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Abstract: This paper deals with an application of the nested convex programming to the
optimal power flow (OPF) in multi-terminal high-voltage direct-current grids (MT-HVDC).
The real-world optimization problem under consideration is non-convex. This fact implies
some possible inconsistencies of the conventional numerical minimization algorithms (such as
interior point method). Moreover, the constructive numerical treatment of this problem is
usually based on some approximative approaches, namely, on the suitable linearizations and
problem relaxations. The resulting convex programming model constitutes an approximated
model and can naturally involve the significant (approximation) errors. In difference to the
strongly approximate computational approaches mentioned above, the numerical scheme we
propose takes into account the specific bi-linear structure of the problem and operates with
the originally given non-convex formulation of the problem. We implement the proposed nested
optimization approach and study the numerical consistency of the resulting optimal design.
The Python based numerical experiments demonstrate the imlementability of the proposed
methodology. Optimization problem of the modified version of the CIGRE MT-HVDC is next
used as a benchmark test for the approach we developed.
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1. INTRODUCTION

Multi-terminal high-voltage direct current (MT-HVDC)
has becoming an important part of the modern power sys-
tems applications such as offshore wind farms, supergrids
and urban distribution. It is well-known that the practical
operation of these MT-HVDC grids need to be optimized
over the set of optimal dynamic models commonly called
as “optimal power flow” (OPF). Note that there are var-
ious practically motivated classes of these applied models
for both AC and DC grids (see Capitanescu [2016] and
the reference therein). However, the usual optimization
involved approach requires to minimize losses, subject to
the energy balance and some natural capability constrains.
The resulting mathematical model is non-linear and non-
convex. Moreover, it requires to be executed constantly
and autonomously during the prescribed system operation
time. Therefore, the convergence requirement of the imple-
mented system optimization algorithm constitutes a vital
condition for the general functionality of the system.

The OPF is usually integrated into the hierarchical control
of MT-HVDC grids which consists in at least of four
stages. These stages are called: the level-zero control, the
primary control, secondary and tertiary control. Level-
zero controls include the necessary vector oriented control
that maintains the required voltage in each terminal. This
local control needs to be fast with the concrete time
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constants below to 1.6 ms. It acts at the dynamics of the
converters and the passive components of the grid. The
primary control usually constitutes a droop that guarantee
stability by the local actions on the voltages. However,
these local actions can involve some operations points that
are strongly inefficient. Therefore, the centralized controls,
called secondary and tertiary controls are additionally
required in order to carry out the system to a feasible
and optimal operation point. The OPF itself constitutes
the last control stage. Hence, it needs to be executed in a
real time, namely, for the time intervals of 1 to 15 minutes.

Recent investigations on the subject under considera-
tion have focused on convex approximations such as Mc-
Cormick envelops, linearizations, second order relaxation
schemes, conic and semidefinite relaxation. We refer to
Montoya et al. [2018] and Gan and Low [2014] for some
generic approximation approaches. Despite the increasing
interest about the theoretical characteristics of these ap-
proximations, non of them are used by power systems op-
erators. A method that deals with the non-convex nature
of the problem is clearly required.

In this paper, we propose a conceptually different opti-
mization approach that guarantees a (weak) convergence
of the solution procedure applied to the initially given non-
linear and non-convex model. Our system optimization ap-
proach is finally applied to the convex objective function in
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the presence of the practically motivated restrictions with
the bi-linear structure. These specific problem characteri-
zation makes it possible to solve the original problem using
the so called nested optimization approach. This frame-
work also allows to establish the numerical convergence of
the resulting iterations. Theoretical approach developed in
this paper was finally applied to some numerical experi-
ments simulated in Python for the generic CIGRE MT-
HVDC benchmark test system. The obtained numerical
results show the expected convergence of the method and
establish implementability of the proposed algorithm.

The reminder of the paper is organized as follows. Section
2 contains a formal description of the engineering problem
and its mathematical representation. The necessary math-
ematical tool related to the nested convex optimization is
collected in Section 3. The main optimization algorithm
we propose is finally described in Section 4. Some applied
results are next given that section. Section 5 summarizes
our contribution.

2. ON THE POWER FLOW IN MT-HVDC GRIDS
AND ITS MATHEMATICAL MODEL

A generic multi-terminal HVDC network is formally de-
scribed by an oriented graph
g={N.,&},

with N = {0,1,...,n — 1} representing the set of nodes. *
Moreover, & C N x N denotes the set of branches.
Parameters of the electrical grid under consideration are
given in per-unit and the generic nodal admittance matrix
is calculated with entries gg,,. Note that we does not
include here the neutral point.

We next assume that the graph under consideration is con-
nected and hence, the nodal admittance matrix is positive
definite. A primary control is considered at each terminal
for droop constant hy and with the reference voltage 1pu
as depicted in Figure 1. The secondary control is not
considered here and the corresponding dynamics of level-
zero controls is neglected. The nodal power constitutes a
decision variable py as well as the nodal voltage vy.

Pk i —
droop +
Av=1— v .27‘ T v
Pk

k

terminal k

Fig. 1. Representation of a generic terminal in a MT-
HVDC grid

Finally we can conclude that the current in each node is
given by
. P — he(1— vy
i = e e v (1)
Uk
where
Umin S Vg S Umax-

1 We put the starting count in zero in order to maintain the same
representation also in the further Python codes.

Let us note that usually one has

Umin = 0.90, vpax = 1.1
or the corresponding values are taken according to the grid
codes.

The main optimization model we consider consists in
minimizing the energy losses P, subject to the global
energy balance at each node. Additionally we incorporate
the typical box constraints for each nodal power, branch
flow and nodal voltage into the resulting optimization
problem. This main optimization model can be formalized
as follows

n—1n—1
minimize Pr,(p, h,v) = Z Z JlemUkUm
k=0 m=0
n—1
e — hi(l—wvg) = Z GkmVkUm Yk € N @
m=0

Pr(min) < Pk — M (1 — V%) < Pr(max) Yk €N

- fkm(max) < u < fkm(max)Vkm cé&

Tkm
Umin S Vk S Umax Vk € N

The objective function P, in (2)evidently has a bilinear
structure. This is a simple consequence of the positive
definiteness of the given quadratic form. Equation from
2 is in fact a set equality bi-linear forms and this fact
causes the non-convexity of the main optimization prob-
lem. Note that equation restrictions in (2) constitute the so
called box constraints in the above problem and represent
the nodal-power capabilities, flow capabilities and voltage
regulation, respectively.

As mentioned above the obtained optimization problem
(2) can be characterized as a non-convex due to the bilin-
ear objective-constraints structure. However, the bi-linear
characterization makes it possible to apply the celebrated
nested optimization approach to the optimization problem
we consider.

3. MATHEMATICAL FOUNDATIONS OF THE
NESTED OPTIMIZATION

This section contains a collection of the necessary math-
ematical preliminaries. We study some results related
to a specific nonlinear numerical optimization technique,
namely, to the so called splitting methods. We refer to
[Azhmyakov, 2019, Combettes and Pesquet, 2010, Eckstein
and Svaiter, 2009] for some additional technical details and
further ideas.

Assume H = H; ® Hs is a Cartesian product of two
real Hilbert spaces and examine the abstract optimization
problem

extremize F'(vy,vs) 5

subject to (vi,v2) €V ® Vo C H (3)
where Vi C Hi, Vo C Hs. We next assume that V; and
V5 are bounded and convex. Moreover, we also suppose
that the objective functional F'(-,-) in (3) possesses the
following properties:

F(-,v2) : H1 — [—00,00], F(v1,-): Ha = [—00, 0]
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are proper convex or concave (i.e., one can be convex while
the other is concave) functionals for v; € Hiy, vo € Ha,
respectively. Note that a convex functional F(-,vq) is
called “proper” if F'(-,v2) # —oco (over H1) and its effective
domain is a non-empty set.

Let

v = (v1,v2), V:i=V; ® Va.
Note that the above concept can also be applied to J (v, -).
We next omit the word “proper”, because only such convex
functionals will be considered in this paper.

The abstract optimization problem (3) belongs to the
family of “nested convex programming” problems. It con-
stitutes a generic theoretical (and numerical) framework
for many practically oriented optimization problems (see
e.g., Azhmyakov [2019], I. Ekeland [1976]). In addition to
the above formal conditions, we next suppose that the full
objective F(+) (as a function of v) is a bounded functional
on

V + eB C int{dom{F(-,-)}}.

Here € > 0 and B is the open unit ball of H. The “separate”
functionals F'(vq,-) and F(-,v2) can be convex or concave.
Note that the “partial” convexity (or concavity) of F(-,vs)
and F'(v1,-) does not imply the ”global” convexity (con-
cavity) property of the complete objective F(-) in (3). Note
that a bilinear objective

F(v) = (v1,v2)n,
where (-, -)3; denotes a scalar product in , is a non-convex
functional. In the case of a convex F'(-,v2) and concave
F(-,v9) we call (3) a convex-concave problem.

The boundedness of F(-) on V + e implies the continuity
property on the same set (see Azhmyakov [2019], 1. Eke-
land [1976]). Consequently, it is also Lipschitz continuous
on the set V (see Rockafellar [1970], Thm. 10.4). The last
fact involve the formal existence of an optimal solution

voPt = (VP P € V
to the abstract problem (3) is guaranteed by application
of the Weierstrass Theorem (see e.g., F. H. Clarke [1998]).

Let us note that the abstract optimization problem (3)
provides a necessary theoretic framework for a concrete
optimization problem we are dealing with. The elements
(objective functional, restrictions) of the applied optimiza-
tion problem we next consider have the same properties
as the corresponding elements of the abstract problem
(3). Therefore, the abstract optimization problem (3) pro-
vides a universal theoretical framework for the concrete
(applied) optimization problem.

Let us recall the following fundamental concept from Vari-
ational Analysis Azhmyakov [2019], Rockafellar [1970].

Definition 1. A sequence

{v*}y CcH, k=0,1,...
is called a minimizing (or maximizing) sequence for prob-
lem (3) if

lim F(v*) = min F F(v)).
Jim F(v®) = min F(v) (or max F(v))

Let us now consider the “minimization” version of the
basic optimization problem (3) and introduce the following
function:

F(D3) := min F(vy,ds),
v1EV] (4)
Uy € V.
Here 05 € V; is a fixed element. Consider now the auxiliary
minimizing problem
minimize F(0z) (5)
subject to 19 € Vs.
Since (4) and (5) constitute the conventional convex
(or concave) programs, the auxiliary function F(:) in
(4) is well-defined and the existence of an optimal
solutionv?, v$ € V, to the above problems is guaran-
teed (see Rockafellar [1970]). Evidently, v depends on a
concrete selection 93 € Vo in (4). The next fundamental
result provides a theoretic basis for the nested optimization
approach. Moreover, this result involves an implementable
computational scheme we next will develop and use.

Theorem 1. The value
0 := min F(02)
Vo EVo
in (5) is the overall minimal value for the initially given
problem (3). A solution set argmin, oy, F(v) of (3) is given
as follows
argmin, ., F(v) = F71(9).

opt

In the case (v{P*, v3P") € argmin, o, F(v) we also have

(o7, 08), (v7, 05"

) € argmin,c, F'(v).

A formal proof of this fundamental theorem can be found
in Azhmyakov [2019]. The main numerical difficulty of this
“nested optimization” approach consists in a constructive
determination of an expression v{(?2). For a convex (or
concave, or convex-concave) case Theorem 1 constitutes a
constructive solution approach.

4. COMPUTATIONAL OPTIMIZATION OF THE
POWER FLOW IN MT-HVDC GRIDS

4.1 The Nested Optimization Based Solution Approach

We now define a vector of nodal voltages vy and the next
(augmented) optimization problem as follows:

Optimization Problem (2)
with the additional constraint

p:_: hi(1 = vg) = (6)
Z gkmf/kvm Vk e N
m=0

The only difference between problem (2) and problem
(6) is the additional equation we consider. This formal
difference involves a rich geometric characterisation of
the advanced problem (6). Since @) is a constant, the
additional equation in problem (6) defines an affine sub-
space and the last fact implies the convexity property. In
addition, the partial objectives in (6) (in the sense of Sec-
tion 3) are linear functions. This property guarantees the
global optimum and the numerical convergence assuming a
suitable numerical solution procedure will be applied into
the nested optimization approach we developed in Section
3.
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The nested convex optimization we discussed makes it
possible to solve problem (6) by the generic interconnected
iterative steps (see Section 3). The Lagrange function for
the resulting optimization problem (6) can be written as
follows:

n—1n-—1
L(p, h,v, ,U) = Mo Z Z JkmVkVUm+
k=0 m=0
palpe — (1 — ) Z Jhem Uk U]+
m=0
2 [Pre(min) — Pk — hi(1 — vg )]+
,US[Pk - hk(l - ’Uk) - pk(max)]+
Vi — Um
,U4[ fk:m(max) Tem ]+
Ve — Um
- = f m(max +
,UE)[ Tkm hm( )]
146 [Vmin — Vk] + (7 [Vk — Vmax]
where p1 := (o, ..., u7)T is a vector of the Lagrange mul-

tipliers. We next assume that the optimization problem
(6) is Lagrange regular, i.e. pup > 0 (see Azhmyakov
[2019], F. H. Clarke [1998] for the necessary mathemat-
ical details). The nested optimization expressed by partial
optimization problems (4) - (5) can now be applied to
the augmented optimization model (6) as well as to the
following (unrestricted) Lagrange minimization problem

(7)

Note that the Lagrange function from (7) also has a bilin-
ear structure and the above auxiliary Lagrange minimiza-
tion problem can also be solved by the nested algorithm
discussed in Section 3.

minimize L(p, h, v, p)
subject to the complete space

In this paper, we apply the nested type solution procedure
(4) - (5) directly to the optimization problem (6).

The main computational rule, namely, Algorithm 1 is
presented in the form of pseudo-codes. The partial (nested)
optimization problems are treated here using the conven-
tional interior point algorithm. We start with an estimate
of the value
U = 1pu.

Note that the proposed initial point constitutes a common
one for the usual practical optimization experience in
power systems applications. Moreover, the value of loss Py,
presents here a low change in comparison to the previous
step measured using a prescribed tolerance. Problem (6)
was solved by using the cvxpy in Python (see Agrawal
et al. [2018])

Let us now discuss shortly the convergence properties of
the presented algorithm.

Theorem 2. Assume that the formal technical conditions
from Section 2 are satisfied. Then application of the nested
optimization approach to the main optimization problem
(6) implies the linear-convex partial optimization problems
of the type (4) - (5).

The proof of the presented consistency result (Theorem
2) associated with the numerical scheme expressed by

Algorithm 1 Nested convex optimization for the OPF in
MT-HVDC grids

Requu‘e gkmapkj\n/@m) y Pk(mazx)s fkm(max)avk(mzn)aUk(maz)

1: ’Uk «— 1, Vke

2: PL <— o0

3 €4 OO

4: while € > tolerance do

5: (vg, Pk, Pr) + Solve Model 2
6: U < v, Vk € N

7. 6<—HPL—pLH

8: PL — Py,

9: Print results

System B
| 800MW
1.90Q | =
Ao e L
+2400 MW
G
n
00
~
19082 ~
5
1600M W
2 offshore
— wind
o 4 +2400M W farm
B +2400M W —
"L
I ~| ] System A
0

Fig. 2. Reduced version of the CIGRE MT-HVDC grid

Algorithm 1 constitutes in fact a simple consequence of
the bilinear structure of the main optimization problem
(6) (and the bilinear-type Lagrange function L(p, h,v, p)
associated with (6)).

4.2 Numerical Aspects

The proposed numerical scheme, namely, Algorithm 1 was
finally applied to a simplified version of the CIGRE MT-
HVDC test system (see [Vrana et al., 2013] for more
technical details). The system under consideration consists
on two large offshore wind farms, capable of generate
up to 800MW and 1600MW. They are integrated to two
transmission systems (A and B) through a meshed grid as
depicted in Figure 2.

The physical systems parameters, namely, the parameters
of resistance ry,, are included in €2 and the maximal and
minimal values of power in each terminal are given in MW.
Moreover, every transmission line has a capability of 1100
MW. The system is represented in per-unit under a base
of 400kV /10GW. System B require to receive at least 2000
MW.
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Fig. 3. Convergence of the proposed nested optimization
algorithm

Table 1. Nodal variables for optimal operation
of the CIGRE MT-HVDC system.

l Node [ ’Uk(pu) [ pk(MW) [ pkmin(MW) [ Pkmax (MW) l

0 0.9918 -153.69 -2400.0 2400.0
1 0.9952 0.00 0.0 0.0

2 0.9923 | -1846.31 -2400.0 2400.0
3 1.0081 1015.98 -2400.0 2400.0
4 1.0070 0.00 0.0 800.0
5 1.0053 1012.93 0.0 1600.0

Table 2. Branch flows for optimal operation of
the CIGRE MT-HVDC system.

[ Branch | Flow(MW) | Maximum Flow (MW) |

01 -155 1100
12 206 1100
13 -361 1100
23 -555 1100
25 -1100 1100
34 92 1100

The main Algorithm 1 was implemented using the stan-
dard Python packages. The main optimization problem (6)
was solved using cvxpy routine. Each execution for prob-
lem (6) in averaging required 13 iterations. The numerical
algorithm presents a convergence (by implementation) in
few method iterations (as finally shown in Figure 3). The
entire algorithm required 0.202 seconds of the processor
time and the indicated computational effectiveness is a
suitable one for practical applications.

Finally, let us note that the obtained calculated losses
are equal to 29.17 MW. Some additional parameters and
computational results are summarized in Tables 1 and 2.
The proposed computational algorithm was also tested for
various technically motivated scenarios and the practical
convergence was similar for the all examined case studies.

5. CONCLUSIONS

This paper proposes a novel numerical optimization ap-
proach to a practically motivated power systems opti-
mization problem. We consider the nested minimization
approach in the concrete context of the power flow op-
timization in multi-terminal high-voltage direct-current
electrical grids. Application of the nested optimization
makes it possible to develop a constructive computational
algorithm and solve the above engineering problem in a
self-closed form of an iterative numerical scheme.

The resulting nested type solution scheme demonstrates
a computational efficient and moreover, possesses the
numerical consistence property. Let us also note that the
realised calculations are completed in a suitable processor
time. It is necessary to stress that the proposed numerical
optimization algorithm deals with the originally given
(non-linearized) optimization problem with a non-convex
variational structure. It can be combined with the diverse
numerical optimization schemes that, for example, with
the gradient based approach proposed in Azhmyakov and
Juarez [2017]. Finally note that the proposed methodology
can also be applied to the various alternative classes of the
power systems involved optimization problems 2.
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