

Automating nut tightening using Machine Learning

Kevin Wedin*, Christoffer Johnsson*, Magnus Åkerman*,

Åsa Fast-Berglund*, Viktor Bengtsson* and Per-Anders Alveflo**


*Chalmers University of Technology, SE-412 96

**Volvo Trucks Cooperation

Abstract: At the Volvo Truck assembly plant the repetitive task of nut tightening is not ideal regarding

quality and ergonomic. The solution to both these issues would be to significantly increase the level of

automation. However, automating this specific station requires solutions to two specific problems. The

first problem is to find and identify what nuts that need to be tightened, since they are not always on the

same position for this highly customized product. The second problem is that the automated solution

needs to accommodate the working space which is a moving assembly line with human operators. This

paper investigates how these two problems ban be solved using machine learning and collaborative

robots. A realistic mockup of the assembly station has been created at Stena Industry Innovation

Laboratory (SII-Lab) where all the testing has been done.

The problem to identify the nuts to tighten is further complicated by the fact that some nuts are placed

backwards for future further assembly which must be avoided. Therefore, the selected solution is to use

supervised machine learning for object recognition. This way, the system can be trained to recognize both

nuts that need to be tightened and those mounted backwards, and possible other objects needed. Tests

have been conducted with different types of CNN (Convolutional Neural Network) algorithms. Results

have been very successful, and the test setup has successfully managed to connect the whole task of

identifying the correct nuts and move the collaborative robot to that specific position.

Keywords: Machine learning, assembly, collaborative robot.



INTRODUCTION

In the era of industry 4.0, a lot of technology is available in

order to achieve higher productivity, improve ergonomics

and increase quality. Between 2003 and 2009 forty-nine

different technologies were presented in the Gartner hype

curve of evolving technologies which have built the

foundation towards industry4.0. In 2017, nine developing

technologies were presented (Bortolini et al., 2017). Cohen

et. al (Cohen et al., 2019) divide the technologies further into

software and hardware. Usually there is a mix between these

technologies in order to achieve a good result. This paper

there will bring up examples of machine learning and object

recognition and collaborative robot application.

Machine learning can be described as “a cluster of statistical

and programming techniques that give computers the ability

to ‘learn’ from exposure to data, without being explicitly

programmed” (Sag, 2019). Object detection is a computer

vision technique that tries to solve the problems of both

object classification and object localisation. A successful

approach for these problems has been to utilise a machine

learning approach with Convolutional Neural Networks

(CNN) (Krizhevsky et al., 2012).

Collaborative robot application are industrial robots that are

designed to work along humans in various levels of

interaction (Bauer et al., 2016) i.e. coexistence,

synchronized, cooperation, and collaboration. Coexistence

means that there is no shared workspace at all. In a

synchronized application, the human and robot share the

same workspace but never at the same time. Cooperation

means that they do work in the same workspace at the same

time but not with the same component. A true collaborative

application is when robot and human both do work at the

same time with the same component.

Collaborative robots are an integral part of future intelligent

production systems that allows smaller lot sizes and increased

productivity (Rüßmann et al., 2015).

This paper presents the results of the experiment setup and

discusses the results in terms of feasibility of implementing a

live application.

OBJECT DETECTION USING MACHINE LEARNING

A neural network is a common machine learning approach

where the input is propagated through layers of connected

neurons. How these neurons are connected are decided by

weighted values that are decided though training of the

algorithm. Since using every pixel from the images as direct

input for fully connected neural networks would be too

computational heavy, CNN’s consists of two separate parts:

feature learning and classification. During feature learning a

small part of the image is filtered and simplified and the

result consists of several small feature maps. These feature

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 10426

maps are then flattened and sent though fully connected

neural network to classify what the features represent.

There are three different strategies when training machine

learning agents: unsupervised learning, reinforcement

learning, and supervised learning. In unsupervised learning

the agents gradually detect patterns in the input data and

forms potentially useful clusters. Reinforcement learning

means that the agent is “rewarded” or “punished” depending

on output value. An agent receiving supervised learning gets

a training set containing input data and corresponding output

values. If the output value is part of a finite set, e.g. is an

image a dog or a cat, it is a solution to a classification

problem. Values that are real numbers, e.g. tomorrows stock

market, are solutions to regression problems. (Russell and

Norvig, 2013). An early viable method is called R-CNN,

which focus on the classification problem by dividing the

image into many sub sections (region proposals) (Girshick et

al., 2014). Since the number of proposals generated for each

image can be very large, this is method is rather

computationally heavy, but improvements in methods Fast R-

CNN (Girshick, 2015) and Faster R-CNN (Ren et al., 2015)

have reduced the computation and training time significantly.

It is also possible to approach the object localisation problem

as a regression problem, which is the case for the Single Shot

Detector (SSD) algorithm (Liu et al., 2016). For a more in-

depth view of the evolution of various approaches see (Zhao

et al., 2019).

To explain a complete background of the machine learning

and computer vision concepts touched upon during this

experiment is beyond the scope. Table 1 constitutes a

description of needed concepts.

Table 1. Computer vision and machine learning concepts.

Concept Description

COCO COCO (http://cocodataset.org/) stands for

Common Objects in Context and is an image

reference database developed by Microsoft

(Lin et al., 2014). It consists of a large set of

labelled images with 1.5 million object

instances and 80 object categories. It IS used to

train and test computer vision applications.

OpenCV OpenCV (https://opencv.org/) is an open

source library for computer vision applications

(Bradski and Kaehler, 2008).

Tensorflow Tensorflow (https://www.tensorflow.org/) is an

open-source machine learning platform. It

support training and execution of machine

learning algorithms in large scale

heterogeneous systems (Abadi et al., 2016).

LabelImg A labelling software that allows the user to put

label bounding boxes around objects in pictures

to be used for supervised training (Tzutalin,

2015).

INDUSTRIAL CASE

At one of the stations at the Volvo Truck’s assembly line the

task is to tighten most of the previously entered nuts along

the length of the truck frame. Each truck frame has two sides

with nuts that need tightening. Some nuts are placed

backwards to accommodate future components, these are not

to be tightened. Each side contains an average of 200 nuts

and around 30 number of inverted nuts. The truck is slowly

moving over the assembly station during the entire tact time

which is 5 minutes. There are two operators on each side

working with tightening tools. They divide the frame into an

upper and a lower level to avoid tightening the same nuts.

This task is done by operators using a power tool and leads to

two separate issues. One issue regards the manual task of

moving and holding on to the tool, which is repetitive and

unergonomic. The other issue regards to quality since it is

possible for an operator to overlook nuts. Increasing the level

of automation can be a solution to both these problems. The

ergonomic issues can be solved if the automation level is

increased to exclude the human operator from the physical

task of moving and holding on to the tool. The quality can be

improved if cognitive automation can identify nuts and

remember what nuts have been tightened.

EXPERIMENT SETUP

During the summer of 2019 an experiment setup was created

at Stena Industry Innovation Lab (SII-Lab) to investigate the

possibility to utilise collaborative robots together with

computer vision to solve above mentioned issues. It was

decided that the computer vision system should be based on

machine learning since previous experience with more

traditional tools was deemed unavailing. The experiment

setup consisted of two parts; 1) Nut detection and 2) Robot

application the concepts are tested separately to start with and

then an interactive process is done at the end in order to

integrate the two concepts, illustrated in (Fig. 1).

Fig. 1. Visualisation of the process of creating the proof of

concept robot application.

4.1 Nut Detection

The nut detection process consisted of three parts; review of

the field, setting up an environment, and training and testing

of machine learning models, the results were the concepts

presented in Table 1. Several Machine learning methods were

evaluated. The machine learning methods that have been

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10427

tested are Faster R-CNN (Ren et al., 2015) and SSD (Liu et

al., 2016).

In terms of the environment, the real tightening tool was not

available for the experiment setup so a mockup was created

using additive manufacturing. Fig. 2 shows the mock-up of

the tightening tool that also has the camera integrated. The

camera is a regular web-camera from Logitech.

Fig. 2. Mockup of the tightening tool with camera attached to

it.

Training and testing were an iterative process, but each

iteration is like the other. Supervised training requires

labelled images. Therefore, several images of the Truck

Frame with nuts and inverted nuts was taken and labelled

using LabelImg (Tzutalin, 2015). For Faster R-CNN the

resolution of the images was 800x600 and for SSD it was

300x300. The images were all taken perpendicular to the

Truck Frame, illustrated in Fig. 3.

Fig. 3. Positions of the nuts are calculated using the distance

to the truck frame and the field of view of the camera.

An important part of the robot application is to translate

detected nuts in a two-dimensional image into the

corresponding three-dimensional space. This was calculated

using the known field of view of the camera and the distance

between the camera and the frame. (Fig. 3).

4.2 Robot application

The robot application process is also divided into three parts;

Creating a mock-up of the nut tightening tool,

Implementation of robot programming and then integration of

the detection result. needed to be created. After that, with

valuable input from how the nut detection environment looks

like, a concept of the robot implementation could be created

including software, hardware and scope of the application.

The robot that is used for the implementation is a Sawyer

from Rethink Robotics. the experiment setup (see Fig. 4) has

some differences from the real assembly line. The truck

frame is smaller and contains fewer other components, but

the nuts and bolts are the same. The lighting conditions have

not been measured but the experiences are similar. The frame

is fixed while on the real assembly line the truck frame is

slowly moving on a paced line.

Fig. 4. Robot application with truck frame at SII-Lab.

The ROS platform was used to communicate with the robot.

Since ROS is installed on a Linux platform and Windows

was used for the Tensorflow application, the software part of

the robot application is setup using the client server approach.

All the software is crated using the Python programming

language.

Interactive process

Then an iterative process of integration took place where the

application was improved in parallel to when improved

models was trained. The implementations have been done

using Tensorflow (Abadi et al., 2016). In the TensorFlow

framework, training is setup in configuration files and the

most common approach is to utilise a premade Tensorflow

sample file. The configuration files

“faster_rcnn_inception_v2_pets.config” and

“ssd_mobilenet_v2_coco.config” was used for training the

algorithms, which are originally optimised for parts of the

COCO data set.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10428

Fig. 2 shows the architecture of the robot application. A

client handles the communication with the camera, takes

pictures using the Open CV platform, and runs those pictures

through the object detection algorithm with the help of

Tensorflow. The client calculates the real location of the

detected nuts and sends those to the server application which

tells the robot to move to the position through ROS. The

computer hardware used for the client application, that runs

the Tensorflow platform, is just a normal computer and it

does not utilise the GPU for computer vision tasks.

Fig. 2. Schematic picture of the robot application.

Training of an algorithm prints a result that includes a

prediction of how well it performs. However, since the

different training procedures did not use the same pictures for

training and testing, the results were difficult to compare.

Therefore, a separate hit rate test was done. In this test, 10

images were taken with seven nuts, seven inverted nuts, and

two empty bolts in each image. This gives a total of 140

objects that we sent through each of the created algorithm.

The hit rate is calculated by removing any missed or

misidentified object, meaning that finding six or eight objects

out of the correct seven result in the same hit rate of 85,7%.

When the algorithm detects nuts and inverted nuts correctly.

Fig. 3. Shows the result of a correct executed object detection

Nuts and inverted nuts are identified and boxed in different

colours.

Fig. 3. Result of a correctly executed object detection.

RESULTS

Table 2 shows a summary of the four algorithms that was

trained and tested, two using SSD and two using Faster R-

CNN.

Table 2. Summary of the different algorithms trained and

tested including total number of images and objects.

Test Algorithm #images #Nuts #Inverted Nuts

1 SSD 119 176 174

2 SSD 141 239 210

3 Faster R-CNN 124 353 128

4 Faster R-CNN 322 928 568

Table 3 shows the result from the hit rate test that tests each

algorithm against 140 objects over 10 images. The hit rate

varies between 81,4% and 97,1% for the nuts and 67,1% and

95,7% for the inverted nuts. The time it takes to run the SSD

algorithm is about half compared to Faster R-CNN.

Table 3. Result from the hit rate test.

Test Hit Rate

Nut

Hit Rate

Inverted Nut

Hit Rate

Combined

Detection

Speed

1 97,1% 37,1% 67,1% 2,02 s

2 81,4% 71,4% 76,4% 1,94 s

3 81,4% 81,4% 81,4% 4,45 s

4 95,7% 95,7% 95,7% 4,49 s

DISCUSSION

The purpose of the experiment setup was to investigate the

possibility to automate the nut tightening task using

collaborative robots. The results show, despite reduced

complexity of the setup, that a successful implementation at

the assembly is very attainable. The reasons for that

assessment are based on x, y, and z.

Nut Detection using CNN

As can be seen in Table 3 and Table 2, the hit rate of the

machine learning algorithms are, not surprisingly, highly

dependant on the number of objects that was available during

training. The type of algorithm used does play some factor,

but this experiment lacks the data to be conclusive. Table 3

also shows that SSD is faster than Faster R-CNN, again, this

was something already known. The trade off between speed

and accuracy of machine learning approaches makes

choosing the correct approach rely on the specific

requirements of the application (Huang et al., 2017).

Test 4 reached the highest accuracy with a total hit rate of

95,7%. This is a significantly higher number than the 35,7%

of mean accuracy found in a systematic comparison test

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10429

(Huang et al., 2017). That comparison is however based on

the COCO data set and tires to detect many objects of various

sizes and shapes. It is much easier to optimise an algorithm to

only detect specific objects (Jiang and Learned-Miller, 2017).

It is at this stage difficult to say what is possible in terms of

accuracy but initial tests (see Table 3) are promising in terms

of quality.

Speed of the object detection is not very relevant for this

implementation. The results show a very low detection speed

compared to other measures (Huang et al., 2017) and

especially for the regression based methods (Liu et al., 2016).

The difference is mostly because this test did not include

GPU acceleration for any of the heavy calculation that

computer vision is. Either way, the seconds that the image

processing might add is insignificant compared other aspects

such as robot movement and nut tightening tool.

Tensorflow (Abadi et al., 2016) was used for the

implementation. It was not a difficult choice since it is the

most popular open source platform for machine learning

applications. However, it was not problem free. A large

amount of time went into trying to find the correct versions of

the different packages and software needed to create a

functional application. This shows that implementing

machine learning applications today has ha rather steep initial

learning curve. There are also several other frameworks to

look into (Shatnawi et al., 2018, Bahrampour et al., 2015).

Robot Application

The speed of the robot is hard to draw credible conclusions

around because of the missing time for the tightening of the

nuts. When the tool is available for testing the real speed for

the session can be evaluated. But with illustration of the

robot’s movement we can draw the conclusion that the

accuracy was good enough, which implies that the robot

surrounds the nut with the tool without unwanted collision

with the frame or the objects. There is a need to meet 1,5

seconds as average time spent on each nut with one working

robot (to meet the maximum amount of 200 nuts per side).

So, one solution is either having more robots working

alongside, having a faster robot or having collaboration with

humans.

Regarding the camera application, the camera’s position

potentially affected the results. The camera was mounted on

the tool of the robot (Fig. 2), and therefore required the robot

to move to a certain home position for each new image that

needed to be taken by the camera. Thus, potential time losses

in the overall speed per nut may occurred. Instead, if a fix

camera mounted besides the robot was implemented, it

wouldn’t require the robot to move to a certain home position

the for next image to be taken. Further, the camera wouldn’t

be limited to be near the robot; a camera implemented at an

earlier station at the production line could provide the

necessary images for the object detection and coordinates

could further be delivered to the robot. However, a such

system may require extra sensors to locate the frame in

relation to the robot, which this project didn’t investigated.

The communication between the robot and the different

settings could be more efficient. One of the problems is the

hardware without the possibility to utilise a GPU booster.

The system in control of the translation of positions are as

mentioned in as ROS. It is hard to compare between other

systems when no further tests in that regard have been

executed. The good thing is that the environment of the robot

application shows that it’s fully applicable to use ROS in this

regard.

This project was performed in a laboratory environment

which may entail differences with the real implementation.

Additionally, some important aspects will therefore be

discussed. First, the frame in the laboratory is fixed compared

with the real environment where it moves horizontally on a

conveyor. This should be taken into consideration for further

implementation, and moreover the conveyor may not have

consistent speed, due to e.g. minor stops on the production

line, which put certain requirements on the flexibility of the

robot application to handle a likewise situation. As a second

aspect, the frame at the conveyor may be inconsistent in its

placement regarding height and angels in relation to the

robots coordinate system. This potential situation could not

occur in the laboratory, since the frame was fixed in the

laboratory. Therefore, there were no need for calibration of

the robot camera in each new object detection session.

Additionally, the real implementation would require some

sort of sensors to locate the centre of the beam of the frame

and adjust the camera to be orthogonal to the beam in that

height. On the other hand, a different approach on solving

this issue is discussed further down in this chapter.

Finally, a third aspect that needs to be taken into

consideration for a real implementation is the potential

objects located on the frame that might hinder the camera

from partly or entirely capture some nuts, and therefore affect

the object detection accuracy. This is something that will be

considered when using the pilot testing at Volvo Trucks,

since the real environment there have more objects than the

ones seen in Figure 5. As Jiang and Learned-Miller (2017)

mentioned, it’s easier to optimise specific objects and not

different objects with various sizes and design. Additionally,

with the right amount of training and the same objects comes

mounted on the frame, it can be possible to reach acceptable

recognition level for automation. It will be harder to achieve

if different objects occur on the frame that not been included

in the training session.

The project was limited to the use of a camera mounted on

the robot, which further was placed perpendicular in a certain

distance to the frame for each new image. However, this

could have been made differently by using live object

detection via video stream, rather than analysis of a single

image. A such system would entail for opportunities to let the

robot search for nuts on the frame and not be limited to a

perpendicular setting. Instead, the robot could systematically

screen the frame from one end to the other, and

simultaneously tighten the nuts passed by. Further, this could

lead to a more flexible and robust system, since the robot

wouldn’t require calibration and be dependent on the distance

and angles to the frame. Nevertheless, this project used

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10430

hardware that limited the testing to object detection on

images rather than video stream in real time. In addition to

that, a real time system as described above should require

hardware capable of video stream detection with at least

several frames analysed per second.

CONCLUSIONS

The first step to achieve higher automation for Volvos’ nut

tightening station is seen as successful. The degree of

recognition for both objects reach up to 95,7% with Faster R-

CNN (see Table 3), which is acceptable if humans acts as

supervisors for the missed nuts. This was achieved with only

322 images, consisting of 928 nuts and 568 inverted nuts

(Table 2). Further work with this project includes more

pictures and better hardware for the training and execution.

Also starting with a pilot tests at Volvo Trucks regarding

pictures from the real environment and tools to be applied for

the tightening of the nuts. As discussed, the environment for

the experiment is not fully comparable to the station at

Volvo. The primary aim with the experiment was to

understand the interactive process between tor robot

application and nut detection which have been showed.

Other aspects such as safety between robot and operator

needs to be further investigated before the implementation

can be tested and implemented in industry. Furthermore,

technical and semantic interoperability needs to be tested.

ACKNOWLEDGEMENT

The authors would like to acknowledge the Swedish agency

VINNOVA for supporting the national testbed project in

which this study has been carried out.

REFERENCES

ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS,

A., DEAN, J., DEVIN, M., GHEMAWAT, S.,

IRVING, G., ISARD, M. & KUDLUR, M. 2016.

Tensorflow: A system for large-scale machine

learning. 12th Symposium on Operating Systems

Design and Implementation.

BAHRAMPOUR, S., RAMAKRISHNAN, N., SCHOTT, L.

& SHAH, M. 2015. Comparative study of deep

learning software frameworks. arXiv preprint

arXiv:1511.06435.

BAUER, W., BENDER, M., BRAUN, M., RALLY, P. &

SCHOLTZ, O. 2016. Lightweight robots in manual

assembly - Best to start simply! In: IAO, F.-I. F. A.

U. O. (ed.). Stuttgart.

BORTOLINI, M., FERRARI, E., GAMBERI, M., PILATI,

F. & FACCIO, M. 2017. Assembly system design in

the Industry 4.0 era: a general framework. IFAC-

PapersOnLine, 50, 5700-5705.

BRADSKI, G. & KAEHLER, A. 2008. Learning OpenCV.

COHEN, Y., NASERALDIN, H., CHAUDHURI, A. &

PILATI, F. 2019. Assembly systems in Industry 4.0

era: a road map to understand Assembly 4.0. The

International Journal of Advanced Manufacturing

Technology, 105, 4037-4054.

GIRSHICK, R. 2015. Fast R-CNN. Proceedings of the IEEE

international conference on computer vision, 1440-

1448.

GIRSHICK, R., DONAHUE, J., DARRELL, T. & MALIK,

J. 2014. Rich feature hierarchies for accurate object

detection and semantic segmentation. Proceedings

of the IEEE conference on computer vision and

pattern recognition, 580-587.

HUANG, J., RATHOD, V., SUN, C., ZHU, M.,

KORATTIKARA, A., FATHI, A., FISCHER, I.,

WOJNA, Z., SONG, Y., GUADARRAMA, S. &

MURPHY, K. 2017. Speed/accuracy trade-offs for

modern convolutional object detectors. Proceedings

of the IEEE conference on computer vision and

pattern recognition, 7310-7311.

JIANG, H. & LEARNED-MILLER, E. 2017. Face detection

with the faster R-CNN. 12th IEEE International

Conference on Automatic Face & Gesture

Recognition, 650-657.

KRIZHEVSKY, A., SUTSKEVER, I. & HINTON, G. E.

2012. Imagenet classification with deep

convolutional neural networks. Advances in neural

information processing systems, 1097-1105.

LIN, T. Y., MAIRE, M., BELONGIE, S., HAYS, J.,

PERONA, P., RAMANAN, D., DOLLÁR, P. &

ZITNICK, C. L. 2014. Microsoft coco: Common

objects in context. European conference on

computer vision, 740-755.

LIU, W., ANGUELOV, D., ERHAN, D., SZEGEDY, C.,

REED, S., FU, C.-Y. & BERG, A. C. SSD: Single

Shot Multibox Detector. European conference on

computer vision, 2016. Springer, 21-37.

REN, S., HE, K., GIRSHICK, R. & SUN, J. 2015. Faster R-

CNN: Towards real-time object detection with

region proposal networks. Advances in neural

information processing systems, 91-99.

RUSSELL, S. & NORVIG, P. 2013. Artificial Intelligence:

Pearson New International Edition: A Modern

Approach, Pearson Education M.U.A.

SAG, M. 2019. The New Legal Landscape for Text Mining

and Machine Learning. Available at SSRN.

SHATNAWI, A., AL-BDOUR, G., AL-QURRAN, R. & AL-

AYYOUB, M. 2018. A comparative study of open

source deep learning frameworks. 9th International

Conference on Information and Communication

Systems, 72-77.

TZUTALIN 2015. LabelImg. Git code.

ZHAO, Z. Q., ZHENG, P., XU, S. T. & WU, X. 2019. Object

detection with deep learning: A review. IEEE

transactions on neural networks and learning

systems.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10431

