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Abstract: This paper presents a novel kernel-based system identification method, which
promotes low complexity of the model in terms of the McMillan degree of the system. The
regularization matrix is characterized as a linear combination of pre-selected rank-one matrices
with unknown hyperparameter coefficients, and the hyperparameters are derived using a
maximum a posteriori estimation approach. Each basis matrix is the optimal regularization
matrix for a first-order system. With this basis matrix selection, the McMillan degree of the
identified model is upper-bounded by the rank of the regularization matrix, which in turn is
equal to the cardinality of the hyperparameters. For this reason, a sparsity-promoting prior is
chosen for hyperparameter tuning. The resulting optimization problem has a difference of convex
program form which can be efficiently solved. The advantages of the proposed method are that
the identified model has a low-complexity structure and that an improved bias-variance trade-off
is achieved. Numerical results confirm that the proposed method achieves a better bias-variance
trade-off as well as a better fit to the model compared to both the empirical Bayes method and
the atomic-norm regularization.
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1. INTRODUCTION

System identification deals with the problem of fitting a
suitable mathematical model to a given set of measure-
ment data corresponding to the input and the output of a
dynamic system (Ljung, 1999).

In recent years, starting from the seminal work of Pil-
lonetto and De Nicolao (2010), the idea of integrating
prior knowledge in the model estimation other than in
the model structure has received extensive attention (Pil-
lonetto et al., 2014). Toward this goal, the system iden-
tification problem is framed as a regularized regression
problem. The role of the regularization term is to impose
a penalty on the feasible solutions which are not consis-
tent with the prior knowledge. This prior knowledge can
include various desired features of the model including
the stability and the smoothness of the impulse response,
the complexity of the model, the time constant and the
resonant frequency of the system, etc. (Pillonetto et al.,
2014; Chen, 2018; Marconato et al., 2016; Shah et al.,
2012). Additionally, the issue of bias-variance trade-off can
be addressed in this framework, especially when Tikhonov-
like regularizations are utilized (Pillonetto et al., 2014).

The low complexity of the model can be imposed by the
regularizer. In (Fazel et al., 2013; Smith, 2014), the rank
and the nuclear norm of the Hankel matrix are used for
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penalizing the order of systems. In (Shah et al., 2012), the
notion of the atomic transfer functions is introduced and
the atomic norm is utilized for regularization. However,
the issue of bias-variance trade-off is not completely ad-
dressed in these methods. This issue, as well as Bayesian
interpenetration of these methods, is discussed in (Chiuso,
2016; Pillonetto et al., 2016).

Recently, the idea of multiple regularization has been in-
troduced (Chen et al., 2014). It has been observed that
multiple regularization can have better performance, es-
pecially when dealing with complex systems (Chen et al.,
2014; Hong et al., 2018; Chen et al., 2018; Khosravi et al.,
2020). In these approaches, the regularization matrix is
presented parametrically in terms of basis regularization
matrices with simple structure, such as tuned/correlated
(TC) kernels (Chen et al., 2014; Hong et al., 2018) and
filters (Chen et al., 2018). The parameters in this pa-
rameterization are known as hyperparameters. A number
of approaches have been proposed in the literature to
estimate the hyperparameters, such as the empirical Bayes
(EB) method (Pillonetto et al., 2014), Stein unbiased risk
estimator (SURE) (Hong et al., 2018), cross-validation
(CV), and generalized cross-validation (GCV) (Mu et al.,
2018a,b). This process is known as hyperparameter tuning.
However, these methods are not suitable for encoding the
low-complexity feature of the model.

In this paper, a novel multiple regularization method is
proposed that promotes low-complexity system structure.
The novelty of the method is in both the design of basis
regularization matrices and the hyperparameter tuning.
The basis regularization matrices are designed to be the
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optimal regularization matrix for first-order systems. With
this design, it is shown that the complexity of the identified
model, measured by the McMillan degree of the system, is
bounded by the cardinality of the hyperparameters. Then,
the hyperparameters are estimated using a maximum a
posteriori (MAP) approach. By selecting an appropriate
prior on the hyperparameters, the MAP hyperparameter
tuning gives a sparse estimation of the hyperparameters.
This imposes the low-complexity feature on the identi-
fied model while maintaining the advantage of Bayesian
regularization in terms of a favorable bias-variance trade-
off. The resulting optimization problem has the form of
the difference of convex programs (DCP) which can be
efficiently solved. Simulation results demonstrate that the
proposed method achieves a better bias-variance trade-off,
as well as a better fit to the model, compared to existing
methods.

2. NOTATION

In this paper, the set of natural numbers, the set of
integers, the set of real numbers, the set of non-negative
real numbers, and the set of complex numbers are shown
as N, Z, R, R+, and C, respectively. The set of complex
numbers with magnitude less than one is called the open
unit disk and is denoted by D. For any z ∈ C, the
complex conjugate, the real and the imaginary parts of
z are denoted by z∗, real(z) and imag(z), respectively. Let
F be either R or C. For any 1 ≤ n ≤ ∞, the vector space
of n-dimensional vectors with entries in F is denoted by
Fn and h ∈ Fn is expressed as h = (hk)nk=1 in terms of its
entries, i.e., hk is the entry of h at kth location. The set of
n-by-m matrices with entries in F is denoted by Fn×m. The
set of n-by-n real symmetric positive-definite matrices, n-
by-n real symmetric semi-positive-definite matrices, and
n-by-n complex Hermitian semi-positive-definite matrices
are denoted by Sn++, Sn+, and Hn+, respectively. The zero
vector, the zero matrix, and the identity matrix are shown
by 0, 0, and I, respectively. The space of real-valued
signals defined over Z is denoted by RZ. The forward shift
operator, denoted by q, is an operator on the space of
signals, q : RZ → RZ, defined by (qu)t = ut+1, for any
t ∈ Z and any u ∈ RZ. For any vector x, the Euclidean
norm of x is denoted by ‖ · ‖. The support of x = (xi)

n
i=1

is defined as supp(x) = {i | xi 6= 0}. The cardinality of
x, denoted by ‖x‖0, is defined as the number of elements
of supp(x), i.e. ‖x‖0 = |supp(x)|. The trace of a matrix A
is denoted by tr(A). The expression X ∼ N (µ,Σ) means
that X is a Gaussian random vector with mean µ and
covariance Σ. The probability density functions and the
conditional probability densities are denoted by p(·) and
p(·|·), respectively.

3. REGULARIZED SYSTEM IDENTIFICATION

Consider a strictly causal and stable linear time-invariant
(LTI) single-input single-output discrete-time system. The
system can be represented with the transfer functionG0(q)
defined by G0(q) =

∑
k>0 gkqk, where (gk)k>0 is the

impulse response of the system. The stability of G0(q)
implies that the impulse response decays exponentially.
Thus, it is reasonable to truncate the infinite impulse
response at a sufficiently high order, denoted by ng ∈ N.

Accordingly, the system is approximated with a finite-
length impulse response of g = [g1, g2, . . . , gng ]T ∈ Rng .
This leads to the finite impulse response (FIR) model of
system which is defined as G(q) =

∑ng

k=1 gkqk.

3.1 Problem Statement

Define the input and the output of the system as u =
(ut)t∈Z ∈ RZ and y = (yt)t∈Z ∈ RZ, respectively. As-
sume the system is subject to independent and identically
distributed (i.i.d.) Gaussian additive measurement noise
w = (wt)t∈Z ∈ RZ, wt ∼ N (0, σ2

w),∀t ∈ Z. Then, we have

yt =

ng∑
k=1

gkut−k + wt, ∀t ∈ Z (1)

Assume the inputs and the outputs of the system are
measured at time instants t = 0, 1, . . . , nD − 1. Define D
as the set of pairs of measured input and output data, i.e.,
D = {(ut, yt) | t = 0, 1, . . . , nD − 1}. In this paper, we are
interested in the problem of identifying the FIR model of
the system given the data set D.

3.2 Prediction Error Method as an ML Estimate

For t = 0, . . . , nD − 1, define the vector ϕt as

ϕt =
[
ut−1 ut−2 . . . ut−ng

]T ∈ Rng . (2)

Here, for the sake of simplicity, it is assumed that the
input is zero before t = 0, i.e., ut = 0, for all t < 0.
According to (1) and (2), we have y = Φg + w, where
y := [y0, . . . , ynD−1]T, w := [w0, . . . , wnD−1] and Φ :=
[ϕ0, . . . , ϕnD−1]T. Since wt ∼ N (0, σ2

w), we have y −
Φg ∼ N (0, σ2

wI). Therefore, one may estimate the impulse
response based on a maximum likelihood (ML) approach
as gML = argmaxg∈Rng p(y|Φ, g), which is equivalent with

gML = argming∈Rng ‖y − Φg‖2 = (ΦTΦ)−1ΦTy. (3)

According to (3), the ML estimation of the impulse re-
sponse gML is the solution to the least squares (LS) prob-
lem equivalent to minimizing the prediction error. There-
fore, gML can also be denoted by gLS. Though the ML
estimate gML is unbiased, the variance of the estimation
can be high under high noise levels and/or the optimiza-
tion problem can be ill-posed when nD is small. These
issues can be alleviated by introducing suitable priors and
corresponding regularizers into (3) (Pillonetto et al., 2014;
Chen, 2018), as shown next.

3.3 Regularization Method as an MAP Estimate

By introducing a suitable prior for the impulse response, a
maximum a posteriori (MAP) approach can be employed
for estimating the impulse response. More precisely, one
can choose an appropriate matrix S ∈ Sng

+ and set the
prior for the impulse response as g ∼ N (0,S). Subse-
quently, the MAP estimate of g is given by gMAP =
argmaxg∈Rng p(g|Φ, y). Because y − Φg ∼ N (0, σ2

wI) and
using the prior, one can easily see[

g
y

]
∼ N

([
0
0

]
,

[
S SΦT

ΦS ΦSΦT + σ2
wI

])
. (4)

From this it follows

g|Φ, y ∼ N
(
SΦTΨ−1y,S− SΦTΨ−1ΦS

)
, (5)
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where Ψ := ΦSΦT + σ2
wI. Thus, the MAP estimate gives

gMAP = SΦTΨ−1y. (6)

Let the singular value decomposition of S be given as

S = [U1 U2]

[
S1 0
0 0

] [
UT

1

UT
2

]
, (7)

where S1 is a diagonal matrix with positive diagonal
entries. We have that gMAP is the unique solution of the
following regularized optimization (Chen et al., 2014)

gMAP = argmin
g∈Rng ,UT

2g=0

‖y − Φg‖2 + σ2
wgTU1S−11 UT

1 g (8)

Consequently, this approach can be referred as the regular-
ized system identification. The covariance matrix S, which
is also called the regularization matrix or the kernel, im-
poses desired features on the estimated impulse response
by encoding available prior knowledge like smoothness and
stability in the estimation problem. Therefore, choosing an
appropriate covariance matrix S has a significant impact
on the estimation. In this regard, a suitable parametric
family of candidate covariance matrices, S := {Sη | η ∈
E} ⊆ Sng

+ , is considered, where Sη defines the structure of
the covariance matrix and η is the vector of hyperparam-
eters and E ⊆ Rnη . Given S, the hyperparameters can be
estimated from the measurement data D.

Given a well-tuned covariance matrix, the regularization
method leads to an estimate with the desired model
structure and a satisfactory bias-variance trade-off. In this
paper, the parametric set S is parameterized as a linear
combination of a family of basis covariance matrices Si,
i.e., Sη =

∑nη
i=1 ηiSi, for all η ∈ E . This structure is

known as multiple kernel design in (Chen et al., 2014),
and covers a broad class of systems. The next two sections
deal with the following three main problems in multiple
kernel design.

What is the appropriate choice of Si? In Section 4, a suit-
able structure of basis covariance matrices Si is proposed
for estimating a model with low complexity.

What is the appropriate approach to tune ηi? In contrast to
conventional single kernel design, where hyperparameter
tuning is often conducted by non-convex optimization or
grid search since nη is small, in multiple kernel design
a high-dimensional hyperparameter tuning problem has
to be addressed. The high-dimensional problem is then
prone to high variance and computational intractability.
In Section 5, a sparse hyperparameter tuning approach
is presented with regularized MAP estimation. This ap-
proach is shown to be computationally efficient.

Why does this method induce a low-complexity estimation?
The theoretical foundation of the proposed method is
established by Theorem 1.

4. COVARIANCE DESIGN: FROM SYSTEM
COMPLEXITY TO HYPERPARAMETER SPARSITY

In real-world applications, many systems have simple
structures with low complexity. To reveal the complexity
of the system, one can model or closely approximate a
system with the following linear fractional expansion of
the transfer function

G̃(q) =

s∑
i=1

c̃i
q− wi

, c̃i 6= 0, (9)

where s corresponds to the McMillan degree of the system
and assumed to be small. Motivated by this formulation,
for any w ∈ D, define the atomic transfer function G(w),
as the following stable first-order transfer function (Shah
et al., 2012)

G(w)(q) =
αw

q− w
, (10)

where αw is a positive scalar normalizing a given system
norm ofG(w). In this paper, in line with (Shah et al., 2012),
G(w) is normalized with respect to the Hankel nuclear
norm with αw = 1 − |w|2. Correspondingly, define the
atomic impulse response g(w) as the finite impulse response
of G(w) given by

g(w) := αw[1, w, . . . , wng−1]T ∈ Cng , (11)

and the atomic covariance matrix

S(w) = g(w)
(

g(w)
)H
∈ Hng

+ . (12)

As proved in (Chen et al., 2012), when the underlying
system is exactly G(w)(q), the optimal kernel selection is
given by S(w).

One can easily see that G̃(q) given in (9) is a linear
combination of atomic transfer functions, i.e., {G(w)}w∈D
spans the space of transfer functions of the form given in
(9).

Let nη ∈ N and W = {w1, . . . , wnη} ⊂ D be a set of nη
stable distinct poles. For real-valued systems, it is required
that for any w ∈ W, one has w∗ ∈ W. The following
structure of Sη is proposed

Sη =

nη∑
i=1

ηiS
(wi) =

nη∑
i=1

ηig
(wi)

(
g(wi)

)H
, (13)

where [η1 η2 . . . ηnη ]T ∈ Rnη+ is denoted by η. To satisfy

the constraint of Sη ∈ Sng

+ , it is noted that S(wi) =
(
S(wj)

)∗
for any wi = w∗j . So, η is constrained to satisfy

ηi = ηj , ∀i, j such that wi = w∗j . (14)

Based on this definition, we have the following theorem
which is the theoretical foundation of the method proposed
in this paper.

Theorem 1. Let ĝ be a realization sample of the impulse
response prior distribution N (0,Sη), where Sη satisfies
(13). Then, there exists c = [c1 c2 . . . cnη ]T ∈ Cnη such
that the following hold.
i) For any i, j satisfying wi = w∗j , we have ci = c∗j .
ii) The sample realization impulse response ĝ can be
decomposed as ĝ =

∑nη
i=1 ci1{ηi 6=0}(η) g(wi).

iii) Let gc ∈ Rng be a finite impulse response which
corresponds to a transfer function, denoted by Gc and
defined as Gc(q) =

∑nη
i=1

(
ci1{ηi 6=0}(η)

)
G(wi)(q). Then,

one has g = gc.

Corollary 2. The poles of Gc(q) is a subset of {wi | i ∈
supp(η)} and the McMillan degree of Gc(q) is less than or
equal to ‖η‖0. Therefore, any g ∼ N (0,Sη) corresponds to
a system with a McMillan degree of at most ‖η‖0.

According to Theorem 1 and Corollary 2, it can be seen
that the desired low-complexity structure of the system
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is induced by the sparsity of the hyperparameters η.
However, in order to have a favorable estimation of the
impulse response, the set W should be nearly dense in
D. Accordingly, it is advantageous to employ a large set
of basis covariance matrices. This suggests performing
sparse estimation at the level of hyperparameter tuning,
which will be discussed in the next section. Meanwhile, a
satisfactory bias-variance trade-off at the level of impulse
response estimation is maintained by utilizing the regular-
ized identification method in (8).

Remark 3. This characteristic differs from the atomic-
norm regularization in (Shah et al., 2012), where l1-norm
regularization is directly imposed on the decomposition
coefficient vector c at the level of impulse response es-
timation. This direct sparsity regularization adds more
regularization to the impulse response estimation. The
atomic-norm regularization is known to suffer from high
bias as discussed in (Pillonetto et al., 2016).

5. HYPERPARAMETER TUNING: AN MAP
APPROACH

This section present a MAP approach that imposes ad-
ditional sparsity regularization for the estimation of the
hyperparameters introduced in Section 4.

5.1 MAP Estimation of Hyperparameters

Define set I+ as I+ = {i ∈ {1, . . . , nη} | imag(wi) ≥ 0}.
According to the structural constraint of Sη in (14), one
only needs to estimate ηi, for i ∈ I+. The remaining
hyperparameters are determined automatically. In this
section, with an abuse of notation, η denotes the vector
of independent hyperparameters (ηi)i∈I+ . Accordingly, nη
is the length of η.

In order to introduce an MAP estimation approach for
η, the following prior, that promotes the sparsity of the
hyperparameters η, is defined. Since the entries of η are
initially (a priori) undiscriminating and independent, the
prior of each entry of η is selected as an i.i.d. exponential
distribution (Aravkin et al., 2014). More precisely, for
any i, we have p(ηi) = λ exp(−ληi)1{ηi≥0}(ηi), where
λ > 0 is the rate parameter of the distribution. The
“hyper-hyperparameter” λ parameterizes the prior on the
hyperparameter. In this paper, λ is estimated by cross
validation. Accordingly, we have

p(η) = λnη exp(−λ
nη∑
i=1

ηi) 1{η∈Rnη
+
}(η). (15)

From (4), we know that

y|η ∼ N (0,ΦSηΦT + σ2
wI). (16)

By Bayes’ rule, one can estimate the vector of hyperpa-
rameters by MAP estimation as follows.

ηMAP = argmaxη∈Rnη p(y|η)p(η), (17)

where the denominator in the Bayes fraction p(y) is
removed due to being independent of η. From (15), (16),
(17), and the monotonicity of the logarithm function, one
can see that

ηMAP=argminη∈Rnη
+

1

2
yTΣ−1η y+

1

2
logdet Ση+λ

nη∑
i=1

ηi, (18)

where Ση = ΦSηΦT + σ2
wI.

The following proposition provides the theoretical basis for
solving the hyper-estimation problem (18) efficiently.

Propositon 4. Optimization problem (18) can be ex-
pressed as a DCP problem.

Proof. Let F,H : Rnη+ → R be defined as

F (η) =
1

2
yTΣ−1η y + λ

nη∑
i=1

ηi, H(η) = −1

2
logdet Ση. (19)

One can easily see that F and H are convex functions
and the objective function in (18) is F (η) − H(η). This
concludes the proof.

According to Proposition 4, one can obtain a stationary
point of the optimization problem (18) efficiently. In this
regard, the problem can be solved by an appropriate solver
designed for disciplined programming of DCP problems
(Shen et al., 2016), or a suitable algorithm for solving this
type of optimization problem, e.g. Yuille and Rangarajan
(2002). Here, the latter approach is applied which is es-
sentially a majorization minimization (MM) algorithm and
solves the problem using a sequential convex programming
scheme. In detail, a majorization function J : Rnη+ ×
Rnη+ → R can be defined, if we have

J(η, η) = F (η)−H(η), ∀η ∈ Rnη+ , (20)

J(η, γ) ≥ F (η)−H(η), ∀η, γ ∈ Rnη+ . (21)

Following this, the method solves the problem iteratively
using the following procedure

η(k+1) = argminη∈Rnη
+
J(η, η(k)). (22)

Here, the majorization function is defined by replacing
H(η) with its linearization at γ in the objective function.
Then, constraints (20) and (21) are satisfied due to the
convexity of H(η). More precisely, we have

J(η, γ) := F (η)−H(γ)−∇γH(γ)T(η − γ), (23)

where

∇ηiH(η) = −1

2
tr
(

Σ−1η ΦS(wi)ΦT
)
. (24)

Note that the term H(γ) does not depend on the opti-
mization variable η and can thus be removed.

The hyperparameter tuning procedure, by solving the
MAP estimate (18) with the MM algorithm, is summarized
in Algorithm 1. Then, the FIR model is identified by (6)
with S = SηMAP .

5.2 Empirical Bayes and Regularized Empirical Bayes

In the empirical Bayes method (Chen et al., 2014), the hy-
perparameters are estimated by maximizing the marginal
likelihood, i.e., ηEB = argmaxη∈Rnη

+
p(y|η). Note that

there is an implicit prior on the hyperparameters, which
is η ∈ Rnη+ . The method is essentially a ML approach
which is also known as type-II maximum likelihood (Good,
1966). The empirical Bayes method performs well when
the number of hyperparameters is not large and the data
set is not significantly small or noisy. However, as dis-
cussed in Section 4, here a considerably large number of
hyperparameters are to be estimated . In this situation,
the solution of the empirical Bayes method is prone to
high variance. Consequently, it is preferable to employ the
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Algorithm 1 MAP-based hyperparameter tuning

1: Input: y,Φ,W
2: Calculate S(w), for w ∈ W (see (12) and (11)).
3: k ← 0, initialize η(0).
4: while stopping condition is not met do
5: Calculate ∇η(k)H(η(k)) (see (24)) and
6: From (19) and (23), set the function J as

J(η, η(k)) = F (η)−∇η(k)H(η(k))(η − η(k)).
7: Solve convex optimization problem

η(k+1) = argminη∈Rnη
+
J(η, η(k)).

8: k ← k + 1.
9: end

10: Output: ηMAP = η(k)

MAP approach, especially when the prior knowledge on
the sparsity of the hyperparameters is available.

From (16), one can see that

ηEB = argminη∈Rnη
+

1

2
yTΣ−1η y +

1

2
logdet Ση. (25)

The difference between (18) and (25) is a single term in the
objective function, i.e., λ

∑nη
i=1 ηi, which comes from the

sparse prior. In fact, this term performs a regularization on
the estimation of the hyperparameters and subsequently
improves the bias-variance trade-off. Therefore, one can
alternatively call ηMAP as the solution of the regularized
empirical Bayes estimation and denote it by ηREB.

One should note that the empirical Bayes method may also
induce sparsity in the estimation of the hyperparameters
in a high-dimensional setting. This is due to the implicit
prior of non-negative η. However, the induced sparsity
is governed by the data rather than assumed prior, and
thus can be noise-dependent. In the method proposed
here, the sparsity is governed by the prior knowledge (low-
complexity in this case) of the system. As a consequence,
the estimation encodes more system-dependent features
comparing to the empirical Bayes method, which makes
it more robust with respect to measurement noise. Here,
the sparsity of the estimator is controlled by the rate
parameter λ. Meanwhile, one can still obtain the empirical
Bayes estimate by setting λ = 0.

6. NUMERICAL RESULTS

In this section, the proposed sparse hyperparameter tun-
ing method is compared to other existing regularization
formulation with the atomic structure. For the baseline
performance, the least squares method without regular-
ization and the well-known first-order stable spline kernel,
also known as the TC kernel, introduced in (Chen et al.,
2012) are also compared. Note that these two methods do
not estimate a low-complexity model. Specifically, the fol-
lowing five identification schemes are compared. The least
squares method (LS ) corresponds to the estimate gML in
(3). The system is also identified with a TC kernel (TCK )
regularization. The hyperparameters are selected by the
empirical Bayes method with a non-convex optimization.
This is also the defaulted identification method used in
the Matlab command impulseest. The atomic-norm
method (Atom) applies the atomic-norm regularization
proposed in (Shah et al., 2012). Atom applies a set of

atomic transfer function characterized by the poles wi = r·
ejφ, where φ = [0 : π/15 : π] in the Matlab notation.
The magnitude r is in a 15-point logspace grid of base 106

between 0.8 and 1 to obtain a denser grid near r = 1. The
empirical Bayes method (EB) uses the hyperparameter
estimation scheme (25) introduced in (Chen et al., 2014)
without explicitly exploiting the sparse kernel structure.
The regularized empirical Bayes method (REB) refers to
the method proposed in this paper (Algorithm 1). Both
EB and REB regularize the problem with the first-order
kernel set S paramerized by (13) with the same set of poles
as Atom. This gives a total of nη = 240 kernels.

To highlight the characteristics of the bias-variance trade-
off in these methods, numerical simulations are conducted
on a benchmark system under i.i.d Gaussian noise of three
different levels (σ2 = 0.1, 0.01, 0.001) with 150 different
noise realizations each. The transfer function of the chosen
fourth-order discrete-time LTI system is

G(z) =
z3 + 0.5z2

z4 − 2.2z3 + 2.42z2 − 1.87z + 0.7225
(26)

which is one of the benchmark systems tested in (Pil-
lonetto and De Nicolao, 2010). The input to the system
is Gaussian with u(t) ∼ N (0, 1). The length of the identi-
fication data is nD = 150 and the order of the FIR model
is ng = 50. For EB and REB, the noise variance σ2 is esti-
mated from the variance of the residuals in LS. For Atom
and REB, the weighting of the l1-norm regularization and
the rate parameter λ are cross-validated over a five-point
grid of logspace(0,4,5) and logspace(-1,1,5) in the
Matlab notation, respectively. The DCP optimization
problem in REB is solved by a fixed number of five it-
erations.

First, the fitting performance of the five methods are
compared in Fig. 1 using box plots. The fits of the
estimates are defined as

W = 100×

(
1−

[∑ng
i=1(gi − ĝi)2∑ng
i=1(gi − ḡ)2

]1/2)
, (27)

where gi are the true impulse response coefficients, ĝi are
the estimated coefficients, and ḡ is the mean of the true
coefficients.

LS TCK Atom EB REB
70

80

90

100

F
it 

[-
]

(a) σ2 = 0.01

LS TCK Atom EB REB
90

92

94

96

98

100

F
it 

[-
]

(b) σ2 = 0.001

Fig. 1. Comparison of fitting performance under different
noise levels. The last three methods estimate a low-
complexity model with atomic structure.

As can be seen from Fig. 1, REB achieves the best fitting
performance at all three noise levels. Compared to REB,
the performance of EB is poor under the high noise level,
whereas Atom and TCK perform worse under the low
noise level. In all three cases, LS fails to achieve a good
performance without regularization. Furthermore, the bias
and the variance of the estimates are calculated in Table 1.
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It can be seen, as discussed in (Pillonetto et al., 2014), that
the bias-variance trade-off is controlled by the amount of
regularization imposed. The mean square error (MSE) of
LS is dominated by the variance since no regularization is
imposed. Note that there is an inherent bias induced by
the impulse response truncation. Atom, conversely, induces
the highest amount of bias with l1-norm regularization.
The proposed method REB imposes more regularization
than EB with an additional sparsity regularization in hy-
perparameter tuning, but less regularization compared to
the direct sparsity regularization on the impulse response
estimation as in Atom. This characteristic leads to an
appropriate balance in terms of the bias-variance trade-
off as can be seen from the MSE values. This result agrees
with the discussion in Remark 3 and Section 5.2.

Table 1. Bias-variance trade-off

LS TCK Atom EB REB

σ2 = 0.01

Bias2 [×10−4] 1.6 8.5 11.2 5.6 8.4

Var [×10−4] 61.0 23.6 17.1 20.8 12.3

MSE [×10−4] 62.6 32.1 28.3 26.4 20.8

σ2 = 0.001

Bias2 [×10−4] 0.15 0.96 1.24 0.37 0.68

Var [×10−4] 6.23 3.79 2.97 2.98 2.52

MSE [×10−4] 6.38 4.75 4.21 3.35 3.20

7. CONCLUSIONS

In this paper, we have presented a novel regularized sys-
tem identification method using a low-complexity kernel
design. The main characteristic of the proposed approach
is that it promotes low complexity in terms of the McMil-
lan degree of the identified system with a satisfactory
bias-variance trade-off. In this method, the regularization
matrix is framed as a linear combination of low-rank
matrices with unknown coefficients as hyperparameters,
which are then estimated using an MAP approach with
a sparse prior. This design upper-bounds the McMillan
degree of the identified model with the cardinality of the
hyperparameters. The hyperparameter tuning problem is
formulated as a difference of convex programming problem
which can be efficiently solved to a local minimum. Numer-
ical experiments confirm the effectiveness of the proposed
approach, in terms of a better bias-variance trade-off as
well as a better fit to the model comparing to both the
empirical Bayes method and the atomic-norm regulariza-
tion.
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