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1. EXTENDED ABSTRACT

A framework that is becoming particularly appealing to
design control algorithms is that of devising the con-
trol policy from examples (or demonstrations), see e.g.
Hanawal et al. (2019); Wabersich and Zeilinger (2018)
and references therein. At their roots these control from
demonstration techniques, which are gaining considerable
attention under the label of Inverse Reinforcement Learn-
ing (IRL), rely on Inverse Optimal Control and Opti-
mization Bryson (1996). Today, IRL/control is recognized
as an appealing framework to learn policies from suc-
cess stories Argall et al. (2009) and potential applica-
tions include planning Englert et al. (2017) and prefer-
ences/prescriptions learning Xu and Paschalidis (2019).

There is then no surprise that, over the years, a number
of techniques have been developed to address the problem
of devising control policies from demonstrations, mainly
in the context of Markov Decision Processes (MDPs).
Results include Ratliff et al. (2009), which leverages a
linear programming approach, Ziebart et al. (2008) that
uses the maximum entropy principle and Ramachandran
and Amir (2007) that leverages Bayesian statistics.

In this context, the main contributions of this extended
abstract can be summarized as follows. First, we introduce
an approach to synthesize control policies from examples
which is based on the Fully Probabilistic Design (FPD)
Kárný (1996); Kárný and Guy (2006); Herzallah (2015);
Pegueroles and Russo (2019); Krn and Kroupa (2012).
This approach formalizes the control problem as an opti-
mization problem where the Kullback-Leibler Divergence
(see Section 1.2) between an ideal probability density
function (pdf, obtained from e.g. demonstrations) and the
pdf modeling the system/plant is minimized. The main
technical novelty of our results with respect to the classic
works on FPD lies in the fact that we explicitly embed ac-
tuation constraints in our formulation, thus solving an op-
timization problem where the Kullback-Leibler Divergence
is minimized subject to constraints on the control variable.
By relying on the FPD, one of the main advantages of our
results over classic IRL/Control approaches is that policies
can be synthesized from data without requiring linearity of
the underlying system. Moreover, by embedding actuation
? The authors were supported by Science Foundation Ireland (SFI)
under Grant Number 16/RC/3872

constraints into the problem formulation and by solving
the resulting optimization, we can export the policy that
has been learned on other systems that have different actu-
ation capabilities. As an additional contribution, we devise
from our theoretical results an algorithmic procedure. The
key reference applications over which the algorithm was
tested involved an autonomous driving use case.

1.1 Notation

Sets, as well as operators, are denoted with calligraphic
characters, while vector quantities are denoted in bold.
Let nz be a positive integer and consider the measurable
space (Z,Fz), with Z ⊆ Rnz and with Fz being a σ-
algebra on Z. Then, the random variable on (Z,Fz) is
denoted by Z and its realization is denoted by z. The
pdf of Z is denoted by f(z) (or, equivalently, by fZ) and
its support is denoted by S (f). We recall that, given a
function h(·), the expectation of h(z), i.e. Ef [h(Z)] is
defined as Ef [h(Z)] :=

∫
S(f)

h(z)f(z)dz. For notational

convenience, whenever it is clear from the context, we
omit the domain of integration as well as the subscript
in the expectation. The conditional probability density
function (cpdf) of Z with respect to the random variable
Y is denoted by f (z|y) and sometimes we will use the

shorthand notation f̃Z. Given Z ⊆ Rnz , its indicator
function is denoted by 1Z(z): 1Z(z) = 1, ∀z ∈ Z and
0 otherwise. Finally, we will also make use of the internal
product between tensors, which is denoted by 〈·, ·〉.

1.2 The Kullback-Leibler divergence

The control problem considered in this abstract will be
stated (see Section 1.4) in terms of the Kullback-Leibler
(KL, Kullback and Leibler (1951)) divergence:

Definition 1. (Kullback-Leibler(KL) divergence). Consider
two pdfs, f1(z) and f2(z), with f1(z) being absolutely
continuous with respect to f2(z). Then, the KL-divergence
of f1(z) with respect to f2(z) is

DKL (f1||f2) :=

∫
S(f1)

f1 ln

(
f1
f2

)
dz. (1)

Intuitively, DKL (f1||f2) measures how well f1(z) approx-
imates f2(z). We also recall that DKL (f1||f2) exists if
S(f1) ⊆ S(f2). We assume that the KL-divergence for the
pdfs of our interest exists.
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1.3 System description

Let: (i) K := {k}nk=1, K0 := K∪{0} and T := {tk : k ∈ K0}
be the time horizon over which the system is observed; (ii)
xk ∈ Rdx and uk ∈ Rdu be, respectively, the system state
and input at time tk ∈ T ; (ii) dk := (xk,uk) be the data
collected from the system at time tk ∈ T and dk the data
collected from t0 ∈ T up to time tk ∈ T (tk > t0). Then,
as shown in e.g. Peterka (1981), the system behavior can
be described via the joint pdf of the observed data, say
f(dn). Then, as shown in the same paper, the application
of the chain rule for probability density functions leads to
the following factorization for f(dn):

f (dn) =
∏
k∈K

f (xk|uk,xk−1) f (uk|xk−1) f (x0) . (2)

Throughout this abstract we will refer to (2) as the proba-
bilistic description of the closed loop system, or simply say
that (2) is our closed loop system.

Remark 1. The cpdf f (xk|uk,xk−1) describes the system
behavior at time tk, given the previous state and the input
at time tk. In turn, the input is also generated from the
cdpf of a randomized control algorithm f (uk|xk−1), which
indeed returns the input given the previous system state.
We also note that initial conditions are embedded in the
probabilistic system description through the prior f (x0).

In the following we will use the shorthand notations
f̃kX := f (xk|uk,xk−1), f̃kU := f (uk|xk−1), f0 := f (x0)
and fn := f (dn) so that (2) can be written in the more
compact form

fn =
∏
k∈K

f̃kXf̃
k
Uf0 = f̃nf0, f̃n :=

∏
k∈K

f̃kXf̃
k
U. (3)

1.4 The control problem

Our goal is to synthesize the control pdf f (uk|xk−1)
so that the behavior illustrated via an example dataset,
say dn, can be tracked by system (3) subject to its
actuation constraints. As in Kárný (1996); Quinn et al.
(2016); Pegueroles and Russo (2019); Kárný and Guy
(2006); Herzallah (2015) the behavior illustrated in the
example dataset can be specified through the reference
pdf g (dn) extracted from the dataset (as e.g. its empirical
distribution). Following the chain rule for pdfs we have
g (dn) :=

∏
k∈K g (xk|uk,xk−1) g (uk|xk−1) g (x0). Again,

by setting g̃kX := g (xk|uk,xk−1), g̃kU := g (uk|xk−1),
g0 := g (x0) and gn := g (dn) we get:

gn =
∏
k∈K

g̃kXg̃
k
Ug0 = g̃ng0, (4)

where g̃n :=
∏
k∈K g̃

k
Xg̃

k
U.

Our tracking problem can then be recast as the problem
of designing f (uk|xk−1) so that fn approximates gn. This
leads to the following formalization:

Problem 1. Determine the sequence of cpdfs, say{(
f̃kU

)∗}
k∈K

, solving the nonlinear program

min
{f̃kU}k∈K

DKL (fn||gn)

s.t. Ef̃k
U

[
h̃u,k (U)

]
= H̃u,k, k ∈ K

(5)

We note that the program constraints can be equivalently
written as

∫
S(f̃k

U
)
f̃kU h̃u,k (uk) duk = H̃u,k,. Finally,

the constraints of the program are time-varying and the
number of constraints can change over time (the number
of constraints at time tk is denoted by cu,k). Indeed, in

the constraints of (5): (i) H̃u,k is a (column) vector of

coefficients, i.e. H̃u,k :=
[
Hu,0,k,H

T
u,k

]T
and h̃u,k (z) :=[

hu,0,k,h
T
u,k

]T
(z); (ii) Hu,k ∈ Rcu,k and hu,k : S(f̃kU) 7→

Rcu,k ; (iii) Hu,0,k := 1 and hu,0,k (z) := 1Uk (z) ensure that
the solution of the program is a cpdf.

1.5 Technical Results

For the sake of completeness, we now report the main
technical results behind the algorithm of Section 1.6. The
proofs will be presented elsewhere.

Lemma 1. Let Z be a random variable on the measurable
space (Z,Fz), f := fZ(z), g := gZ(z) be two probability
distributions over (Z,Fz), α : Z 7→ R+

0 be a nonnegative
function of Z, integrable under the measure given by fZ(z).
Given this set-up, assume that fZ(z) satisfies the following
set of algebraically independent constraints∫

fZ (z) h̃ (z) dz = H̃, (6)

where: (i) h̃(z) :=
[
h0,h

T
]T

(z), with h0(z) := 1S(Z)(z)

and h : Z 7→ Rcz being a measurable map; (ii) H̃(z) :=[
H0,H

T
]T

with H0 := 1 and H ∈ Rcz being a vector of
constants. Then, the solution of the constrained optimiza-
tion problem

min
fZ

DKL (f ||g) +

∫
fZ(z) α (z) dz

s.t. constraints in (6)
(7)

is the pdf

f∗Z (z) = g (z)
e−{α(z)+〈λ

∗,h(z)〉}

e1+λ
∗
0

, (8)

where λ∗0 and λ∗ = [λ∗1, . . . , λ
∗
cz ]T are the Lagrange

multipliers associated to the constraints. Moreover, the
corresponding minimum of the cost function J (f) :=
DKL (f ||g) +

∫
fZ(z) α (z) dz is

J ∗ := J (f∗) = − (1 + λ∗0 + 〈λ∗,H〉) . (9)

Note that, in Lemma 1, the optimal solution f∗Z(z) depends
on the Lagrange multipliers (LMs) λ∗0 and λ∗. While λ∗0
can be obtained by integration, all the other LMs need to
be computed numerically. With the next result, we propose
a strategy for finding the LMs λ∗. In particular, our key
idea is to recast the problem of finding the solutions of non-
linear equations as a minimization problem. In general, the
approach can be also used to fit the parameters of a pdf so
that it meets a set of pre-specified constrains (for example,
to find pdfs that satisfy the Maximum Entropy principle).

Lemma 2. Let: (i) Z ⊆ Rnz and Θ̃ ⊆ Rnz ; (ii) f̂1 :

Z 7→ f̂1 (z) be a positive and integrable function on

Z; (iii) f̂2 : (Z × Θ̃) 7→ f̂1 (z) e−〈θ̃, h̃(z)〉, where h̃ =[
h̃1 (z) , . . . , h̃cz (z)

]T
: Z 7→ Rcz . Consider the set of

algebraically independent equations∫
Z
f̂2

(
z, θ̃
)

h̃i (z) dz = H̃i, i = 1, . . . , cz, (10)
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where H̃ :=
[
H̃1, . . . , H̃cz

]T
∈ Rcz . Then, the unique

solution, say θ̃
∗
, of the minimization problem

min
θ̃
J
(
θ̃
)
, (11)

with J
(
θ̃
)

:= 〈θ̃, H̃〉 +
∫
Z f̂2

(
z, θ̃
)
dz is also a solution

of (10).

The main result behind the algorithm of Section 1.6, the
proof of which leverages the above technical lemmas, is
presented next.

Theorem 1. The solution,
(
f̃kU

)∗
= f∗ (uk|xk−1), of the

control Problem 1 is(
f̃kU

)∗
= g̃kU

e−{ω̂(uk,xk−1)+〈λ∗u,k,hu,k(uk)〉}

e1+λ
∗
u,0,k

, (12)

where:

(1) ω̂(·, ·) is generated via backward recursion. In partic-
ular,

ω̂ (uk, xk−1) = α̂ (uk, xk−1) + β̂ (uk, xk−1) (13)

and

α̂ (uk, xk−1) := DKL

(
f̃kX||g̃kX

)
β̂ (uk, xk−1) := −Ef̃k

X
[ln γ̂ (Xk)]

(14)

with terminal conditions β̂ (un, xn−1) = 0 and

α̂ (un, xn−1) = DKL

(
f̃nX||g̃nX

)
;

(2) γ̂ (·) is defined as

ln γ̂ (xk−1) :=

[
cu∑
i=0

ln (γ̂u,i,k (xk−1))

]
(15)

and γ̂u,i,k (·) are given by

γ̂u,0,k (xk−1) = exp {λ∗u,0,k + 1} (16)

and

γ̂u,i,k (xk−1) := exp {λ∗u,i,kHu,i,k} i = 1, . . . , cu.
(17)

with γ̂u,i,n+1 (xn) = 1 ∀i = 0, . . . , cu ;

(3) λ∗u,0,k and λ∗u,k =
[
λ∗u,1,k, . . . , λ

∗
u,cu,k

]
are the La-

grange multipliers associated to the constraints at
time tk. In particular,

λ∗u,0,k =

= ln
{∫

g̃kU

(
e−{ω̂(uk,xk−1)+〈λ∗u,k,hu,k(uk)〉}

)
duk

}
− 1,

while all the other LMs can be obtained numeri-
cally (via e.g. Lemma 2).

Moreover, the corresponding minimum is given by:

B∗k := −Epk−1
X

[ln γ̂ (Xk−1)] (18)

where pkX denotes the pdf of the state at time tk (i.e.
pkX := f (xk)).

We are now ready to introduce our control algorithm.

1.6 The algorithm

We developed an algorithmic procedure that, by leveraging
the technical results introduced above, outputs the solu-

tion
{(
f̃kU

)∗}
k∈K

to Problem 1.

Algorithm 1 Pseudo-code

Inputs:
g (dn) and f̃kX’s
Constraints of Problem 1 (Optional)
Output:{(
f̃kU

)∗}
k∈K

solving Problem 1

Initialize
γ̂u,i,n+1 (xn) = 1, ∀i (i.e. β̂ (un, xn−1) = 0) ;
γ̂ ≡ γ̂u,0,n+1;
for k = n to 1 do

α̂ (uk,xk−1)←
∫
f (xk|uk,xk−1) f(xk|uk,xk−1)

g(xk|uk,xk−1)
dxk

β̂ (uk,xk−1)←
∫
f (xk|uk,xk−1) {− ln (γ̂ (xk))}

ω̂ (uk,xk−1)← α̂ (uk,xk−1) + β̂ (uk,xk−1)
n̂u (uk,xk−1)← g (uk|xk−1) exp {−ω̂ (uk,xk−1)}
γ̃0 (xk−1)←

∫
n̂u (uk,xk−1) duk

f (uk|xk−1)← n̂u(uk,xk−1)
γ̃0(xk−1)

Use Lemma 2 with Z := S(f (uk|xk−1)), f̂1 = f ,

H̃ := H̃u,k, h̃ := h̃x,k, λ0 := λu,0,k, λ := λu,k,

θ̃ :=
[
θ0,θ

T
]T

=
[
1 + λ0,λ

T
]T

to find the Lagrange

multipliers:
λ∗u,k = λ∗ ← θ∗

λ∗u,0,k (xk−1) = λ∗0 ← θ∗0 − 1
Compute the policy and prepare variables for the

next iteration, k − 1:(
f̃kU

)∗
← f(uk|xk−1)e

−〈λ∗
u,k

,hu,k(uk)〉

e
1+λ∗

u,0,k

γ̂u,i,k (xk−1)← exp {λ∗u,i,kHu,i,k} i = 1, . . . , cu
γ̂u,0,k = exp {θ∗0} ← exp {λ∗u,0,k + 1}
γ̂ (xk−1)← exp [

∑cu
i=0 ln (γ̂u,i,k (xk−1))]

end for

1.7 Numerical results

We used Algorithm 1 to synthesize a control policy (from
real data) that would allow an autonomous car to merge on
a highway. The scenario considered in our test is schemat-
ically illustrated in Fig.1. Data were collected using the
infrastructure of Griggs et al. (2019): GPS position and
speed were gathered through an OBD2 connection during
100 test drives. We used the distance between the road

Fig. 1. Left panel: scenario illustration. Right panel:
stretch of road where the experiment took place.

junction point and the car position as state variable (xk =
d(tk)) and the car longitudinal speed as control variable

(uk = v(tk)). From the dataset we estimated the cpdf f̃kX
and we used a subset of the test drives to build the example
dataset. In particular, the example dataset consisted of the
20 trips that had the lowest car jerk. The example dataset
was then used to estimate g̃ (dn) and g̃kU (see fig.2). Finally,
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Fig. 2. Left panel: the pdf g (dn) computed empirically
from the dataset of 100 test drives. Right panel: g̃kU
extracted from the example dataset.

we decided to use the following constraints in Problem 1:
hu,k = [uk,u

2
k]T , which physically limit the maximum car

speed and acceleration. The results obtained by Algorithm
1 are shown in Figure 3. The figure shows how the control
policy computed by the algorithm makes the controlled
closed-loop behavior similar to the one of the examples,
while also fulfilling the constraints. In particular, the con-
trolled pdf (in green) is flatter because we constrained it
to have larger variance than the demonstrators.

Fig. 3. Left panel: optimal policy found at k = 1 (green)
and policy extracted from the examples (red). Right
panel: closed-loop pdf resulting from the application
of the optimal policy from Algorithm 1 (green) and
closed-loop pdf extracted from the examples (red).
The results for k = 1 are representative of the results
for the other time instants.

1.8 Conclusions

We presented an approach to the synthesis of policies from
examples. The key technical novelty is the inclusion of
actuation constraints in the problem formulation. This
in turn yields policies that can be exported to different
systems having different actuation capabilities. After pre-
senting the main results we introduced an algorithmic
procedure and its application to an automotive use case 1 .
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