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Abstract: The purpose of the paper is to introduce to the control community the brilliant
but little-known part of Yakubovich’s academic heritage — the method of recursive objective
inequalities. This method was successfully used by V.A.Yakubovich and his followers in pattern
recognition, adaptive control and robotics. The paper deals with the last two topics. The most
of surveyed results were published in Russian. A 1975 video about experiments with the first

Soviet self-learning robot will be shown.
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1. INTRODUCTION

Initially, the problem of solving a system of inequalities
emerged in the paper on pattern recognition Yakubovich
(1965). A detailed description of these applications is
beyond the scope of this report.

In 1968 V.A.Yakubovich published two papers Yakubovich
(1968a,b), which laid the foundations of the method of
recursive objective inequalities as a new approach to
solving problems of adaptive control and control of self-
learning robots. In Yakubovich (1968a) he uses the word
"robot” for the first time in the mathematical literature.
This article gives a strict definition of a self-learning robot
(the term ”intelligent robot” is used) and gives examples of
simple robots: ”robot grasshopper” and ”robot eye-hand”.
In the article V.A. Yakubovich proves a theorem describing
the behavior of the self-learning robot. Figure 1 shows the
formulation of the theorem copied from the paper.

Theorem 1, If the assumptions (I)-
(IV) are satisfied, the brain equations
can be constructed in such a way that
the simple robot thus obtained be-
comes rational in the class of prob-
lems M,

Fig. 1. The first theorem of robotics.

Apparently, this is the first in the history a rigorous
mathematical statement about the intelligent behavior of
a robot.

We should note that Yakubovich’s use of the term robot in
a scientific article was a bold act at that time. As you can
see from the video ”Shakey the Robot: The First Robot to
Embody Artificial Intelligence”, presented on YouTube by
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SRI International, scientists at Stanford Research Center,
who worked on the first intelligent robot in the early 70s,
did not use the term “robot” in their project. They were
afraid that the project related to science fiction would not
receive financial support.

This talk is an extended version of the short report made
by the authors at the 2017 IFAC Congress in Toulouse that
was published as preprint Gusev and Bondarko (2017) but
not included in the proceedings of the conference.

2. ALGORITHMS FOR SOLVING INFINITE
SYSTEMS OF INEQUALITIES

The paper Yakubovich (1968b) considers two more exam-
ples of self-learning robots: “"robot hawk” and ”robot cy-
clist”. The latter example is particularly interesting, since
the robot motion is described by the linearized equation
of the actual driving dynamics of the bicycle

Xt+1 + a1 Xt + Q2Xt—1 = ﬁ¢t + ¢tat = 07 1a 2a LR
where x; is the deviation of the bicycle frame from the
vertical, 1, is bicycle steering angle, ¢; is the unknown
external disturbance, t is the time. It is assumed that the
parameters of the system a1, as, 8 are unknown, but the
parameter (3 lies in known interval 0 < 8 < k. The external
disturbance is bounded |¢:| < €. The aim is to guarantee
smallness of the bicycle frame deviation from the vertical,
i.e. to fulfill the objective inequality

Ix:| <et=0,1,2,..., (1)
for some given e > 0. At the beginning of the movement
the values xg,x1 are randomly assigned and satisfy the
condition

|XO| < 67 |X1‘ < 67 (2)
where 0 < § < e. If the inequality (1) is violated, it is
considered that the bike has fallen, and a new game with
initial data that satisfies (2) begins. The linear feedback
Ve = Y1Xt +Y2Xt—1, is used, the parameters of which =1, v
are to be found in the process of robot motion.
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Substituting the value of x:41 for closed-loop control
system in (1), we obtain the objective recursive inequalities
for the vector of unknown parameters 7 = (y1,72)

|B(T,00) + G| <e,t=0,1,2,..., (3)

where oy = (§1,&-1), G = —ouxe — QaXe—1 + ¢, (T,0¢)
is the scalar product of vectors 7 and o;. It should be
noted that (; is unavailable for measurement. The sequence
,t = 0,1,2,..., is called a solution of the recursive
system of inequalities (3) if for all sufficiently large ¢, 74 =
T = const and inequalities (3) are satisfied. Thus, to solve
the problem of ”"robot cyclist” control it is sufficient to
propose an algorithm for solving the recursive system of
inequalities (3).

For simplicity, let 8 = 1. The simplest algorithm for
solving a system of inequalities (3) is defined as follows
Yakubovich (1966):

if || <e,

Tt,
Tl = _ . 4
s {Tt—ﬂt|0t| QUtv it || > e, )

where discrepancy 1, = B(7,0¢) + (¢ = xt+1 is available
for measurement. As proved in Yakubovich (1966) the
algorithm (4) solves the system of inequalities (3), when
e > 2¢. In Fomin et al. (1981) this algorithm is called
7strip.” The reason for this name becomes clear from
the geometric interpretation of the algorithm depicted in
Figure 2.

Fig. 2. Algorithm ”strip” (simplest version).

From a computational point of view, the algorithm can
be considered as the Kaczmarz’s algorithm with a dead
zone. The algorithm proposed by Kaczmarz (1937) is a
well-known iterative method for solving systems of linear
equations. However, it should be noted that in the presence
of similarities in the computational procedure, the method
of recursive objective inequalities is based on a different
mathematical formulation of the problem.

This method considers the solution of infinite systems of
inequalities, and inequalities are not given in advance,
but appear in the process of solving the system as an
answer to the solution process itself. Thus, the problem-
solving process is a game in which one of the players is
a recursive algorithm that solves inequalities one after
another, and the other is a controlled object that responds
to applied control actions. When the method appeared,
this unexpected recursive formulation of the problem did
not find understanding. Critics have argued that it is
impossible to solve a problem whose conditions change in

response to attempts to solve it. Of course, such statements
have no basis, the convergence of the method of recursive
objective inequalities is rigorously proved.

In order to weaken the condition e > 2¢ Yakubovich
proposed an improved version of the algorithm, which has
the form

Tt, lf |77t| S €,

T ne — esignn, (5)

‘U’t|2 Ot, lf |77t| > €,

Ty + Mt

where parameter p; may be arbitrary chosen in [1/2,1]. It
converges, when e > ¢. Figure 3 depicts the geometrical
interpretation of the algorithm in the case u; = 1.

’ Ut) + Ct|

Fig. 3. Algorithm "strip” (u; = 1).

3. ADAPTIVE CONTROL OF LINEAR SYSTEMS

Let us briefly describe the further development of the
method of recursive objective inequalities and list some
of the results obtained. The first results on the adaptive
control of linear systems of general form were obtained
in Yakubovich and Penev (1971); Lubachevsky (1974). In
these papers, the problem of ”robot cyclist” control was
considered as a test case for the simulation of the proposed
adaptive control algorithms for linear plants.

From a practical point of view, the drawback of this
approach was the presence of so-called ”games”, that is,
the need to stop the process of control from time to time
and start it again, with new initial conditions. The method
of excluding such stops was proposed by V.A.Bondarko
Bondarko and Yakubovich (1979); Fomin et al. (1981).

In the paper Gusev (1989) an algorithm for solving in-
equalities of the form (3) is proposed, in which the absolute
value is replaced by the sample standard deviation for the
whole prehistory of the process. The obtained recursive
formulas allow the implementation of the algorithm using
finite memory. The method eliminates the requirement of
bounded disturbances and can be used in the presence of
stochastic disturbances with Gaussian and other distribu-
tions.

For a long time, the method of recursive objective inequal-
ities did not allow to control nonminimum-phase systems.
This problem was overcome in Fomin et al. (1981); Bon-
darko et al. (1991); Bondarko (1994).

A more detailed survey of adaptive control of linear
systems by the method of recursive objective inequalities
is given in Bondarko and Yakubovich (1992).
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Sokolov (2015) uses the method of recursive objective
inequalities for a generalization of the well-known result
of Huang and Guo (2012).

4. ADAPTIVE CONTROL WITH POTENTIALLY
INFINITE DIMENSION OF ESTIMATED VECTOR.

Considering problems of optimal adaptive control Bon-
darko (2006) or adaptive control of sampled infinite-
dimensional systems Bondarko (1996) leads to the systems
of inequalities (3) with infinite-dimensional vectors 7 and
o¢. As a matter of fact, finite-dimensional solution of in-
equalities with slightly increased right side does exist, and
it would be enough for achievement of control objective,
but dimension of this solution is unknown. This obstacle
was overcome in the paper Bondarko (2006) by means of
the algorithm like (5) which increases a dimension of
each time when current inequality |n;| < e is not fulfilled.
Sooner or later these events will stop, thus final dimension
of the solution obtained is finite.

The paper Bondarko (2006) considered discrete-time and
continuous-time plants with bounded disturbances. In
both cases sub-optimal adaptive controller is the same
discrete-time system, completed with zero order hold ex-
trapolation in case of continuous-time plant. It should
be mentioned that zero order hold sampled model of
continuous-time prototype does not satisfy conditions of
discrete-time theorem. Namely, disturbance of this model
is bounded, but it belongs to another class than was con-
sidered in discrete-time case. Nevertheless, the use of an
adaptive controller with discrete-time leads to a subopti-
mal level of the cost function, if sampling rate is sufficiently
high. The same effect was described in the early paper
Bondarko (1991) which concerns with more restricted class
of disturbances.

5. ALGORITHM FOR SOLVING SOME SYSTEMS OF
NON-CONVEX INEQUALITIES

A general approach to the transforming of a wide class
of nonlinear recursive inequalities to inequalities of the
form (3) was proposed in Bondarko (2010). Simplest
example is a problem of an induction motor control with
known parameters, but without velocity sensor. So called
field-oriented controller requires an unobservable values of
electromagnetic field flux. In turn, estimation of the flux
becomes possible, if we find a 2-vector 7, which is a solution
of inequalities

I — G — Ri| <e, (6)
where C;, R;, and € may be evaluated using observable
signals. In other words, 7 should belongs to the intersection
of an infinite sets of rings, while inequalities (3) distinguish
intersection of strips, i.e. gaps between a pair of hyper-
planes. Unlike a strip, a ring is not a convex set, thus a
problem of solving system (6) is much more complicated.
Nevertheless, we can combine a pare of inequalities (6)
with ¢ = ¢ and ¢ = t” to obtain one inequality (3) with
p=1,

0y =2[Cy — Cpr), ¢ = Cf — CF + R — R}y, e > 2e.

This means we replace a pair of the rings by one strip which
includes an intersection of those rings. The Figure 4 shows
a result of estimating 7 by means of the algorithm (5)
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Fig. 4. The process of solving non-convex inequalities.

applied to inequalities (3) obtained from (6). The broken
line with small circles shows evolution of the 7, rings are
depicted as circles, and strips are shown as straight lines.

Let us consider inequalities of the general sort

€+ (T,00) + (p(T), )] < e, t=0,1,..., (7)
with nonlinear term (¢(7), ¢¢) in left sides. The approach
described let us diminish a dimension of vectors ¢(7) and
¢+ by 1, combining two inequalities (7) with ¢ = ¢’ and
t = t". Step by step, nonlinear term would be eliminated
at all, and then we could apply the algorithm (5) to
solve obtained convex inequalities (3). In a particular,
this approach allows to estimate electromagnetic flux of

an induction motor with unknown parameters Bondarko
(2010).

6. CONTROL AND ESTIMATION IN THE
PRESENCE OF UNKNOWN BOUNDED
DISTURBANCES

One of the original features of the approach proposed by
Yakubovich is the consideration of unknown determinis-
tic bounded disturbances additively acting on the plant
Yakubovich (1968b). The consideration of this class of
disturbances led to the emergence of a number of new
directions in control theory.

Almost simultaneously with the works on adaptive control
of Yakubovich, Schweppe (1968) considers the problem of
the state estimation of a system with unknown bounded
disturbances. Proposed in this article method was further
developed and is now known as the set-membership esti-
mation. In Sokolov (1985) this method is applied in the
problem of adaptive control of a SISO linear plant of the
first order in the presence of bounded disturbances. The
control criterion is the upper limit of the absolute value
of the plant output. The result obtained in this work
is somewhat paradoxical: the proposed adaptive control
algorithm can be called super-optimal, because ensures the
achievement of control quality no worse than the optimal
linear minimax control for the system with known param-
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eters, and in many cases, the quality of adaptive control is
better than that of the optimal linear minimax control.

In Yakubovich (1968b), the problem of adaptive sub-
optimal control of a first order linear SISO minimum phase
plant with a minimax criterion was solved. In parallel
with Yakubovich’s studies, the general problem of min-
imax control of a plant with known parameters in the
presence of bounded disturbances was considered in Wit-
senhausen (1968). But the minimax control problem for a
non-minimum phase plant remained open. For the SISO
discrete time plant the problem was solved in Barabanov
and Granichin (1984). Subsequently, this area of research
has become known as the theory of l;-optimization Dahleh
and Diaz-Bobillo (1995).

7. ADAPTIVE CONTROL OF ROBOTS.

In parallel with the problems of linear systems control,
the techniques were elaborated for adaptive control of
nonlinear systems describing the motion of robots. In
1974, two models of the transport robot, controlled by
a computer, were developed at the Mathematics and
Mechanics Faculty of Leningrad (now St. Petersburg)
State University. These models were used for the first
implementation of adaptive motion control algorithm in
the presence of disturbances that change the parameters
of the robot, for example, the supply voltage of the motors,
the load on the chassis, the coefficient of adhesion to the
ground. In the photo (see Fig. 5), the developers of the
robot control algorithm V.A.Yakubovich and S.V.Gusev
are next to the robot.

As the chassis of the robot a toy was used - a planet rover.
The robot is equipped with two sensors located on the
turning vertical axis. The lower sensor is an ultrasonic
rangefinder, the upper one is a photosensor, with the help
of which the directions to light beams are determined. This
sensor was used to determine the coordinates and orien-
tation of the robot. The robot has 4 modes of movement:
forward, backward, turn left, and turn right.

The results of the first adaptive control experiments were
published in Gusev et al. (1975), a detailed description of
the adaptive control algorithm is given in Gusev (1981).

As an illustrative material in the talk, we shall show a
video about experiments conducted in 1975.

In 1980, to continue research on adaptive robot control, a
more advanced mobile robotic arm was developed, shown
in the photo (see Fig. 6). The robot has a six-wheeled chas-
sis, a manipulator with 4 degrees of freedom and a three-
fingered grip. It is equipped with a rotating ultrasound
rangefinder system and a stereo vision system consisting
of two cameras. The control was carried out by a computer
via a radio channel.

The results of some experiments with the robot are pub-
lished in Grigor’ev et al. (1982).

In Timofeev and Yakubovich (1976); Gusev and Yakubo-
vich (1980) adaptive control algorithms for robotic manip-
ulators are proposed. It is assumed that the dynamic pa-
rameters of the manipulator are unknown. Adaptive con-
trol is constructed, which ensures the specified accuracy of

Fig. 5. S.V. Gusev (left) and V.A.Yakubovich with the first
robot (1974).

Fig. 6. The mobile robot with a manipulator (1980).

desired motion tracking. In Gusev and Yakubovich (1980)
the sampled time control and measurement is considered.

In Gusev et al. (1983); Gusev and Shishkin (1999) the
problem of self-learning of a biped robot is treated. It is
supposed that the dynamic parameters are unknown. The
robot control system has no information about desired
motion as function of time. The only information that
characterizes walking consists of a lower estimate of the
robot step length and inequalities that prohibit the robot

1408



Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

from touching the surface of any points of the body
except for the feet. A method proposed for reducing
the robot walking task to the solution of recursive non-
convex inequalities of a special kind, and an algorithm is
constructed for solving such systems of inequalities.

8. CONCLUSION

V.A.Yakubovich famous as the discoverer of the Kalman-
Yakubovich-Popov Lemma. He is widely known for his
outstanding results in the theory of nonlinear systems
and optimal control. In this article, we highlighted the
less known, but important and still relevant area of his
extensive scientific interests — the theory of adaptive
control and robotics. Along with his personal scientific
achievements, it is necessary to note the great contribution
of V.A.Yakubovich to the development of science by creat-
ing a powerful and successful scientific school, from which
many famous scientists came out. Confining ourselves to
the topic of our presentation, we will name here only his
most striking students, experts in the field of adaptive
control and robotics.

Currently, the Department of Theoretical Cybernetics,
founded by V.A.Yakubovich in Leningrad (now St. Peters-
burg) State University, is headed by prof. A.L.Fradkov,
who is one of co-authors of Yakubovich in the mono-
graph on adaptive control Fomin et al. (1981). Professor
A.S. Matveev, who co-authored with V.A. Yakubovich
two monographs on the theory of optimal control, now
is actively working in the field of robotics. A.S. Matveev,
together with another student of V.A.Yakubovich prof.
A.Savkin are co-authors of two monographs on robotics
Savkin et al. (2015); Matveev et al. (2016). Now A.Savkin
is head of Systems and Control at the University of New
South Wales, Sydney. The outstanding results in the field
of robotics of another graduate of the Department of Theo-
retical Cybernetics, professor of the Norwegian University
of Science and Technology A.S. Shiryaev are also widely
known Shiriaev et al. (2005, 2014).
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