4b)

Note that the mapping I includes the product of c and δ.
Therefore, if c[k] and δ[k] are manipulated simultaneously,
the vector I(c[k], δ[k]) changes in a nonlinear fashion.

Here, the center c[k] is fixed to some value c∗ ∈
(0, 1). Then, I(c∗, ·) is defined on [−δmax, δmax], δmax =
min{2c∗, 2(1 − c∗)}, and I(c∗, δ) behaves linearly with
respect to δ if δ belongs within the domain. This mapping
is denoted by

I(c∗, δ) = Bc∗δ, δ ∈ [−δmax, δmax], (5)

where Bc∗ := w0
[
T 2
s (1− c∗) Ts

]⊤
. Because the response

of (1) on sampling instants obeys

x[k + 1] = Ax[k] +Bc∗δ[k], (6a)

y[k] = Cx[k], (6b)

the transfer function from δ[k] to y[k] can be calculated as

Pc∗(z) = C (zE−A)
−1

Bc∗

=
w0T 2

s (1− c∗) {z + c∗/ (1− c∗)}
(z − 1)

2 , (7)

where E is the identity matrix.

From (7), it turns out that the zero of Pc∗(z) is

− c∗

1− c∗
(=: z0), (8)

and is determined by the pulse-center c∗. When c∗ = 0.5,
the zero becomes marginally stable (z0 = −1): In fact,
(7) with c∗ = 0.5 coincides with the zero-order-hold
discretized model of (1). If one sets the center as c∗ > 0.5,
the zero becomes unstable (z0 < −1). Conversely, when
c∗ < 0.5, z0 is stable (−1 < z0 < 0). More specifically, the
stability degree of z0 increases as c∗ decreases from 0.5
to 0. Thus, the zero can be moved by changing the pulse
location. This property is also observed for systems other
than the double integrator system (Suzuki et al., 2019),
and is interesting because the zeros cannot be adjusted by
FB control in general.
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Fig. 3. Perfect tracking control using inverse model.

3. TRACKING CONTROL USING INVERSE MODELS

3.1 Perfect tracking control using stable inverse models

By fixing the center of the pulse to the first half part of
the control interval, the zero of the discrete-time system
(6) can be moved to the stable region. This enables us
to prepare a stable inverse model, and construct a FF
controller z−1/Pc∗(z) as shown in Fig. 3. The saturation
block in Fig. 3 is assigned to restrict pulse-width, which is
defined by the following:

δ[k] =

{
v[k], |v[k]| ≤ δmax,
δmaxsgn(v[k]), |v[k]| > δmax,

(9)

where v is the output of the FF controller.

In deriving the above FF controller, any approximation is
not performed. The discrete-time model Pc∗(z) completely
captures the behavior of the plant, and allows the FF
controller to achieve the output perfect tracking as long
as the relation |v[k]| ≤ δmax is satisfied.

The top figure in Fig. 4 shows the time-response of
the system in Fig. 3, where the pulse-center is fixed at
c∗ = 0.4 and the simulation was performed under the
conditions in Table 1. This result includes the intersam-
ple response/error (solid-line/dot-line) as well as the re-
sponse/error on the sampling instants (circles/squares). It
turns out from the top figure that the output y perfectly
agrees with the reference on the sampling instants, that
is, y[k] = r[k]. The bottom figure in Fig. 4 shows the
time-series of v. Because the FF controller is stable, v[k]
does not excessively oscillate or diverge. However, the sign
of v[k], corresponding to the sign of the pulse, changes
each step during the transient period of k < 5. This large
fluctuation can be considered to affect the intersample
behavior.

Fig. 5 depicts the signals of v for the cases of c∗ = 0.2,
0.3 and 0.4. In the transient period, the smaller value
of c∗ correlates to a smaller value of the variation of
v. This occurs because the FF controller becomes more
stable by choosing a smaller c∗, and the small variation
of v seems to be worthful at a glance. However, when
c∗ = 0.2, v[0] actually exceeds δmax = 0.4, and hence,
the pulse-width is shortened to δmaxTs, which implies that
the perfect tracking is not achieved. These results show
that there exists a trade-off between the stability degree
of the stabilized zero and the maximum pulse-width. The
unstable zero cannot be moved to a high stability region,

Table 1. Simulation parameters

Sampling period Ts 1

Reference r[k] = r(kTs) r(t) =

{
0 (t < 0)

sin(2π/(10Ts)t) (t ≥ 0)

Pulse height w0 1.5

Fig. 4. Tracking response for PTC using the inverse model:
The pulse-center is fixed at c∗ = 0.4.

Fig. 5. Control input for PTC by inverse model: As de-
creasing c∗, decreasing oscillation. However, a control
input exceeds δmax

and this results in some oscillation at the output of the FF
controller.

3.2 Zero phase error tracking control using stable inverse
models

We have confirmed that the inverse model 1/Pc∗ is stable
when c∗ < 0.5, but one cannot choose an arbitrarily small
c∗ due to pulse-width limitations. While the zero can be
stabilized, it may lie near the unit circle. This leads to
produce large variations in the output of the FF controller.

Consider the model-matching control as shown in Fig. 6
for an arbitrary stable reference model M(z) and a stable
1/Pc∗ . Parameter d in Fig. 6 is for making the FF con-
troller be proper. The transfer function from the reference
to the output is z−dM(z), and hence, the response ofM(z)
can be derived by giving a d-step-forward reference signal
r[k + d]. Note that the FF controller in Fig. 3 is a special
version of Fig. 6 with M(z) = 1 and d = 1. It is trivial that
the modelM(z) = 1 has flat gain and phase characteristics
for all frequencies.

The following reference model is used:

M(z) =
1

(1− ξ)2
(z − ξ)(z−1 − ξ), (10)
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Fig. 6. Model matching control

Fig. 7. Gain plot of the transfer function from the reference
r[k] to the output y[k]: The blue solid-lines depict the
gain characteristics of (10), and the red dashed-line
depicts that of (15)× z2 by ZPETC.

where ξ ∈ [−1, 0] is a tuning parameter. We have

M
(
ejω

)
=

(
ejω −ξ

)
(ejω −ξ)

(1− ξ)2
∈ R. (11)

Because the imaginary part ofM
(
ejω

)
is always 0, it turns

out that the phase shift of (10) is zero for all frequencies.
For the model (10), the FF controller becomes

GFF(z) =
z−2M(z)

Pc∗(z)
=

(z − ξ)

z − z0

z−2
(
z−1 − ξ

)
(z − 1)

2

w0T 2
s (1− c∗)(1− ξ)2

.

(12)

Approximate cancellation of the pole z0 and zero ξ is
expected to decrease variation caused by the zero z0 near
the unit circle.

Meanwhile, zero-phase error tracking control (ZPETC) by
Tomizuka (1987) has been well-established as a design
method for FF controllers that achieves zero phase shift
for plants with unstable zeros.

When a conventional center-located pulse is employed, the
discrete-time transfer function becomes

P0.5(z) =
w0T 2

s (z + 1)

2 (z − 1)
2 . (13)

According to the ZPETC theory by Tomizuka (1987), we
derive the following FF controller:

GZPETC
FF (z) =

(z − 1)2(z + 1)

2w0T 2
s z

3
. (14)

Subsequently, the transfer characteristic from r[k + 2] to
y[k] is

(z + 1)
2

4z3
. (15)

Gain characteristics from the reference r[k] to the output
y[k] for both the proposed FF and conventional ZPTEC
system are depicted in Fig. 7. This figure shows that the
proposed FF method is superior when comparing gain
error.

Fig. 8. Tracking errors: For the proposed method, the
design parameters are chosen as c∗ = 0.4 and ξ =
−0.15.

Furthermore, the proposed method still exhibits a degree-
of-freedom in selecting the parameter ξ. The ξ parameter
is tuned to an appropriate value when the balance between
the gain error and the oscillation of the FF controller is
considered. Because M(z) approaches 1 as ξ increases to
0, the gain error can be suppressed by choosing a large ξ.
However, in this case, ξ and the pole near the unit circle
are not close enough to be approximately canceled out;
this causes oscillation of the FF controller. Alternatively,
if ξ is chosen around z0, the variation in the output of the
FF controller will be small, while the gain error may be
significant.

Fig. 8 shows a simulation result for the condition of Table
1, where c∗ = 0.4 and ξ = −0.15 for the proposed method.
The top figure in Fig. 8 depicts the errors y(t) − r(t).
Results shows that the proposed method suppresses the
error better than the conventional ZPETC. The bottom
figure in Fig. 8 shows the output of the FF controllers.
Although the variation of the proposed method is larger as
compared to the conventional ZPETC, it is smaller when
compared to the result of Fig. 4 in Sec. 3.1.

4. NONLINEAR OUTPUT DEADBEAT CONTROL

In the previous section, the discrete-time dynamics obey
a linear model with a stable zero; this is observed when
the pulse-center is fixed at some suitable position. As
such, we have designed FF controllers using its inverse
model. However, because the zero cannot be moved to
a high stability region, the output of the FF controller
may exhibit oscillation. For this concern, a zero-phase
error filter is introduced in one direction to reduce the
oscillation. A nonlinear FF controller is proposed as an
alternative method to reduce oscillation. This approach
manipulates both the pulse-width and the location of the
pulse-center at every control period.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8456



u(t)

t/Ts0

w0

−w0

k

(k + 1)

(k + 2)

δ[k]

|δ[k + 1]|

Fig. 9. Example of leading-edge-fixed pulses.

Fig. 10. The function CI(|δ|/2, δ).

4.1 Nonlinear output deadbeat control for the double
integrator system

In Suzuki and Hirata (2018), the solvability of an out-
put deadbeat control problem for multi-degree-of-freedom
PWM-input systems is discussed. Based on this idea, the
following nonlinear equation for the discrete-time model
(3) is considered:

CI(c[k], δ[k]) = r[k + 1]− CAx[k]. (16)

If c[k] and δ[k] are successively found for the current state
x[k] and a given reference r[k + 1], the output PTC can
be achieved.

Eq. (16) is underdetermined because two parameters exist
for one scalar equation. We here fix the leading edges of
pulses at 0 (see Fig. 9), which implies that the pulse-center
c[k] varies depending on the pulse-width δ[k]:

c[k] = |δ[k]|/2. (17)

This is motivated by the fact observed in Sec. 2.2; the more
the pulse-center is moved to the left, the more stable the
discrete-time zero of Pc∗ becomes. Although the equation
(16) with (17) is still nonlinear, the mapping CI(|δ|/2, δ)
is a monotone function on [−1, 1] as shown in Fig. 10.
Therefore, the inverse problem can be easily solved. It
should be emphasized that the pulse-width is no longer
restricted to some subinterval using this approach.

Fig. 11 shows the block diagram implementing the nonlin-
ear deadbeat law. Although (16) includes the state value
x[k], this vector is not the actual state of the plant. It is
simulated in the FF controller that only requires the actual
initial state x[0]. Fig. 12 shows a simulation result under
the condition of Table 1. Comparing to Fig. 4, where the
pulse-center is fixed at c∗ = 0.4 and PTC is applied using
the inverse model, the variation of the duty ratio decreases
and the intersample response improves.

Solve (16)

Input
calculator

Eq. (3)

States
calculator

δ[k] to
pulse

1
s2

r[k + 1]

δ[k]

u(t) y(t) y[k]

FF controller

Fig. 11. FF controll system using a nonlinear deadbeat
approach for the double integrator.

Fig. 12. Tracking response of the FF control system in
Fig. 11. The red dotted line in the bottom figure
depicts the pulse-width when the pulse-center is fixed
at c∗ = 0.4 and the PTC in Sec. 3.1 is applied.

4.2 Application to high-order systems: Compensation of
switching characteristic

Output perfect tracking controllers based on the nonlinear
deadbeat are designed for not only a second order system
but also higher-order systems.

As PWM-type inputs to the double integrator system,
ideal switching responses were considered so far. It was
assumed that the turn-on and -off of the control inputs
occur instantaneously. However, they have necessarily time
lags in practice. To take into account practical switching
responses, the following linear filter is assigned in front of
the double integrator as shown in Fig. 13:

PCe(s) =
ω2
n

s2 + 2ζωns+ ω2
n

. (18)

The parameters ζ and ωn are chosen so that Psw(s)
becomes the second-order Butterworth filter whose peak
time is Ts/20. Fig. 14 shows a filtered switching response
usw.

The continuous-time plant is a fourth-order system. Sim-
ilar to a second-order system, a discrete-time model cor-
responding to (3) can be calculated. Then, by solving the
problem (16) with (17), the pulse-width is determined.
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Fig. 13. Block diagram for a double integrator with switch-
ing dynamics

Fig. 14. Ideal and practical switching responses.

Fig. 15. Simulation results for the plant in Fig.13. The red
dotted line depicts a simulation result in which the
switching dynamics Psw(s) is not taken into account.
The blue solid line depicts a simulation result in which
the switching dynamics is considered.

Under the condition of Table 1, two simulations have been
performed. One simulation does not take into account the
switching dynamics Psw(s) (that is, the same pulse-widths
as Fig. 12 are applied), and the other simulation does.
In both simulations, the control object is the fourth-order
system Psw(s)P (s). Fig. 15 shows the simulation results.
When the switching dynamics are ignored, errors exist
at sampling instants. Meanwhile, the output PTC has
been achieved when the switching dynamics is taken into
account.

5. CONCLUSIONS

In this paper, for a continuous-time double integrator
system with a PWM-type input, it has been shown that
unstable zeros of the linearized discrete-time system can
be transferred to the stable region by fixing the center of

the pulse to the first half part of the control interval. This
enables us to construct a stable feedforward controller for
achieving an output PTC.

However, a trade-off occurs between the stability degree
of the zero and the maximum pulse-width. Therefore,
the unstable zero cannot be moved to a high stability
region; this leads to the occurrence of some oscillation.
To address this, a zero-phase error filter is introduced to
reduce oscillation. Additionally, a nonlinear FF controller
is proposed, which manipulates both the duty ratio and the
location of the pulse-center at every control period. Herein,
the output PTCs are based on the proposed method,
are designed not only for a second order system but for
a higher-order system. The effectiveness of the proposed
methods have been shown by performing simulations.
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