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Abstract: Incipient faults on blade load sensors can impede the sound performance of a wind turbine,
leading to increasing loads over time and severe blade degradation. As such, knowledge of the blade load
sensors’ health is essential for ensuring effective load reduction by means of individual pitch control.
This paper presents a condition monitoring strategy for the blade load sensors based on estimation of
the loads acting on the rotor blades in the full-load region. Fault detection is achieved via appropriate
residual generators, the statistical properties of which are used to design change detectors robust against
measurement noise and wind field stochasticity. Specifically, a Generalized Likelihood Ratio Test for
the t-LocationScale distribution is developed for ensuring robust detection of sensor blade faults. The
proposed method is evaluated in a high-fidelity simulator under non-uniform wind scenarios. The
simulation results show that detection of multiplicative faults on the blade load sensors is achieved even
in absence of knowledge of the local wind speed.

Keywords: Blade load sensor fault, Wind turbine, Condition monitoring, Filtering and change detection,
Generalized likelihood ratio test, t-LocationScale distribution

1. INTRODUCTION

The increasing manufacturing cost of larger wind turbines that
facilitate higher power production necessitates longer lifespan
of the wind turbine structure. To this end, the use of Individual
Pitch Control (IPC) has grown more popular since it ensures
the same level of power production efficiency as well as it con-
tributes to fatigue mitigation of the tower structure. However,
corrupted blade load measurements hinder the effectiveness
of the IPC loops and may lead to reduced power production,
increased tower structure fatigue and, in extreme cases, signif-
icant damage of the blades. Therefore, detection and isolation
of faults on the blade load sensors is fundamental for ensuring
robust operation of the wind turbine and fatigue mitigation
without compromising power production.

Wind turbine fault diagnosis has been widely investigated for
years, where a well known benchmark challenge by Odgaard
et al. [2009]; Odgaard et al. [2013] was used to specify common
failure modes and remedial requirements for a general wind tur-
bine. Efforts with emphasis on identifying and mitigating faults
that occur within the blade load sensors are sparsely reported
in the literature. Wei et al. [2008] modelled the wind turbine
using a closed-loop system identification approach, such that
the wind dynamics were included into the model. Both additive
and multiplicative faults were investigated using mean and vari-
ance change detectors, respectively. However, the considered
multiplicative faults were large in magnitude and redundancy
of blade sensors was assumed to aid isolation. In Wei and Ver-
haegen [2011] the problem was addressed by designing a robust
observer towards the wind disturbance. Sanchez et al. [2015]
identified a polynomial relationship between the pitch angles
and blade load sensors, where both the polynomial descriptions
and the implemented fault detection scheme were validated us-

ing Fatigue, Aerodynamics, Structures, and Turbulence (FAST)
software assuming uniform wind conditions. Niemann et al.
[2018] exploited the Multiblade coordinate (MBC) transforma-
tion to detect and isolate faults occurring in the rotor subsystem
using a model-free approach.

Common assumptions often adopted by previous works re-
late to the availability of accurate measurements of the local
wind speed or validation during simple uniform wind scenarios.
These hypotheses can be very conservative, since the availabil-
ity of such information is typically limited, and assumptions of
uniform wind falls short due to the highly stochastic profile of
the local wind speed. It is often the case that the available wind
measurements are considered unreliable, due to being obtained
from an anemometer and representing only a single point of
wind within the area covered by the rotor, whilst being heavily
influenced by blade shadow. This paper proposes a method
for detection of incipient faults in the blade load sensors of
single-rotor wind turbines (SRT) in the full load region with-
out assuming knowledge of the local wind speed. The blade
loads are estimated using the tip-speed ratio and the individual
pitch angles, and are subsequently used as inputs to residual
generators for fault detection. Statistical change detection tech-
niques have been proven to be a powerful tool for robustifying
fault detection schemes against measurement noise and process
stochastic uncertainty in industrial applications. A few charac-
teristic examples can be found in Galeazzi et al. [2012, 2015];
Hansen and Blanke [2014]; Willersrud et al. [2015] and Ghane
et al. [2018]. To account for the stochasticity of the wind field
in the detection of the blade sensors faults, statistical analysis
is carried out on the outputs of the designed residual generators
and a detector based on the Generalized Likelihood Ratio Test
(GLRT) for the t-LocationScale distribution is derived for mon-
itoring changes in the residuals. High-fidelity simulations using
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FAST, driven by non-uniform stochastic wind fields, demon-
strate the efficacy of the proposed diagnostic scheme.

The rest of the paper is organized as follows: Section 2 de-
scribes the SRT system and formulates the problem at hand.
Section 3 illustrates the proposed condition monitoring strat-
egy for the blade load sensors. Section 4 presents the results
obtained from simulations and evaluates the performance of
the fault diagnosis algorithm. Finally, Section 5 draws some
conclusions and points towards future research directions.

2. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

2.1 Single-rotor wind turbine system

Consider a single-rotor, horizontal axis wind turbine (HAWT)
operating in the full-load region, i.e. in the wind speed range
between rated wind speed Vrated and cut-out wind speed Vcut−out.
The aerodynamic torque Ta acting on the rotor disk is defined as

Ta =
1

2ωr
ρπR2Cp(λ ,β )V 3 (1)

where ωr is the rotor speed, ρ the air density, R the blade length,
Cp the power coefficient, λ = ωrR

V the tip-speed ratio, β the
pitch angle and V the wind speed. The aerodynamic torque
drives the drive-train, which converts the aerodynamic power
into electrical power. The drive-train dynamics is defined as
follows

θ̇s = ωr−
ωg

Ng
(2a)

Jrω̇r = Ta−Bd

(
ωr−

ωg

Ng

)
−Kdθs (2b)

NgJgω̇g = Bd

(
ωr−

ωg

Ng

)
+Kdθs−NgTg (2c)

where θs is the torsional angle, ωg the generator speed, Ng gear
ratio, Jg and Jr generator and rotor inertias, Kd and Bd spring
and damping coefficients, and Tg the generator torque.

The i-th out-of-plane root bending moment occurs whenever a
force acts upon the blade causing it to deflect out of the rotor
plane, and it is described by

My,i =
∫ R

0
r f (r) dr (3)

where f (r) is the flap force at the radial distance r from the
blade root.

2.2 Individual pitch control

The IPC implementation is pursued according to Bossanyi
[2003], using the MBC transformation and two PI controllers.
The measured out-of-plane root bending moments or blade
loads (My,i) are transformed from the rotating frame into two
virtual signals (Mtilt ,Myaw) in the fixed frame using the MBC[

Mtilt

Myaw

]
=

2
3

[
cos(nψ1) cos(nψ2) cos(nψ3)

sin(nψ1) sin(nψ2) sin(nψ3)

]My,1

My,2

My,3

 (4)

where ψi = ψ + (i− 1) 2π

3 , with ψ being the azimuth angle,
and n representing the harmonic (1P, 2P etc.). Then using
two identically tuned PI controllers, the pitch angle correction

factors are calculated based on the fixed frame moments Mtilt
and Myaw

β j(t) = KPM j(t)+KI

∫ t

0
M j(τ)dτ, j ∈ {tilt,yaw} . (5)

Once the fixed frame pitch corrections are computed, they
are converted to the rotating frame, using the inverse MBC
transformation as shown in (6)β̄1

β̄2

β̄3

=

cos(nψ1) sin(nψ1)

cos(nψ2) sin(nψ2)

cos(nψ3) sin(nψ3)

[βtilt

βyaw

]
. (6)

The commanded pitch angle to each blade actuator is then the
sum of the IPC corrections β̄i with the collective pitch signal
from the Collective Pitch Control (CPC), i.e. βi = βc + β̄i.

2.3 Blade-load sensor topology and faults

It is assumed that individual measurements of out-of-plane root
bending moments at each blade are available through a single
sensor mounted internally at the blade root, i.e.

zi = My,i i = 1,2,3. (7)
Blade load sensors are sensitive to damage or set-up errors dur-
ing installation, which may result in incorrect load information
from the beginning of a turbine’s lifetime. Faults may also de-
velop during operation, where the sensors may begin to detach
from the blade root, providing incorrect measurements. The de-
tachment may occur due to changes in the adhesion properties
or by the various operational and environmental conditions over
time. The sensor readings may also degrade during operation
due to another component failing. The previously-mentioned
fault types can be modelled as additive and multiplicative.
However, due to their frequency of occurrence and the non-
linearity they introduce into the system, multiplicative faults
are of greater interest. Therefore, the following fault model is
assumed for the measurements zi

zi = θiMy,i i = 1,2,3 (8)
where θi > 0. This parameter is not upper bounded because the
measurements affected by the considered faults may be larger
than the actual moment acting on the blade.

3. CONDITION MONITORING

The proposed condition monitoring system consists of a blade
load estimator and a statistical change detector. The former
provides estimates of the out-of-plane root bending moment
for each blade, utilizing estimates of Ta and λ . The latter is
comprised of a residual generator that utilizes the estimates M̂y,i
and the pitch angles βi and a detector based on the generalized
likelihood ratio test (GLRT). All measured quantities used
by the residual generators, namely the i-th pitch angles βi,
generator and rotor angular velocities ωg and ωr and the i-th
blade load My,i, are affected by Gaussian white noise with mean
and variances as specified in Odgaard et al. [2013].

3.1 Residual generation

The moment generated at the blade root highly depends on
the local wind speed for the i-th blade, and also the i-th pitch
angle computed in response to the wind. Since knowledge
of local wind speed is unavailable, an alternative approach is
to estimate the Rotor Effective Wind Speed (REWS), which
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Fig. 1. Estimation of the aerodynamic torque with a 95% confi-
dence interval, estimated TSR and a comparison between
the REWS and local mean wind speed.

represents the averaged quantity of the total wind impacting
the rotor disk. Soltani et al. [2013] and Jena and Rajendran
[2015] reviewed various techniques for REWS estimation, both
data-driven and model-based, where the latter typically consists
of two steps: aerodynamic torque estimation and then tip-
speed/REWS estimation.

Aerodynamic torque estimation. An unknown input Kalman
filter based on the drive-train description in (2), augmented with
a random walk model, is used to estimate a scaled version of
the aerodynamic torque, i.e. T̄a = Ta/Jr [Song et al., 2017]. The
scaling of the aerodynamic torque ensures that all signals are
comparable in magnitude, hence the estimator is not affected by
large variations in the singular values of the system’s dynamical
matrix. Figure 1 shows the estimated aerodynamic torque T̂a
in comparison with the true value and the 2.5σ confidence
interval based on the a posteriori covariance estimate from the
Kalman filter. The estimator tracks variations in Ta, although
the rather aggressive tuning of the Kalman filter introduces high
frequency variations.

Tip-speed ratio estimation. By using the aerodynamic torque
estimate T̂a it is possible to obtain an estimate of the tip-speed
ratio, and by extension, an estimate of the REWS. Equation (1)
is an expression for the aerodynamic torque, while assuming
collective pitch and uniform wind. However, it must be ex-
tended to include information about the individual pitch angles

Ta =
ρπR2

6ωr
V 3
(

Cp(λ ,β1)+Cp(λ ,β2)+Cp(λ ,β3)
)
. (9)

An expression containing known quantities on the left-hand
side is obtained by isolating the wind speed in tip-speed ratio
equation and inserting into (9),

6T̂a

ρπR5ω̂2
r
= λ

−3
(

Cp(λ ,β1)+Cp(λ ,β2)+Cp(λ ,β3)
)

(10)

The expression is further reduced by evaluating the power
coefficient Cp at the i-th pitch angle,

6T̂a

ρπR5ω2
r
= λ̂

−3
(

Cp,β1(λ̂ )+Cp,β2(λ̂ )+Cp,β3(λ̂ )
)
. (11)

It is then possible to solve for the tip-speed ratio λ̂ in the above
equation. Using this together with the estimated rotor angular
velocity and the estimated aerodynamic torque, an expression
for the REWS is obtained, given as V̂rews = Rωr

λ̂
. Figure 1

shows the tip-speed ratio estimation, which captures the overall
dynamical trend of the true quantity.

The estimation of the blade load is then pursued using linear
regression. The primary factor contributing to the blade load
is the local wind speed. Hence, the regression model should
make use of inputs carrying information about the wind speed.
Both the estimated tip-speed ratio λ̂ and estimated REWS
contain averaged wind speed information, since both quanti-
ties describe phenomena occurring within the rotor area. The
pitch angles also contain relevant information regarding the
wind speed, since the blades are pitched to maintain constant
power production in the full-load region. Figure 1 illustrates the
estimated REWS compared to the mean local wind speed over
one of the three blades. Since the smaller and more rapid wind
changes are not captured by V̂rews it is expected that a significant
error is introduced in the estimate of the blade loads using either
the estimated REWS or the tip-speed ratio in combination with
other signals.

Various linear regression models with different input combina-
tions were fitted to the measured out-of-plane root bending mo-
ments My,i. The following list contains the associated adjusted
R-squared values

• R-squared = 0.47949, βi→My,i

• R-squared = 0.48653, βi, λ̂ →My,i

• R-squared = 0.49056, βi, λ̂ , V̂REWS, ψ →My,i

• R-squared = 0.49552, βi, λ̂ , βi · λ̂ →My,i

where the notation βi → My,i denotes the mapping from some
input, such as βi, to the output data My,i. Based on the R-squared
values, the main contributing factor is the commanded pitch
angle, which was expected, since it is computed in response
to changes in wind and load conditions. Inclusion of additional
inputs, such as the estimated tip-speed ratio or REWS, has no
significant contribution towards the R-squared value. Among
the previously considered regression models, the following
structure is selected as that one having the largest R-squared

M̂y,i = b̂0 + b̂1βi + b̂2λ̂ + b̂3βiλ̂ (12)

where b̂i are the regression coefficients. Figure 2 shows a scatter
plot of how the data is distributed compared to the resulting sur-
face described by (12). Figure 3 shows the estimated blade load
in comparison with the equivalent measurement: the estimate
behaves as expected tracking the overall trend of the blade load,
but with a large error due to lack of knowledge regarding local

Fig. 2. Scatter plot of the data used for multiple linear regres-
sion, compared to the obtained model (the plane).
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Fig. 3. Estimated blade load using the regression model com-
pared to the measured blade loads (at 18m/s).
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Fig. 4. Comparison of the sampled autocorrelation function of
the residual output pre- and post-whitening.

wind speed, which contains information of the rapid and local
changes.

Based on the results from the linear regression, the i-th residual
for the i-th blade load sensor is generated as follows

ri =My,i,m−M̂y,i =My,i,m−
(

b̂0 + b̂1βi + b̂2λ̂ + b̂3βiλ̂

)
. (13)

Since the proposed method relies on the pitch angle and the
estimated tip-speed ratio, a fundamental limitation is that the
residual is only valid within the full-load region since for V <
Vrated pitch control typically ceases.

3.2 Statistical change detection

The design of a condition monitoring system for the blade load
sensors is now pursued based on statistical change detection
methods and, specifically, the GLRT framework. A fundamen-
tal assumption for the development of GLRT-based algorithms
is that the residual should be Independent and Identically Dis-
tributed (IID) stochastic sequence. The correlation analysis per-
formed on the residuals generated from (13) shows a significant
deviation from the whiteness condition. A whitening filter con-
sisting of an ARMA process is therefore designed and applied
to the residuals. The correlation structure of ri before and after
whitening is shown in Fig. 4. Once whitened, an appropriate
distribution for the residual must be determined. Figure 5 shows
a fit of the normal, logistic and t-LocationScale cumulative dis-
tribution functions (CDFs) to the whitened residual. Visually,
the t-LocationScale distribution is a better approximation for
the residual than the Gaussian, since its heavy tails capture
the data in low and high ends of the value range. P-values
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Fig. 5. Fitting distributions to the whitened residual output.

for the whitened residuals were calculated for the Gaussian
(p = 0), logistic (p = 0.1417) and t-LocationScale distributions
(p = 0.7851), using the Kolmogorov-Smirnov test at 5% signif-
icance. The test clearly rejects the hypothesis that the given data
is Gaussian; on the other hand the t-LocationScale distribution
has the largest p-value, confirming that this distribution is a
better fit overall. The probability density function of the t-
LocationScale distribution is given by

f (x; µt ,σt ,νt) =
Γ

(
νt+1

2

)
σt
√

νtπΓ
(

νt
2

)
νt +

(
x−µt

σt

)2

νt


−
(

νt+1
2

)

(14)
with Γ(·) being the gamma function, µt the location parameter,
σt > 0 the scale parameter and νt > 0 the shape parameter.
The mean of the distribution is equal to the location parameter,
whereas the variance is described as

var = σ
2
t

νt

νt −2
(15)

A parameter study was carried out for non-faulty and faulty
data to assess which parameters of the distribution are most
informative about the considered faulty conditions. As shown
in Fig. 6, the multiplicative fault has a clear impact on the
mean value of the t-LocationScale distribution, whereas the
standard deviation does not provide a distinct change between
non-faulty and faulty cases. The shape parameter νt remains
approximately constant for all cases. Due to the wide range
of wind speeds and the stochastic nature of the wind fields,
the plots represent the average value of the parameters for a
given experiment. Based on this analysis, the monitoring of the
blade load sensors is pursued by designing three independent
fault detection systems (one for each residual) based on the
GLRT algorithm for the t-LocationScale distribution assuming
changes of only the location parameter.

Windowed t-LocationScale GLRT. The samples in each of
the residual outputs ri(k) are assumed to be described by the
t-LocationScale distribution r : r1, . . . ,rk ∼Tiid(µt ,σt ,νt). The
detection problem is to decide within a given time window M
between the null hypothesis H0 and alternate hypothesis H1,
which are defined as follows,

H0 : µ = µ0, for ri(k), k−M+1≤ i≤ k
H1 : µ 6= µ0, for ri(k), k−M+1≤ i≤ k

where µ0 is the location parameter of the residual distribution
in the nominal case. The detector decides the H1 condition if
the following likelihood ratio is larger than the threshold γ

LG(r) =
T (r; µ̂,H1)

T (r; µ0,H0)
> γ (16)
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where µ̂ is the maximum likelihood estimate of the location
parameter under the hypothesis H1, and γ is the test threshold
for a desired probability of false alarms. Taking the natural log
of both sides of (16) the following decision function is obtained

g(k) =
(
−ν0 +1

2

) k

∑
i= j

{
ln

[
1+

1
ν0

(
ri− µ̂

σ0

)2
]

− ln

[
1+

1
ν0

(
ri−µ0

σ0

)2
]}

> γ ′ (17)

where γ ′= lnγ and (σ0,ν0) are the scale and shape parameters
of the t-LocationScale distribution which are invariant across
the two hypotheses.

4. SIMULATION

4.1 Simulation framework

All simulations are performed using FASTv8 (NREL [2019])
and are driven by non-uniform stochastic wind fields generated
by TurbSim (Jonkman [2009]). The considered wind speed
range is only within the full-load region, with speeds of approx-
imately 16-22m/s. The considered wind turbine is the NREL
5MW reference wind turbine defined by Jonkman et al. [2009],
where an external controller is required in order to simulate
the reference turbine with IPC using FAST. Mulders and van
Wingerden [2018] developed the Delft Research Controller
(DRC), which provides IPC functionality to FAST. An expan-
sion to the DRC was then developed, in order to provide the
ability to inject faults into the control loop.

4.2 Choice of threshold

The decision function output during nominal operation is in-
vestigated, in order to choose a suitable threshold (γ ′). Figure 7
compares four ensembles of mean wind conditions to their
respective Generalized Extreme Value (GEV) distribution fits,
with 16m/s being the worst case and, therefore, the considered
fit for the threshold computation. It is desired that a significant
amount of time passes between false alarms, which in this case
is selected as >12 months, which results in a probability of
false alarm PFA = 10−8 and a threshold of γ ′ = 5.4858. Due to
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Fig. 7. Probability plot of the decision function under H0
for four mean wind speeds conditions, with estimated
parameters for the Generalized Extreme Value (GEV)
distribution.

the small change in location encoutered during the parameter
study, a sufficiently large windows size of M = 62000 samples
is selected in order to ensure detection of a given fault.

4.3 Simulation results

Figure 8 details the occurrence of a multiplicative fault of
0.95, which shows the decision function clearly detecting the
fault. Given a situation with multiple multiplicative faults of
different magnitudes occurring simultaneously (Fig. 9), the
detection scheme clearly captures the two faults. However,
part of the performance envelope from the second non-faulty
residual also reaches the threshold. This happens due to the
residuals being designed as three independent quantities, with
their probability of detection and false alarms being considered
on a single fault basis. It is also expected due to the fundamental
construction of the IPC and residual generators. Since any fault,
to some extent, will propagate into each all residuals, because
all three measured loads contribute to the virtual Mtilt and
Myaw moments, which are used to compute the pitch angles.
To prevent this issue, the blade load estimation scheme must
be independent from the pitch angles. Table 1 showcases the
performance of the chosen detection scheme, subject to a fault
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Fig. 8. Performance envelope of gi(k) during 40 randomly
generated wind scenarios within the full load region, with
a multiplicative of 0.95 fault occurring at t = 650s.
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Table 1. Time to detect (td) performance in seconds

Min Max Mean Std

g(k) (0.95) 54 383 220 67
g(k) (1.05) 153 325 251 42

of magnitude 0.95 or 1.05. With a windows size equal to
650s, all the faults in the considered scenarios are comfortably
detected.

5. CONCLUSIONS

A scheme for condition monitoring of blade load sensors for
single-rotor wind turbines in the full-load region was presented
in this paper. The advantage of the proposed method compared
to previous approaches pertains to removing the assumption
of available local wind speed measurements or scenarios with
uniform winds. Blade load estimation was achieved via linear
regression based on the tip-speed ratio and pitch angles. Addi-
tionally, generalised likelihood ratio tests for a tLocationScale
distirbution were utilized to increase robustness of the diagnosis
algorithm w.r.t. noise. The efficacy of the proposed method was
verified through high-fidelity simulations in realistic scenarios.
The obtained results demonstrated that appropriate selection of
the window size and threshold for the GLRT can facilitate high
probability of fault detection with a low rate of false alarms.
The latter requirement was satisfied via systematic selection
of the detector threshold based on the statistical properties of
the residuals’ outputs. A possible extension of the diagnosis
scheme that will be able to differentiate between additive from
multiplicative faults will be pursued in future studies.
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