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Abstract: At the Volvo Truck assembly plant the repetitive task of nut tightening is not ideal regarding 

quality and ergonomic. The solution to both these issues would be to significantly increase the level of 

automation. However, automating this specific station requires solutions to two specific problems. The 

first problem is to find and identify what nuts that need to be tightened, since they are not always on the 

same position for this highly customized product. The second problem is that the automated solution 

needs to accommodate the working space which is a moving assembly line with human operators. This 

paper investigates how these two problems ban be solved using machine learning and collaborative 

robots. A realistic mockup of the assembly station has been created at Stena Industry Innovation 

Laboratory (SII-Lab) where all the testing has been done. 

The problem to identify the nuts to tighten is further complicated by the fact that some nuts are placed 

backwards for future further assembly which must be avoided. Therefore, the selected solution is to use 

supervised machine learning for object recognition. This way, the system can be trained to recognize both 

nuts that need to be tightened and those mounted backwards, and possible other objects needed. Tests 

have been conducted with different types of CNN (Convolutional Neural Network) algorithms. Results 

have been very successful, and the test setup has successfully managed to connect the whole task of 

identifying the correct nuts and move the collaborative robot to that specific position. 
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

INTRODUCTION 

In the era of industry 4.0, a lot of technology is available in 

order to achieve higher productivity, improve ergonomics 

and increase quality. Between 2003 and 2009 forty-nine 

different technologies were presented in the Gartner hype 

curve of evolving technologies which have built the 

foundation towards industry4.0. In 2017, nine developing 

technologies were presented (Bortolini et al., 2017). Cohen 

et. al (Cohen et al., 2019) divide the technologies further into 

software and hardware. Usually there is a mix between these 

technologies in order to achieve a good result. This paper 

there will bring up examples of machine learning and object 

recognition and collaborative robot application.  

Machine learning can be described as “a cluster of statistical 

and programming techniques that give computers the ability 

to ‘learn’ from exposure to data, without being explicitly 

programmed” (Sag, 2019). Object detection is a computer 

vision technique that tries to solve the problems of both 

object classification and object localisation. A successful 

approach for these problems has been to utilise a machine 

learning approach with Convolutional Neural Networks 

(CNN) (Krizhevsky et al., 2012). 

Collaborative robot application are industrial robots that are 

designed to work along humans in various levels of 

interaction (Bauer et al., 2016) i.e.  coexistence, 

synchronized, cooperation, and collaboration. Coexistence 

means that there is no shared workspace at all. In a 

synchronized application, the human and robot share the 

same workspace but never at the same time. Cooperation 

means that they do work in the same workspace at the same 

time but not with the same component. A true collaborative 

application is when robot and human both do work at the 

same time with the same component. 

Collaborative robots are an integral part of future intelligent 

production systems that allows smaller lot sizes and increased 

productivity (Rüßmann et al., 2015). 

This paper presents the results of the experiment setup and 

discusses the results in terms of feasibility of implementing a 

live application. 

OBJECT DETECTION USING MACHINE LEARNING 

A neural network is a common machine learning approach 

where the input is propagated through layers of connected 

neurons. How these neurons are connected are decided by 

weighted values that are decided though training of the 

algorithm. Since using every pixel from the images as direct 

input for fully connected neural networks would be too 

computational heavy, CNN’s consists of two separate parts: 

feature learning and classification. During feature learning a 

small part of the image is filtered and simplified and the 

result consists of several small feature maps. These feature 
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maps are then flattened and sent though fully connected 

neural network to classify what the features represent. 

There are three different strategies when training machine 

learning agents: unsupervised learning, reinforcement 

learning, and supervised learning. In unsupervised learning 

the agents gradually detect patterns in the input data and 

forms potentially useful clusters. Reinforcement learning 

means that the agent is “rewarded” or “punished” depending 

on output value. An agent receiving supervised learning gets 

a training set containing input data and corresponding output 

values. If the output value is part of a finite set, e.g. is an 

image a dog or a cat, it is a solution to a classification 

problem. Values that are real numbers, e.g. tomorrows stock 

market, are solutions to regression problems. (Russell and 

Norvig, 2013). An early viable method is called R-CNN, 

which focus on the classification problem by dividing the 

image into many sub sections (region proposals) (Girshick et 

al., 2014). Since the number of proposals generated for each 

image can be very large, this is method is rather 

computationally heavy, but improvements in methods Fast R-

CNN (Girshick, 2015) and Faster R-CNN (Ren et al., 2015) 

have reduced the computation and training time significantly. 

It is also possible to approach the object localisation problem 

as a regression problem, which is the case for the Single Shot 

Detector (SSD) algorithm (Liu et al., 2016). For a more in-

depth view of the evolution of various approaches see (Zhao 

et al., 2019). 

To explain a complete background of the machine learning 

and computer vision concepts touched upon during this 

experiment is beyond the scope. Table 1 constitutes a 

description of needed concepts. 

Table 1. Computer vision and machine learning concepts. 

Concept Description 

COCO COCO (http://cocodataset.org/) stands for 

Common Objects in Context and is an image 

reference database developed by Microsoft 

(Lin et al., 2014). It consists of a large set of 

labelled images with 1.5 million object 

instances and 80 object categories. It IS used to 

train and test computer vision applications. 

OpenCV OpenCV (https://opencv.org/) is an open 

source library for computer vision applications 

(Bradski and Kaehler, 2008). 

Tensorflow Tensorflow (https://www.tensorflow.org/) is an 

open-source machine learning platform. It 

support training and execution of machine 

learning algorithms in large scale 

heterogeneous systems (Abadi et al., 2016). 

LabelImg A labelling software that allows the user to put 

label bounding boxes around objects in pictures 

to be used for supervised training (Tzutalin, 

2015). 

 

INDUSTRIAL CASE 

At one of the stations at the Volvo Truck’s assembly line the 

task is to tighten most of the previously entered nuts along 

the length of the truck frame. Each truck frame has two sides 

with nuts that need tightening. Some nuts are placed 

backwards to accommodate future components, these are not 

to be tightened. Each side contains an average of 200 nuts 

and around 30 number of inverted nuts. The truck is slowly 

moving over the assembly station during the entire tact time 

which is 5 minutes. There are two operators on each side 

working with tightening tools. They divide the frame into an 

upper and a lower level to avoid tightening the same nuts. 

This task is done by operators using a power tool and leads to 

two separate issues. One issue regards the manual task of 

moving and holding on to the tool, which is repetitive and 

unergonomic. The other issue regards to quality since it is 

possible for an operator to overlook nuts. Increasing the level 

of automation can be a solution to both these problems. The 

ergonomic issues can be solved if the automation level is 

increased to exclude the human operator from the physical 

task of moving and holding on to the tool. The quality can be 

improved if cognitive automation can identify nuts and 

remember what nuts have been tightened. 

EXPERIMENT SETUP 

During the summer of 2019 an experiment setup was created 

at Stena Industry Innovation Lab (SII-Lab) to investigate the 

possibility to utilise collaborative robots together with 

computer vision to solve above mentioned issues. It was 

decided that the computer vision system should be based on 

machine learning since previous experience with more 

traditional tools was deemed unavailing. The experiment 

setup consisted of two parts; 1) Nut detection and 2) Robot 

application the concepts are tested separately to start with and 

then an interactive process is done at the end in order to 

integrate the two concepts, illustrated in (Fig. 1). 

 

Fig. 1. Visualisation of the process of creating the proof of 

concept robot application. 

4.1 Nut Detection 

The nut detection process consisted of three parts; review of 

the field, setting up an environment, and training and testing 

of machine learning models, the results were the concepts 

presented in Table 1. Several Machine learning methods were 

evaluated. The machine learning methods that have been 
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tested are Faster R-CNN (Ren et al., 2015) and SSD (Liu et 

al., 2016).  

In terms of the environment, the real tightening tool was not 

available for the experiment setup so a mockup was created 

using additive manufacturing. Fig. 2 shows the mock-up of 

the tightening tool that also has the camera integrated. The 

camera is a regular web-camera from Logitech. 

 

Fig. 2. Mockup of the tightening tool with camera attached to 

it. 

Training and testing were an iterative process, but each 

iteration is like the other. Supervised training requires 

labelled images. Therefore, several images of the Truck 

Frame with nuts and inverted nuts was taken and labelled 

using LabelImg (Tzutalin, 2015). For Faster R-CNN the 

resolution of the images was 800x600 and for SSD it was 

300x300. The images were all taken perpendicular to the 

Truck Frame, illustrated in Fig. 3. 

 

Fig. 3. Positions of the nuts are calculated using the distance 

to the truck frame and the field of view of the camera. 

An important part of the robot application is to translate 

detected nuts in a two-dimensional image into the 

corresponding three-dimensional space. This was calculated 

using the known field of view of the camera and the distance 

between the camera and the frame. (Fig. 3). 

 

4.2 Robot application 

The robot application process is also divided into three parts; 

Creating a mock-up of the nut tightening tool, 

Implementation of robot programming and then integration of 

the detection result. needed to be created. After that, with 

valuable input from how the nut detection environment looks 

like, a concept of the robot implementation could be created 

including software, hardware and scope of the application. 

The robot that is used for the implementation is a Sawyer 

from Rethink Robotics. the experiment setup (see Fig. 4) has 

some differences from the real assembly line. The truck 

frame is smaller and contains fewer other components, but 

the nuts and bolts are the same. The lighting conditions have 

not been measured but the experiences are similar. The frame 

is fixed while on the real assembly line the truck frame is 

slowly moving on a paced line. 

 

Fig. 4. Robot application with truck frame at SII-Lab. 

The ROS platform was used to communicate with the robot. 

Since ROS is installed on a Linux platform and Windows 

was used for the Tensorflow application, the software part of 

the robot application is setup using the client server approach. 

All the software is crated using the Python programming 

language. 

Interactive process 

Then an iterative process of integration took place where the 

application was improved in parallel to when improved 

models was trained. The implementations have been done 

using Tensorflow (Abadi et al., 2016). In the TensorFlow 

framework, training is setup in configuration files and the 

most common approach is to utilise a premade Tensorflow 

sample file. The configuration files 

“faster_rcnn_inception_v2_pets.config” and 

“ssd_mobilenet_v2_coco.config” was used for training the 

algorithms, which are originally optimised for parts of the 

COCO data set. 
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Fig. 2 shows the architecture of the robot application. A 

client handles the communication with the camera, takes 

pictures using the Open CV platform, and runs those pictures 

through the object detection algorithm with the help of 

Tensorflow. The client calculates the real location of the 

detected nuts and sends those to the server application which 

tells the robot to move to the position through ROS. The 

computer hardware used for the client application, that runs 

the Tensorflow platform, is just a normal computer and it 

does not utilise the GPU for computer vision tasks. 

  

Fig. 2. Schematic picture of the robot application. 

Training of an algorithm prints a result that includes a 

prediction of how well it performs. However, since the 

different training procedures did not use the same pictures for 

training and testing, the results were difficult to compare. 

Therefore, a separate hit rate test was done. In this test, 10 

images were taken with seven nuts, seven inverted nuts, and 

two empty bolts in each image. This gives a total of 140 

objects that we sent through each of the created algorithm. 

The hit rate is calculated by removing any missed or 

misidentified object, meaning that finding six or eight objects 

out of the correct seven result in the same hit rate of 85,7%. 

When the algorithm detects nuts and inverted nuts correctly. 

Fig. 3. Shows the result of a correct executed object detection 

Nuts and inverted nuts are identified and boxed in different 

colours. 

 

Fig. 3. Result of a correctly executed object detection.  

RESULTS 

Table 2 shows a summary of the four algorithms that was 

trained and tested, two using SSD and two using Faster R-

CNN. 

Table 2. Summary of the different algorithms trained and 

tested including total number of images and objects. 

Test Algorithm #images #Nuts #Inverted Nuts 

1 SSD 119 176 174 

2 SSD 141 239 210 

3 Faster R-CNN 124 353 128 

4 Faster R-CNN 322 928 568 

 

Table 3 shows the result from the hit rate test that tests each 

algorithm against 140 objects over 10 images. The hit rate 

varies between 81,4% and 97,1% for the nuts and 67,1% and 

95,7% for the inverted nuts. The time it takes to run the SSD 

algorithm is about half compared to Faster R-CNN. 

Table 3. Result from the hit rate test. 

Test Hit Rate 

Nut 

Hit Rate 

Inverted Nut 

Hit Rate 

Combined 

Detection 

Speed 

1 97,1% 37,1% 67,1% 2,02 s 

2 81,4% 71,4% 76,4% 1,94 s 

3 81,4% 81,4% 81,4% 4,45 s 

4 95,7% 95,7% 95,7% 4,49 s 

DISCUSSION 

The purpose of the experiment setup was to investigate the 

possibility to automate the nut tightening task using 

collaborative robots. The results show, despite reduced 

complexity of the setup, that a successful implementation at 

the assembly is very attainable. The reasons for that 

assessment are based on x, y, and z. 

Nut Detection using CNN 

As can be seen in Table 3 and Table 2, the hit rate of the 

machine learning algorithms are, not surprisingly, highly 

dependant on the number of objects that was available during 

training. The type of algorithm used does play some factor, 

but this experiment lacks the data to be conclusive. Table 3 

also shows that SSD is faster than Faster R-CNN, again, this 

was something already known. The trade off between speed 

and accuracy of machine learning approaches makes 

choosing the correct approach rely on the specific 

requirements of the application (Huang et al., 2017). 

Test 4 reached the highest accuracy with a total hit rate of 

95,7%. This is a significantly higher number than the 35,7% 

of mean accuracy found in a systematic comparison test 
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(Huang et al., 2017). That comparison is however based on 

the COCO data set and tires to detect many objects of various 

sizes and shapes. It is much easier to optimise an algorithm to 

only detect specific objects (Jiang and Learned-Miller, 2017). 

It is at this stage difficult to say what is possible in terms of 

accuracy but initial tests (see Table 3) are promising in terms 

of quality. 

Speed of the object detection is not very relevant for this 

implementation. The results show a very low detection speed 

compared to other measures (Huang et al., 2017) and 

especially for the regression based methods (Liu et al., 2016). 

The difference is mostly because this test did not include 

GPU acceleration for any of the heavy calculation that 

computer vision is. Either way, the seconds that the image 

processing might add is insignificant compared other aspects 

such as robot movement and nut tightening tool. 

Tensorflow (Abadi et al., 2016) was used for the 

implementation. It was not a difficult choice since it is the 

most popular open source platform for machine learning 

applications. However, it was not problem free. A large 

amount of time went into trying to find the correct versions of 

the different packages and software needed to create a 

functional application. This shows that implementing 

machine learning applications today has ha rather steep initial 

learning curve. There are also several other frameworks to 

look into (Shatnawi et al., 2018, Bahrampour et al., 2015). 

Robot Application 

The speed of the robot is hard to draw credible conclusions 

around because of the missing time for the tightening of the 

nuts. When the tool is available for testing the real speed for 

the session can be evaluated. But with illustration of the 

robot’s movement we can draw the conclusion that the 

accuracy was good enough, which implies that the robot 

surrounds the nut with the tool without unwanted collision 

with the frame or the objects. There is a need to meet 1,5 

seconds as average time spent on each nut with one working 

robot (to meet the maximum amount of 200 nuts per side). 

So, one solution is either having more robots working 

alongside, having a faster robot or having collaboration with 

humans.  

Regarding the camera application, the camera’s position 

potentially affected the results. The camera was mounted on 

the tool of the robot (Fig. 2), and therefore required the robot 

to move to a certain home position for each new image that 

needed to be taken by the camera. Thus, potential time losses 

in the overall speed per nut may occurred. Instead, if a fix 

camera mounted besides the robot was implemented, it 

wouldn’t require the robot to move to a certain home position 

the for next image to be taken. Further, the camera wouldn’t 

be limited to be near the robot; a camera implemented at an 

earlier station at the production line could provide the 

necessary images for the object detection and coordinates 

could further be delivered to the robot. However, a such 

system may require extra sensors to locate the frame in 

relation to the robot, which this project didn’t investigated. 

The communication between the robot and the different 

settings could be more efficient. One of the problems is the 

hardware without the possibility to utilise a GPU booster. 

The system in control of the translation of positions are as 

mentioned in as ROS. It is hard to compare between other 

systems when no further tests in that regard have been 

executed. The good thing is that the environment of the robot 

application shows that it’s fully applicable to use ROS in this 

regard.  

This project was performed in a laboratory environment 

which may entail differences with the real implementation. 

Additionally, some important aspects will therefore be 

discussed. First, the frame in the laboratory is fixed compared 

with the real environment where it moves horizontally on a 

conveyor. This should be taken into consideration for further 

implementation, and moreover the conveyor may not have 

consistent speed, due to e.g. minor stops on the production 

line, which put certain requirements on the flexibility of the 

robot application to handle a likewise situation. As a second 

aspect, the frame at the conveyor may be inconsistent in its 

placement regarding height and angels in relation to the 

robots coordinate system. This potential situation could not 

occur in the laboratory, since the frame was fixed in the 

laboratory. Therefore, there were no need for calibration of 

the robot camera in each new object detection session. 

Additionally, the real implementation would require some 

sort of sensors to locate the centre of the beam of the frame 

and adjust the camera to be orthogonal to the beam in that 

height. On the other hand, a different approach on solving 

this issue is discussed further down in this chapter. 

Finally, a third aspect that needs to be taken into 

consideration for a real implementation is the potential 

objects located on the frame that might hinder the camera 

from partly or entirely capture some nuts, and therefore affect 

the object detection accuracy. This is something that will be 

considered when using the pilot testing at Volvo Trucks, 

since the real environment there have more objects than the 

ones seen in Figure 5. As Jiang and Learned-Miller (2017) 

mentioned, it’s easier to optimise specific objects and not 

different objects with various sizes and design. Additionally, 

with the right amount of training and the same objects comes 

mounted on the frame, it can be possible to reach acceptable 

recognition level for automation. It will be harder to achieve 

if different objects occur on the frame that not been included 

in the training session.  

The project was limited to the use of a camera mounted on 

the robot, which further was placed perpendicular in a certain 

distance to the frame for each new image. However, this 

could have been made differently by using live object 

detection via video stream, rather than analysis of a single 

image. A such system would entail for opportunities to let the 

robot search for nuts on the frame and not be limited to a 

perpendicular setting. Instead, the robot could systematically 

screen the frame from one end to the other, and 

simultaneously tighten the nuts passed by. Further, this could 

lead to a more flexible and robust system, since the robot 

wouldn’t require calibration and be dependent on the distance 

and angles to the frame. Nevertheless, this project used 
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hardware that limited the testing to object detection on 

images rather than video stream in real time. In addition to 

that, a real time system as described above should require 

hardware capable of video stream detection with at least 

several frames analysed per second. 

CONCLUSIONS 

The first step to achieve higher automation for Volvos’ nut 

tightening station is seen as successful. The degree of 

recognition for both objects reach up to 95,7% with Faster R-

CNN (see Table 3), which is acceptable if humans acts as 

supervisors for the missed nuts. This was achieved with only 

322 images, consisting of 928 nuts and 568 inverted nuts 

(Table 2). Further work with this project includes more 

pictures and better hardware for the training and execution. 

Also starting with a pilot tests at Volvo Trucks regarding 

pictures from the real environment and tools to be applied for 

the tightening of the nuts. As discussed, the environment for 

the experiment is not fully comparable to the station at 

Volvo. The primary aim with the experiment was to 

understand the interactive process between tor robot 

application and nut detection which have been showed. 

Other aspects such as safety between robot and operator 

needs to be further investigated before the implementation 

can be tested and implemented in industry. Furthermore, 

technical and semantic interoperability needs to be tested. 
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