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Abstract: We propose a numerical method to compute stabilizing state feedback control laws
and associated polyhedral invariant sets for nonlinear systems represented by Fuzzy Takagi-
Sugeno (T-S) models, subject to state and control constraints, and persistent disturbances.
Sufficient conditions are derived under which a given polyhedral set is positively invariant under
a Parallel Distributed Compensation (PDC), in the form of bilinear algebraic inequalities. Then,
a bilinear programming (BP) problem is proposed to compute the state feedback gains and an
associated positively invariant polyhedron, with predefined complexity, which solve a constrained
regulation problem for the Fuzzy T-S system. A numerical example illustrates the effectiveness
of the method.
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1. INTRODUCTION

Fuzzy Takagi-Sugeno (T-S) models provide a local repre-
sentation of nonlinear plants as a convex combination of a
number of linear models (Takagi and Sugeno, 1985). This
feature has allowed the extension of linear systems analysis
and design tools to handle nonlinear systems. In particular,
the so-called Parallel-Distributed-Compensation (PDC)
controllers can be designed in order to guarantee local
asymptotical stability of a nonlinear system represented
by a Fuzzy T-S model (Wang et al., 1996).

Most techniques described in the literature apply to
continuous-time systems and consist in formulating analy-
sis and synthesis conditions as convex optimization prob-
lems described in terms of Linear Matrix Inequalities
(LMIs) (Tanaka and Wang, 2002; Feng, 2006). However,
many of such techniques do not take into account the
fact that Fuzzy T-S models are usually valid only locally.
Then, the performance computed through LMIs can only
be achieved if the state trajectory is included in the region
of validity of the Fuzzy T-S model.

Enforcing state trajectories into a given region can usu-
ally be achieved by computing an invariant set associ-
ated to a given stabilizing control law. A number of set-
invariance techniques have been developed to solve control
problems for linear systems subject to state and control
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constraints, and to persistent disturbances (Blanchini and
Miani, 2015). In particular, polyhedral invariant sets have
proven to result in larger regions of attraction than the el-
lipsoidal sets obtained from quadratic Lyapunov functions
delivered by LMI-based techniques.

Recent work has been reported on the construction of poly-
hedral invariant sets for discrete-time Fuzzy T-S systems.
In Arino et al. (2014), an analysis technique is proposed
to compute polyhedral approximations of the maximal
positively invariant polyhedron contained in the set of
state constraints, for a given stabilizable PDC, computed
via LMI techniques which do not account for the size of
the resulting polyedral set. In Arino et al. (2013), this tech-
nique is extended to systems with bounded disturbances
and an approximation of the minimal reachable set is also
computed. Polya expanded T-S models are used to reduce
conservatism of such sets. Their computation is based on
the iterative algorithms developed for linear systems. In
Arino et al. (2017), a controlled invariant λ-contractive
polyhedron is computed and an explicit piecewise-affine
control law is computed from the solution of a multipara-
metric linear programming. The complexity of such a law
can become very large, though.

In this paper, for discrete-time T-S systems subject to
state and control constraints, and to bounded distur-
bances, we establish sufficient conditions for a polyhedral
set to be positively invariant under a static state feedback
PDC law. Then, we propose a bilinear programming design
approach to simultaneously compute stabilizing feedback
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gains and two associated positively invariant polyhedral
sets: a larger one which stands for the region of attraction
and a smaller one which stands for the set where the
state trajectories converge to, in spite of the disturbances.
Compared to the aforementioned approaches, the main
advantage of our optimization technique is the possibil-
ity of delivering feedback gains likely to result in large
polyhedral sets accounting for the regions of attraction,
with fixed complexity in the sense that the maximal num-
ber of inequalities defining the invariant sets is a priori
established.

2. PROBLEM STATEMENT

Consider a discrete-time nonlinear system given by:

x(k + 1) = f(x(k), u(k), d(k)), y(k) = Cx(k). (1)

where x ∈ Rn is the state, u ∈ Rm is the input, d ∈ Rq is
the disturbance and y ∈ Rp is the output.

This system can be expressed locally in a compact region
of the state-space, denoted here as region of validity Ω, as
a Fuzzy Takagi-Sugeno system (Fuzzy T-S system) with r
rules (or local models) in the form:

x(k + 1) =

r∑
i=1

αi(x(k))(Aix(k) +Biu(k) + Eid(k))

y(k) = Cx(k),

(2)

where αi(x(k)) represent membership functions such that
the vector of membership functions α(x(k)) belongs to the
(r − 1)-dimensional standard simplex ∆ ∈ Rr, defined as:

∆ = {α ∈ Rr :

r∑
i=1

αi = 1, αi ≥ 0}. (3)

For the sake of simplifying the notation, from this point
on, we can drop the explicit dependency of the membership
functions α on the state x(k).

Considering now a fuzzy PDC (Parallel Distributed Com-
pensation) state-feedback controller, given by:

u(k) =

r∑
i=1

αi(x(k))Fix(k), (4)

the closed-loop system takes the form:

x(k + 1) =

r∑
i=1

r∑
j=1

αiαj((Ai +BiFj)x(k) + Eid(k)). (5)

The region of validity Ω is considered to be polyhedral. The
disturbance d(k) is unknown but bounded to a compact
polyhedron containing the origin:

d(k) ∈ D = {d : Wd ≤ 1.} (6)

System (2) is subject to state and control constraints:

x(k) ∈ X = {x : Gx(k) ≤ 1}, (7)

u(k) ∈ U = {u : V u(k) ≤ 1}, (8)

The sets X and U are compact polytopes containing the
origin. Since we are interested in trajectories belonging to

the region of validity Ω, we can consider that X is the result
of the intersection between Ω and the additional state
constraints. The possibility of enforcing state trajectories
into a given set is characterized by the following definition:

Definition 1. A set X ⊂ Ω is said to be Robust Positively
Invariant (RPI) with respect to system (5) if ∀x(0) ∈ X
and ∀d(k) ∈ D, x(k) ∈ X, ∀k ≥ 0.

We are interested in finding state-feedback matrices Fi,
i = 1, · · · , r and a polyhedral set

Xinv = {x : Lx ≤ 1}

which is Robust Positively Invariant under the control
law (4) and such that any trajectory starting from Xinv

converges, in finite-time, to a homothetic set Xub ⊆ Xinv,
given by Xub = {x : Lx ≤ ρ1}, 0 < ρ ≤ 1 , ρ ∈ < , and
remains ultimately bounded (UB) in Xub.

3. MAIN RESULTS

Proposition 1. The polyhedral set Xinv is Robust Posi-
tively Invariant with respect to the closed-loop system (5),
with contraction rate λ, 0 < λ < 1, and associated UB-set
Xub, if there exist matrices Hii, Zii, i = 1, · · · , r and Hij ,
Zij , i = 1, · · · , r, j = i+ 1, · · · , r such that:

HiiL = L(Ai +BiFi), Hii ≥ 0,
ZiiW = LEi, Zii ≥ 0,
Hii1 + Zii1 ≤ λ1,

HijL = L
(Ai +BiFj +Aj +BjFi)

2
, Hij ≥ 0,

ZijW = L
(Ei + Ej)

2
, Zij ≥ 0,

Hij1 + Zij1 ≤ λ1,
Hiiρ1 + Zii1 ≤ (1− ε)ρ1, Hijρ1 + Zij1 ≤ (1− ε)ρ1,

(9)

where 0 < ε ∈ < is given and sufficiently small.

Proof: Consider that Lx(k) ≤ 1. Then:

Lx(k + 1) =

r∑
i=1

r∑
j=1

αiαjL((Ai +BiFj)x(k) + Eid(k))

=

r∑
i=1

αi(x(k))2L((Ai +BiFi)x(k) + Eid(k))+

+

r∑
i=1

r∑
j=i+1

αiαjL((Ai +BiFj +Aj +BjFi)x(k)+

+(Ei + Ej)d(k))

=

r∑
i=1

α2
i (HiiLx(k) + ZiiWd(k))+

+

r∑
i=1

r∑
j=i+1

αiαj(HijLx(k) + ZijWd(k)

≤
r∑
i=1

α2
i (Hii1 + Zii1) +

r∑
i=1

r∑
j=i+1

αiαj(Hij1 + Zij1)

≤
r∑
i=1

α2
iλ1 +

r∑
i=1

r∑
j=i+1

2αiαjλ1

= λ

(
r∑
i=1

αi

)2

1 = λ1 < 1.

(10)

This proves that the external polyhedron Xinv is RPI
and contractive. Thus, by considering now the two last
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inequalities in (9), similar arguments can show that the
internal polyhedron Xub is also RPI. Hence, any trajectory
that reaches Xub or that emanates from it, remains inside.
2

One should notice that this Proposition does not consider
a particular membership function, providing membership-
shape independent, possibly conservative, conditions.

Proposition 1 assures that if x(0) ∈ Xinv, then x(k) ∈ Xinv

for k = 1, 2, · · ·, ∀d(k) ∈ D. Moreover, with 0 < λ < 1
and without disturbances, it guarantees the contraction
of state trajectories inside Xinv, i.e., if x(k) ∈ Xinv, then
x(k + 1) ∈ λXinv. Therefore, if x(0) ∈ Xinv, then x(k) ∈
λkXinv. A direct consequence is that if the conditions of
Proposition 1 are satisfied, then x(k)→ 0 as k →∞.

When persistent disturbances enter the picture, conver-
gence to the origin is not guaranteed anymore. In this
case, the state can be proven to converge to a smaller
RPI set around the origin. The two following results show
that under a controller which satisfies the conditions of
Proposition 1, the trajectory of x(k) is guaranteed to
converge to Xub

Proposition 2. Let Xinv = {x : Lx ≤ 1} be a RPI set
with respect to (5), with contraction rate λ, satisfying
conditions (9). Then, any set Xβ = β−1Xinv = {x : βLx ≤
1} ⊃ Xinv, 0 < β < 1, is a RPI set w.r.t. (5) with
contraction rate λβ < λ.

Proof: If Xinv is RPI w.r.t. (5) satisfying (9), then it is
clear that the conditions in (9) (excepting the two last
equations, related to Xub) are satisfied if we replace L by

βL and Zij by Z̃ij = βZij . In this case:

Hij1 + Z̃ij1 = Hij1 + βZij1 < Hij1 + Zij1 ≤ λ1.

Then, it is clear that there exists λβ < λ such that Hij1+

Z̃ij1 ≤ λβ1, which proves, according to Proposition 1, that
Xβ is RPI with contraction rate λβ < λ. 2

Proposition 3. Let Xinv = {x : Lx ≤ 1} and Xub = ρXinv

be RPI sets with respect to (5) satisfying conditions (9).
Then, any state trajectory starting from x(0) ∈ Xinv

converges to Xub in a finite number of steps.

Proof: By definition, Xub = ρXinv, with 0 < ρ ≤ 1. From
Proposition 2, all the sets β−1Xub, with ρ < β < 1 are RPI
with contraction rate λ < λβ ≤ (1 − ε) ≤ 1. Then, it is
clear that, starting from x(0) ∈ Xinv, x(k) ∈ β−1Xub with
monotonically increasing values of β, until x(k) eventually
reaches Xub. 2

4. A CONSTRAINED REGULATION PROBLEM

The characterization of Robust Positive Invariance of Xinv

under the PDC state-feedback law (4) allows to propose a
solution for the following constrained regulation problem:

Problem 1. Compute a state-feedback law (4) such that
the state and control constraints (7), (8) are satisfied
∀d(k) ∈ D and x(k) ∈ Xub for k ≥ k̄, for a finite k̄.

Proposition 4. Problem 1 has a solution if for given (suf-
ficiently small) scalar ε > 0, there exist matrices Fi, Ni,
Hij , Zij , i = 1, · · · , r, j = i, · · · , r, L and M , and a scalar
λ such that:

HijL = L
(Ai +BiFj +Aj +BjFi)

2
.µij , Hij ≥ 0,

ZijW = L
(Ei + Ej)

2
.µij , Zij ≥ 0,

Hij1 + Zij1 ≤ (λ1).µij
Hijρ1 + Zij1 ≤ ((1− ε)ρ1).µij ,

(11)

NiL = V Fi, Ni ≥ 0, Ni1 ≤ 1, i = 1, · · · , r (12)

ML = G, M ≥ 0, M1 ≤ 1, (13)

where 0 < ε ∈ < is given and sufficiently small and

µij =

{
1, if i = j ,
2, otherwise.

Proof: According to Proposition 1, conditions (11) imply
positive invariance of Xinv with contraction rate 0 < λ < 1.
That implies x(k) ∈ Xinv, k = 1, 2, · · ·, ∀d(k) ∈ D if
x(0) ∈ Xinv and, according to Proposition 3, x(k) reaches
Xub in finite time.

According to the so-called Extended Farkas Lemma (see,
e.g. Castelan and Hennet (1992)), conditions (12) imply
V Fix ≤ 1, ∀x ∈ Xinv. Since u(k) is given by (4), then,
∀x ∈ Xinv one has:

V u(k) =

r∑
i=1

αiV Fix(k) =

r∑
i=1

αiNiLx(k)

≤
r∑
i=1

αiNi1 ≤
r∑
i=1

αi1 = 1,

which guarantees satisfaction of control constraints (8).

Again using the Extended Farkas Lemma, conditions (13)
imply Xinv ⊂ X, guaranteeing thereby satisfaction of state
constraints (7). 2

In the particular case where only the output y(k) is
measured and the membership functions depend only on
y(k), the approach proposed here can be easily extended
to treat both static and dynamic output-feedback control
design:

Static output-feedback control: u(k) =

r∑
i=1

αiKiy(k).

It amounts to replace Fi by KiC in the expressions
derived in Propositions 1 and 4.

Dynamic output-feedback control: Consider the fol-
lowing compensator:

xc(k + 1) =

r∑
i=1

αi (Acixc(k) +Bciy(k)),

u(k) =

r∑
i=1

αi (Ccixc(k) +Dciy(k)).

(14)

The closed-loop system can be written in the following
augmented form:[

x(k + 1)
xc(k + 1)

]
=

r∑
i=1

r∑
j=1

αiαj

([
Ai 0
0 0

]
+[

Bi 0
0 I

] [
Dcj Ccj
Bcj Acj

] [
C 0
0 I

])[
x(k)
xc(k)

] (15)

which is clearly equivalent to the static output-feedback
case with matrices Ai, Bi and C replaced by the
corresponding augmented matrices.
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5. BILINEAR OPTIMIZATION DESIGN STRATEGY

The proposed solution to Problem 1, given by Proposition
4, carry some products among pairs of matrix variables,
including the control gains Fij to be synthesized, as well
as other bilinear terms arising from the products between
matrices and scalars or vectors. These bilinear products
can be appropriately considered as design constraints, and
adapted nonlinear optimization techniques can be used to
find solutions to Problem 1, as discussed in this section.

5.1 Design strategy

The proposed design strategy considers a shape-set ap-
proach to enlarge the size of the set of admissible ini-
tial conditions Xinv, and a weighted objective function
is set such that the relative size of the UB-set Xub can
also be diminished. Thus, consider a polyhedral shape-set
S = {xk : Sxk ≤ β1}, with 0 < β ∈ R and S ∈ Rls×n, that
must verify S ⊆ Xinv. According to the Extended Farkas’
Lemma, this inclusion is equivalent to the existence of a
matrix 0 ≤ J ∈ Rr×ls and a scalar 0 ≤ γ ∈ < such that:

JS = L, J1 ≤ γ1. (16)

Notice that matrix S, and hence the shape of S, is a
designer choice, whereas the coefficient γ = β−1 is an
optimization variable that allows to enlarge the set S ⊆
Xinv.

Next, consider the scalar variable ρ ∈ (0, 1] that defines the
limits of the UB-set Xub ⊂ Xinv. Thus, the following basic
bilinear optimization problem is proposed to find solutions
to the design Problem 1, by considering that r > n, S and
a scalar λ̄ < 1 are given:

min
Γ

Φ(γ, ρ) = γ + θρ

subject to (11)− (13), (16),
0 ≤ λ ≤ λ̄,
f`(·) ≤ ϕ`, ` = 1, ..., ¯̀,

(17)

with Γ = (L,Fi, Hij , Zij , Ni,M, J, λ, γ, ρ), and where:

i) the proposed weighted objective function Φ(γ, ρ), with
chosen weighting design parameter 0 ≤ θ ∈ <, allows
to trade-off the maximization of the size of Xinv and the
minimization of the relative size of UB-set Xub;

ii) the additional constraints, represented by f`(·) ≤ ϕ`,
may be imposed for different purposes, including numerical
ones as briefly discussed in this section.

Notice that for different chosen weighting parameter θ, the
optimization problem (17) can provide different solutions
to Problem 1, or even fail, depending also on the choices
of S and r.

Remark 1. A possible choice for the shape-set S is to
consider that it has the same shape and complexity of the
constraint set X, setting S = G and r = lg.

5.2 Implementation Issues

Different non-linear optimization techniques could be con-
sidered to solve (17) as, for instance, the ones described in
Conn et al. (2009); Kennedy and Eberhart (1995). In this
work, the KNITRO solver (Byrd et al., 2006) was used

to generate the results. It is based on interior point and
active set methods that can efficiently deal with bilinear
optimization problems such as (17). We emphasize that
KNITRO is not guaranteed to find global optimal solu-
tions. However, local minima are found upon convergence.
Furthermore, the non-linear optimization problem (17),
whose constraints we formulated under a matrix form,
can be rewritten in the element-wise form that is more
suitable for the language AMPL employed by KNITRO.
Therefore, this reformulation fits well into the approach of
bilinear optimization and for control design purposes (see,
for instance, Brião et al. (2018)).

Besides, the constraints f`(·) ≤ ϕ` are established to
determine lower and upper bounds to variables, such as
for the elements of matrices L and M :

l ≤ lνι ≤ l̄ and m ≤ msι ≤ m̄,
with ν ∈ {1, ..., r} , s ∈ {1, ..., r} and ι ∈ {1, ..., n}.
Likewise, upper and lower bounds are also imposed on the
elements of the other involved vector and matrix decision
variables. Such bounds are usually imposed in nonlinear
programming problems in order to restrain the search
space. In the present case, upper bounds on the elements
of matrix L do not jeopardize the possibility of finding a
solution, because the optimization problem is tailored to
deliver a small L, that would result in a large invariant
set.

6. NUMERICAL EXAMPLES

KNITRO solver from the NEOS Server (Gropp and Moré,
1997), a free internet-based service for solving numer-
ical optimization problems, was used generate the re-
sults we report now. The default solver configurations
were used, together with the multi-algorithm option. Also,
we assigned the following lower and upper bounds pair
(−103, 103) to each element of matrices L and Fi. Further-
more, from the inequalities that involve the non-negative
matrices Hij , Zij , M , and Ni, one can see that their
elements should be upper limited by 1. Moreover, the non-
negative scalars ρ and γ had lower and upper bounds pairs
set as (0, 1) and (1, 103) respectively, and the variables ε
and λ were set as λ = 0.9999 and ε = 10−6. Additionally,
the auxiliary matrices U and J were bounded by the
lower and upper bound pairs (−108, 108) and (0, 103),
respectively.

Consider the Fuzzy T-S system (1), borrowed from Arino
et al. (2013), with

A1 =

[
−8.3 −4.3
−4.3 −1.3

]
, B1 =

[
−45.5
−20.6

]
, E1 =

[
0.01
0.3

]
,

A2 =

[
−10.8 −6.6
−6.6 −4.4

]
, B2 =

[
−34.3
−22.3

]
, E2 =

[
0.05
0.6

]
,

A3 =

[
−17.1 −5.5
−5.5 −1.2

]
, B3 =

[
−42.7
−12.2

]
, E3 =

[
0.0033

0.9

]
,

A4 =

[
−3.5 −2.5
−2.5 −1.9

]
, B4 =

[
−37
−19.3

]
, E4 =

[
0.025
1.2

]
,

subject to bounded unknown disturbance d(k) as in (6),
and to state and control constraints as in (7) and (8), with

W =

[
0.25
−0.25

]
, G =

 0.1 0
0 0.1

−0.1 0
0 −0.1

 , V =

[
0.25
−0.25

]
.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8114



Fig. 1. Symmetric Polyhedrons

θ nl γ β = γ−1 ρ Φ(γ, ρ)

0 8 3.16308 0.31615 0.999984 3.16308
12 1.37705 0.72619 0.999823 1.37705

9 8 2.49875 0.40020 0.770132 9.42994
12 2.36603 0.42265 0.715764 8.80791

20 8 2.82347 0.35417 0.684156 16.5066
12 2.93000 0.34130 0.685668 16.6434

Table 1. Symmetric Polyhedrons

By applying the bilinear design strategy (17), with a
shape set homothetic to the set X of state constraints
(see Remark 1), different solutions to Problem 1 were
encountered. In the sequel, we report the results obtained
for three different values of the weighting factor θ, present
in the objective function, and by considering that the
maximum complexity of the invariant set, given by nl =
number of rows of L, can take two different values.

The results depicted by Figure 1 and Table 1 were ob-
tained by imposing the invariant polyhedron Xinv to be

symmetric, which requires L =
[
LTs −LTs

]T
, Ls ∈ <

nl
2 ×n.

Figure 2 and table 2 depict the results obtained by con-
sidering that Xinv may be asymmetric, in which case no
special structure is imposed on L. In the two figures, the
outermost set represents the state constraints X, and the
innermost one represents the shape set βX. The two other
sets correspond to Xinv and Xub that are depicted in full
black and dashed blue lines, respectively.

In both symmetric and asymmetric cases, the maximum
allowed complexity were nl = 8 or 12. For both cases, we
can observe from Tables 1,2 and Figures 1, 2 the following:

• for each given value of nl, the bigger is the weight θ,
bigger is the value of the objective function Φ(γ, ρ)
and, furthermore, smaller is the coefficient ρ that
relates the size of Xub to the size of Xinv. Also, by
visual inspection, it can be observed that the size of
the external set Xinv decreases as far as θ increases,
as well as the size of the shape-set S.
• by considering the values θ = 0 and 9, that the value

of the objective function decreases by increasing the
complexity nl from 8 to 12, this behavior being more

Fig. 2. Free-form Polyhedrons

θ nl γ β = γ−1 ρ Φ(γ, ρ)

0 8 1.44482 0.69213 0.999826 1.44482
12 1.43585 0.69645 0.999953 1.43585

9 8 2.35677 0.42431 0.726073 8.89143
12 2.35818 0.42406 0.725913 8.89140

20 8 2.66983 0.37456 0.691345 16.4967
12 2.92861 0.34146 0.685662 16.6419

Table 2. Free-form Polyhedrons

critical in the symmetric case possibly because all the
imposed constraints are also symmetric.

It is also noteworthy from figures 1, 2, that the obtained
invariant polyhedrons have different shapes and actual
complexities less than nl. Which solution to choose should
be decided from a comparative analysis of the solutions
that could consider, apart from time-domain simulations,
estimates of the maximum and minimum robust invariant
sets contained in X.

In Table 3, we show the gain matrices Fi, i = 1, . . . , 4,
obtained with θ = 9, which are displayed, together with
the corresponding matrix Ls in the symmetric cases, or L
for the asymmetric polyhedron.

We performed simulations of state trajectories by consid-
ering a particular vector of membership functions, and a
particular disturbance that randomly takes its value at the
maximum or the minimum values of w ∈ W . In Figure 3
simulated state trajectories are depicted, related to the
symmetric case with nl = 12 (plots a) and c)), and to
the asymmetric case with nl = 8 (plots b) and d). In a)
and b), the trajectories that emanate from different initial
conditions in the Xinv sets show the convergence from Xinv

to Xub, while the plots in c) and d) aim to show that
the trajectories generated from the origin should remain
in Xub. It is interesting to recall that other trajectory
patterns could be obtained either by using other allowed
disturbance sequences or other choices of membership
functions.

7. CONCLUSIONS

In this paper we proposed sufficient conditions for a poly-
hedral set to be Robust Positively Invariant with respect
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Case nl Fi Ls / L

Sym 8

[
−0.17871 − 0.08775

]
1

 −0.00000 −0.10000
0.04966 −0.08308
0.10462 0.12093
0.23400 0.00188

[
−0.30399 − 0.18560

]
2[

−0.40794 − 0.12486
]
3[

−0.10894 − 0.07597
]
4

Sym 12


−0.00861 −0.00450

0.00111 0.10043
−0.00795 −0.00424
−0.12560 −0.11100
−0.21465 0.01760
−0.00721 −0.00421


[
−0.17673 −0.08717

]
1[

−0.30536 −0.18944
]
2[

−0.40562 −0.12175
]
3[

−0.10810 −0.07950
]
4

Asym 8



−0.22308 0.01259
0.00000 0.10000
0.12624 0.10943

−0.09815 −0.13753
0.00874 0.00220
0.21542 −0.01762
0.00545 0.00112
0.00510 0.00088


[
−0.17852 −0.08650

]
1[

−0.30518 −0.19065
]
2[

−0.40328 −0.12106
]
3[

−0.10814 −0.07929
]
4

Table 3. Numerical Results - θ = 9

to a nonlinear system represented by a Fuzzy T-S model,
subject to state and control constraints, and to persistent
bounded disturbances. The conditions were then trans-
lated into constraints of a bilinear programming problem,
whose solution delivers a stabilizing PDC controller and
two invariant polyhedra: a larger one, which is a guaran-
teed region of attraction and a smaller one, into which the
state trajectory is ultimately bounded.

The advantages of our approach compared to other ap-
proaches which deal with polyhedral invariant sets for
Fuzzy T-S systems are the simultaneous computation of
the sets and the stabilizing controllers, and the possibility
of limiting the complexity of the invariant sets, in terms
of the number of inequalities defining them.

Reliable solutions were obtained for the constrained con-
trol problem dealt with in the numerical experiments,
even though the global optimum of the associated bilin-
ear programming problem is not reached for sure. Future
work should focus on a numerical method tailored for our
problem, with the goal of further enlarging the size of
the invariant polyhedron which serves as approximation
of the region of attraction. The extension of the proposed
approach to Polya expanded T-S models, which is expected
to achieve less conservative results, as in Arino et al. (2014,
2017), is quite straightforward, and will be object of future
work as well.
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