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Abstract:
Anomaly detection in networked signals often boils down to identifying an underlying graph
structure on which the abnormal occurrence rests on. We investigate the problem of learning
graph structure representations using adaptations of dictionary learning aimed at encoding
connectivity patterns. In particular, we adapt dictionary learning strategies to the specificity of
network topologies and propose new methods that impose Laplacian structure on the dictionaries
themselves. In one adaptation we focus on classifying topologies by working directly on the graph
Laplacian and cast the learning problem to accommodate its 2D structure. We tackle the same
problem by learning dictionaries which consist of vectorized atomic Laplacians, and provide a
block coordinate descent scheme to solve the new dictionary learning formulation. Imposing
Laplacian structure on the dictionaries is also proposed in an adaptation of the Single Block
Orthogonal learning method. Results on synthetic graph datasets comprising different graph
topologies confirm the potential of dictionaries to directly represent graph structure information.

Keywords: anomaly detection, dictionary learning, graph Laplacian classification

1. INTRODUCTION

Ever more clever money laundering schemes are being
employed and are becoming harder to track, especially
considering the outnumber of anomalous behaviours or
patterns by the pool of legitimate transactions in financial
data. Recent years have shown great success in applying
machine learning (ML) techniques when dealing with
large chunks of data whose intrinsic structure is eluded.
Standard ML algorithms focus on the dominant trend,
but for anti-money laundering (AML) we are interested in
their anomaly detection (AD) variants that have started
to develop only in recent years Akoglu et al. (2015); Bolton
and Hand (2002); Elliott et al. (2019). Here the focus is
shifted towards the unfitted data.

Banking transactions between different entities (e.g. in-
dividuals, companies, banks, state institutions) can be
represented as a directed weighted graph: the nodes are
the entities connected by directed edges representing the
transactions whose weight is given by various transaction
and entity attributes (e.g. amount, currency, country of
origin etc.). Please note that describing all transactions
within a time-frame (a month, a trimester, a year) leads
to a very large graph. It is common for AML techniques
to look for known static patterns within the existing
transactions in order to identify possible frauds. Thus the
first problem that we focus on is identifying patterns,
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or sub-graphs, in a given graph. This task might seem
daunting at first, and it is indeed NP-hard, but the use of
community detection and ML techniques helps gain some
traction. Community detection is used to split the graph
into manageable sub-graphs and ML to perform pattern
matching within these sub-graphs. Graph classification is
therefore becoming a mandatory tool, both in itself and as
a means to an end. A second approach is to simply perform
AD without any prior knowledge such as known patterns
or other inside information from the bank institutions.
This is more challenging even with ML algorithms but,
if successful, it has the benefit of providing new insight
into present money-laundering schemes. Unlike normal ML
tasks, the key insight here is to over-fit on existing data in
order to strongly reject anomalous behaviours.

Numerous signal processing applications are now being
recast in order to include structural information. In many
cases, an underlying network exists on which the signal
rests, but this topological information has been previously
discarded, mostly for complexity reasons. These under-
lying graphs can have physical interpretations, as in the
case of natural or man-made networks, or may be abstract
structures, relevant to the data, as in the case of images.
Either way, paying attention to the graph topology is prov-
ing fruitful in signal processing tasks Dong et al. (2019).

Dictionary learning (DL) are a class of ML methods well
suited for signal processing applications such as com-
pressed sensing, image denoising, inpainting and blind
source separation. In this article we use DL to construct
and identify graph structures and their connections to the
signals that they produce or support.
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We propose two algorithmic schemes that directly work
with graph structures and are therefore appropriate for
applications where the anomalous topologies are available.
We also deal with the more general problem of signals that
lie on graphs. Thus, our third solution regards underlying
hidden graphs with possibly no physical relevance, but
which rather encode dependencies or correlations.

All types of approaches are suited for the task of identi-
fying anomalous signals. Returning to our financial trans-
actions problem, this translates in determining malicious
transaction schemes relevant to money-laundering. Do-
main knowledge reveals several typical patterns employed
in fraudulent conducts, such as clique-like or circular
structures. Solutions presented in Sections 3 and 4 target
precisely this case, where the known graph structure is
defining for the signal’s membership to the anomaly class.
However, other financial crimes remain undetected and
the question of exposing these schemes (and their cor-
responding graph structures) is an open one. Our latter
proposal, presented in Section 5, is suited for this task,
as it indirectly infers structural information from a signal
resting on a graph.

Notations. Given matrix A, we denote Ai the ith (block)
column of A and Aj the jth (block) line of A. Also,
given vector x, we use notation x` or [x]` for `th(block)
coordinate of x. It will clearly result from the local context
and explanations if the index is either a block or not.
Given the closed convex set X and a point z, we denote
with πX (z) the orthogonal projection of z onto X . For
a given function f , we denote ∇f(z) the gradient of f
at z and with ∇xi

f(z) the ith-block of the gradient at
z. For any integer n, we have [n] = {1, · · · , n}. For any
matrix A ∈ Rm×n, the operation vec(A) returns a vector of
dimension mn containing the vectorized columns of A. We
denote ‖·‖0 the l0 pseudo-norm, which counts the number
of nonzero elements in the vector or matrix. The all-ones
vector is denoted by 1 and the Kronecker product by ⊗.

2. PRELIMINARIES ON DICTIONARY LEARNING

The sparse representation model assumes that a given
signal admits a representation in which only few elements,
fewer than its original dimension, are nonzero. More pre-
cisely, with the aid of an overcomplete basis called a
dictionary, the signal can be written as

Y = DX + V , (1)

where Y ∈ Rm×N are the N signals, X ∈ Rn×N is
representation with s nonzero elements, D ∈ Rm×n is the
dictionary and V the zero mean white Gaussian noise. The
columns of the dictionary are called atoms and in order to
avoid the ambiguity introduced by multiplication, they are
normalized.

The dictionary learning problem consists in finding both
the dictionary and the representation that best character-
ize the signal. The objective function therefore is

min
D,X

‖Y −DX‖2F
s.t. ‖X`‖0 ≤ s, 1 ≤ ` ≤ N

‖Dj‖ = 1, 1 ≤ j ≤ n
(2)

Common practice solves the above problem in an alternate
manner, that is by first fixing the dictionary and comput-

ing the representation, then fixing the representation and
updating the dictionary. The former step is also known
as sparse coding and is usually performed either by greedy
methods that attempt to construct the sparse support Pati
et al. (1993), or by relaxing the l0 pseudo-norm in (2) into
a convex formulation, such as by replacing it with l1. As
for the latter step, it is routinely solved by coordinate or
gradient descent methods, of which K-SVD Aharon et al.
(2006), a coordinate descent method, is a popular choice.

2.1 Classification using Dictionary Learning

The representative power of the dictionary can also be
employed to classification tasks, provided some additional
measures are taken, that specialize atoms to the charac-
teristics of each class of signals. Intuitively, signals corre-
sponding to the same class should have similar representa-
tions, that (ideally) differ significantly from those of other
classes.

The formulation in (1) suggests this discriminative prop-
erty does not arise naturally, however it can be pursued
without modifying the objective function, by training sep-
arate (sub)dictionaries with signals from each class Skret-
ting and H̊akon Husøy (2006). Class estimation of a new
signal can then be obtained by comparing its representa-
tion error with each subdictionary. The core of this scheme,
Sparse Representation-based Classifier, was developed in
Wright et al. (2009). Additional penalties can be included
as to limit the possibility of having similar atoms in differ-
ent subdictionaries or, furthermore, to explicitly impose
discriminative traits on the dictionary by penalizing the
representation errors on each class Mairal et al. (2008).
A different approach is to indirectly force the desired
properties in D by imposing that X both fulfills the signal
reconstruction demands and exhibits class expressiveness.
This translates in coupling representation learning with
classification. Label Consistent K-SVD (LC-KSVD) Jiang
et al. (2011) is such an approach, that explicitly constrains
the representation to be similar for signals within the same
class and that moreover imposes each dictionary atom to
become specialized for one class only.

2.2 Dictionary Learning on Graphs

Most common DL adaptations that handle graph struc-
ture learning build on sparse coding applications, such
as Zheng et al. (2011), that employ Laplacian learning as
a smoothness-inducing factor. These methods assume that
if data sits on a graph, then neighboring nodes have simi-
lar representations, a property known as local invariance.
Forcing the representations to include the data manifold
structure is achieved by adding a Laplacian regularization
term to the sparse coding task or to the dictionary update.

Classification, too, can gain from this constraint on the
representations, as intra-class similarities are also assumed
to be reflected in the underlying graph structure. In
Yankelevsky and Elad (2017), the constraint of LC-KSVD
that ties atoms to classes is replaced with a milder reg-
ularization term that ensures smoothness over the data
manifold. The suitability of dictionaries to implicitly rep-
resent structure has been tested in works such as Irofti and
Stoican (2017), which train the dictionary to discriminate
between several types of faults in water networks.
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3. LAPLACIAN-STRUCTURED DICTIONARY
LEARNING

We first consider the problem in which the classification
task involves discriminating between different graph struc-
tures. Thus, in this section we design a learning algorithm
based on structured dictionaries for computing efficient
representations of Laplacian matrices. We assume that
each matrix signal y(i) ∈ Rm×m has a Laplacian structure,
namely it exhibits the properties of a Laplacian matrix.
Note that we have abused the notation in (1), and now m
refers to each of the two signal dimensions. We intend to
capture this structure using linear combinations of basic
atomic Laplacians

y(i) ≈ L1x
(i)
1 + · · ·+Lnx(i)n

where x ∈ Rn,Lj ∈ Rm×m, ∀j ∈ [n].

More compactly, we seek the following particular represen-
tation of y(i)

y(i) ≈ L · (x(i) ⊗ 1),

where x(i) ∈ Rn and L = [L1 · · ·Ln] ∈ Rm×mn. In
order to put this approximation problem in a more formal

manner, we consider vectorized signals y(i) ∈ Rm2

, the
atoms Di = vec(Li) and derive the following constrained
optimization problem with Laplacian-type constraints

min
D,X,L

‖Y −DX‖2F (3)

s.t. Di = vec(Li), 1 ≤ i ≤ n,
Li1 = 0, [Li]`j ≤ 0, ∀` 6= j,

T r(Li) = m.

Note that the slack variables L can be easily eliminated,
but we keep them for a more elegant presentation. A
typical approach in the literature, for solving the problem
(3), is the K-SVD family of algorithms, which proved
empirically efficient when only orthogonality constraints
are present; however, the extension of K-SVD scheme
to the more complicated Laplacian constraints is highly
nontrivial and we do not analyze this subject in our paper.
Consequently, we will focus on alternating minimization
and block coordinate descent schemes which are more ap-
propriate for our current constrained setting (see Nesterov
(2012); Patrascu and Necoara (2015a,b)).

The last linear equality constraint of (3) couples the lines
of the Laplacian matrices and it is imposed with the
purpose of avoiding the trivial solution (see Yankelevsky
and Elad (2017)). Since the problem scales with Laplacian
dimension m2 and data dimension N , simple algorithms
with computationally cheap iteration are ideal in our
high dimensional setting. Although the block coordinate
descent (BCD) methods are one of the most appropriate
schemes at hand (Nesterov (2012); Patrascu and Necoara
(2015a,b)), they require constraints separability which
do not hold in our case due to the last equality. To
remedy this issue, we transfer the last equality constraint
in the objective through quadratic penalization, which
will further avoid the trivial solution, and subsequently
apply BCD inner schemes. Also, since we aim to obtain
parsimonious representations of the vectorized Laplacians,
we will additionally impose `0 sparsity constraints on the
representations matrix X, obtaining the following problem

Algorithm 1: Alternating Minimization (AM)

Data: signals Y ∈ Rm2×N ,

initial dictionary D[0] ∈ Rm2×n

Initialize k = 0
while stopping criterion do not hold do

Compute X [k] by solving (4), with D = D[k] fixed
Compute D[k+1] by solving (4), with X = X [k] fixed
k = k + 1

min
D,X,L

‖Y −DX‖2F +
ρ

2

n∑
i=1

(Tr(Li)−m)
2

(4)

s.t. Di = vec(Li), 1 ≤ i ≤ n,
Li1 = 0, [Li]`j ≤ 0, ∀` 6= j,

‖Xi‖0 ≤ s,
where s is the prefixed number of nonzeros in each rep-
resentation. Notice that, for high enough values of the
penalty parameter ρ > 0, the trace of each atomic Lapla-
cian Li approaches m. Since the resulted problem has non-
convex objective function and also nonconvex constraints,
one of the most simple and efficient outer strategies in
this case is the alternating minimization (AM) scheme,
which, at each iteration, alternates the minimization over
D andX. Since none of the steps of AM are computable in
closed-form, we will consider AM (presented in Algorithm
1) as an outer optimization scheme and provide further
appropriate algorithms to solve the local problems from
each step.

Computing the dictionary. The optimization problem
in D is convex, with a linear least squares type objective
and linear constraints, which can be approached in princi-
ple with standard QP algorithms. Given the representation
matrix from previous iteration X [k], the new dictionary is
the solution of following problem

(D[k+1],L[k+1]) = arg min
D,L

fρ(D,L) :=
∥∥∥Y −DX [k]

∥∥∥2
F

+

+
ρ

2

n∑
i=1

(Tr(Li)−m)
2

(5)

s.t. Di = vec(Li), 1 ≤ i ≤ n,
Li1 = 0, [Li]`j ≤ 0, ∀` 6= j.

Since this particular problem scales with m2 and N , most
of general QP iterative algorithms (e.g. gradient algo-
rithms Nesterov (1983), interior point methods) require
at each iteration at least O(m2N) operations, which even
for medium dimensions (m,N) might be prohibitively
high. Therefore, we further provide a BCD scheme with
O(mn + m log (m)) complexity per iteration, which effi-
ciently computes the dictionary even in high dimensions.
The BCD algorithm uses the constraints separability of
(5)(see Nesterov (2012)): each line of the Laplacian Li is
subjected to a simplex-type set (one linear equality and
positivity constraints). Since the projection of simplex-
type sets can be efficiently computed in O(m logm), then
a projected coordinate gradient step can also have a fast
iteration. Therefore, our scheme performs the following:

(i) Chooses randomly at each iteration an atom Di and
a m−size block [Di]l from the atom. This randomly
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chosen block represents a line from the vectorized
Laplacian Li.

(ii) Once the randomized selections are made, a projected
coordinate gradient descent step is performed on the
objective function.

Formally, by eliminating the slack variables L, recall that
we obtain a new form of penalized objective function

fρ(D) := ‖Y −DX‖2F +

+
ρ

2

n∑
i=1

m−1∑
j=0

[Di]j(m+1)+1 −m

2

.

By further denoting eI = vec(Im) and R(i) =
∑
j 6=i
DjX

j ,

we then have the gradient on atom Di

∇Di
fρ(D) = (DiX

i −R(i))(Xi)T+

+ ρeI

m−1∑
j=0

[Di]j(m+1)+1 −m


= Di

∥∥Xi
∥∥2 −R(i)(Xi)T+

+ ρeI

m−1∑
j=0

[Di]j(m+1)+1 −m

 .

The gradient ∇Di
fρ(D) is Lipschitz continuous in D and

in order to determine the Lipschitz constants we make
the following observations. Given two matrices (D, D̃)
which differ only on the `−th block of the i-th atom with
difference vector h ∈ Rm, then

[D̃j ]t =

{
[Dj ]t + h if j = i, t = `

[Dj ]t otherwise

But observing that∥∥∥[∇Di
f(D)]` − [∇Di

f(D̃)]`

∥∥∥ ≤ (
∥∥Xi

∥∥2 + ρ) ‖h‖ ,

∀D ∈ Rm
2×n,h ∈ Rm,

then it is straightforward to estimate the Lipschitz con-

stants as Li =
∥∥Xi

∥∥2 + ρ.

The traditional constant stepsize used for most of the
first-order algorithms, including BCD schemes, is inverse
proportional with the Lipschitz constant (see Patrascu
and Necoara (2015a)). Therefore, we will further use the
derived Lipschitz constant estimate in the stepsize of `−th
block-atom update in block coordinate gradient descent
(BCGD) scheme as follows[

D
[t+1]
i

]
`

=
[
D

[t]
i

]
`
− 1

Li

[
∇Dif(D[t],X [k])

]
`
.

Denoting X` = {d ∈ Rm : 1T d = 0, d` ≥ 0, dj ≤ 0,∀j 6= `},
we provide the complete BCGD iteration in Algorithm 2.

The main computational effort is comprised in the gradient
and projection steps. The first one can be straightfor-
wardly estimated to take O(mn). However, if we consider
that the matrix X [k](X [k])T is available, then the com-
plexity can be further reduced. For the projection step
we use Kiwiel’s algorithms (Kiwiel (2007)), which requires
O(m log (m)) operations. Notice that, the stopping crite-
rion is usually based on the diminishing gradients norm
of the objective function f . Regarding the total computa-
tional complexity, sublinear and dimension-dependent con-

Algorithm 2: Block Coordinate Gradient Descent

Data: signals Y ∈ Rm2×N ,

initial dictionary D[0] ∈ Rm2×n,
representations X [k] ∈ Rn×N

Initialize t = 0
while stopping criterion do not hold do

Choose randomly 1 ≤ it ≤ n, 1 ≤ `t ≤ m
Compute gradient step:

D =
[
D

[t]
it

]
`t
− 1
Lit

[
∇Dit

f(D[t],X [k])
]
`t

Compute projection step:[
D

[t+1]
j

]
`

=

{
πX`

(D) if j = it, ` = `t[
D

[t]
j

]
`

otherwise

t = t + 1

vergence rates for multiple BCGD schemes have been pro-
vided in Nesterov (2012); Patrascu and Necoara (2015a,b)
for convex and non-convex (sparse) optimization problems.

Computing the representation. Secondly, the repre-
sentation problem in X is a nonconvex `0-constrained
quadratic sparse representation problem which can be sub-
optimally solved with standard schemes such as OMP.

X [k] = arg min
X

∥∥∥Y −D[k]X
∥∥∥2
F

(6)

s.t. ‖Xi‖0 ≤ s.
Remark 1. Proper theoretical analysis of the overall com-
putational complexity of the outer AM scheme, using the
convergence rates of the inner BCGD algorithm, will be
provided in a future work.

4. SEPARABLE LAPLACIAN CLASSIFICATION

Our second contribution is an adaptation of the Separable
Dictionary Learning problem that integrates topological
information and is aimed at identifying anomalous graph
structures.

The DL framework can also handle multidimensional sig-
nals, however the standard formulation requires the signals
to be vectorized. This operation breaks the correlations
between successive columns of the data matrix, be they
spatial, as in the case of images, or temporal, as in multiple
measurements applications. The alternative, developed in
Hawe et al. (2013), is to train one dictionary for each di-
mension of the signal, such that each captures the patterns
occurring along it. Consider the case of 2D signals, Y ∈
Rm1×m2×N . The DL problem can be expressed in terms
of two dictionaries, D1 ∈ Rm1×n1 and D2 ∈ Rm2×n2 , and
the representation X ∈ Rn1×n2×N

Y = D1XD
T
2 + V (7)

The model is equivalent to (1) considering D = D2⊗D1.
As such, (7) can be plugged in the objective function (2)
to obtain the straightforward 2D adaptation. Note that
the normalizing constraint on the dictionary atoms now
applies to both D1 and D2.

Both computing the representation and updating the
dictionary can benefit from working with a structured,
smaller problem. Several extensions of classical methods
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Algorithm 3: Graph Laplacian Classification using Sep-
arable Dictionary Learning

Data: train signals Ytrain ∈ Rm1×m2×Ntrain ,
test signals Ytest ∈ Rm1×m2×Ntest ,
train labels, test labels, sparsity level s, classes C,

initial dictionaries D
(c)
1 ∈ Rm1×n1 , D

(c)
2 ∈ Rm2×n2

Result: estimated test labels, l̂

for c = 1 : C do

Train class dictionaries: D
(c)
1 ,D

(c)
2 using Y

(c)
train and s

Compute representation X(c) of all Ytest using

D
(c)
1 ,D

(c)
2

Compute representation errors:

εc =
∥∥∥Ytest −D(c)

1 X(c)D
(c)T
2

∥∥∥2
F

Classify test signals: l̂test = arg min(ε)

have been proposed for the separable case, with evident
advantages in what complexity is concerned and similar,
if not equal, performance compared to the standard al-
gorithms. We briefly describe the ones used later in our
simulations. The sparse coding step can be efficiently com-
puted via an adaptation of the OMP algorithm Fang et al.
(2012) that considers pairs of atoms fromD1 andD2 when
updating the support, resulting in a significant complexity
reduction of a factor of m compared to applying standard
OMP on the vectorized formulation. As for the dictionary
learning step, Pairwise Approximate K-SVD Irofti and
Dumitrescu (2019) performs an alternate update of the two
dictionaries. Keeping one dictionary fixed when renewing
the atoms of the other ensures that competing pairs that
share one atom do not hinder convergence. The update
itself is in the spirit of the original AK-SVD.

Our next strategy is to exploit the two dimensional struc-
ture of a graph Laplacian in order to learn connectivity
patterns that are specific to each class of graphs. The adap-
tation of the classification method previously presented to
the separable structure case proceeds as follows.

The training signals from each class are used separately
to train one pair of dictionaries. Classifying a new, test
signal, will account to evaluating which pair of dictionaries
is better at representing the signal. This ability is assessed
by computing the root mean square error, defined as
RMSE = 1√

m1m2N

∥∥Y −D1XD
T
2

∥∥
F

. The smallest of the

c errors associated to each signal marks the estimated
class. Algorithm 3 resumes the steps above.

We use the superscript (c) notation to indicate variables

relating to class c. Dictionaries D
(c)
1 and D

(c)
2 are trained

on signals that belong to c, Y (c).

5. GRAPH ORTHONORMAL BLOCKS
CLASSIFICATION

We now turn to the problem of classifying signals that have
an underlying network structure. Topology is no longer
explicitly given, however we wish to take advantage of
the existing structural clues. For the task, we adapt a
DL scheme such that the dictionary atoms incorporate
network information.

The standard DL problem designs dictionary D as a set
of n independent atoms, but for certain classes of signals
it has been shown Irofti (2015) that imposing structure
on D and its atoms improves its representation power.
A common approach is to structure the dictionary as a
union of orthonormal blocks Lesage et al. (2005); Rusu
and Dumitrescu (2013). The DL problem becomes

min
Q1...,QB ,X

‖Y − [Q1 Q2 . . . QB ]X‖2F
s.t. ‖Xi‖0 ≤ s, 1 ≤ i ≤ N

QT
j Qj = Im, 1 ≤ j ≤ B

(8)

where each block of atoms Q represents a set of atoms,
forming an orthogonal basis, that are optimized together.
It is common to instill these blocks with extra properties
that allow for faster or better approximation algorithms.
Single Block Orthogonal (SBO) algorithm [Rusu and Du-
mitrescu (2013)] builds the dictionary as a union of L
orthogonal basis (or blocks) Q ∈ Rm×m. Given signal y,
the representation stage identifies the basis that represents
it best and uses thresholding to impose sparsity.

Remark 2. Due to orthogonality, the hard-thresholding
operation of canceling all but the s absolute largest co-
efficients of x = QTy is optimal.

Thus, the s-sparse representation x of a signal y using
block Q can be simply implemented through the partial
sorting function: x = SELECT(QTy, s).

Proposition 1. (Dumitrescu and Irofti, 2018, Chapter 7)
Given a union of B orthogonal blocks, the best basis
j to represent a given signal y is picked by computing
the energy of the resulting representation coefficients and
selecting the block where the energy is highest. More
precisely, if

xi = SELECT(QT
i y, s) (9)

is the representation using block Qi, and Ei = ‖xi‖2 is its
energy, then the best orthogonal block is given by

j = arg max
i=1:B

(Ei). (10)

During the dictionary refinement stage, each basis Qj is
updated based on the Nj signals using it for representation
(in the same spirit as K-SVD). The minimization of the
representation error with such a dictionary is called the
orthogonal Procrustes problem.

Proposition 2. (Dumitrescu and Irofti, 2018, Chapter 4)
Given the matrices Y ,X ∈ Rm×Nj , if Qj ∈ Rm×m is
orthogonal, then the approximation error ‖Y −QjX‖F
is minimized by

Qj = V UT , (11)

where the matrices U , V are obtained from the singular
value decomposition

XY T = UΣV T . (12)

Here Σ is diagonal, U and V are orthogonal and all are
m×m.

A special characteristic of the SBO algorithm is that it
starts with an initial set of bases, which it then expands
during training. Before adding a basis to the existing
set, a given percentage of the worst represented signals
are collected in W and the new basis is initialized by
performing a few rounds of training on W .
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Table 1. Circular Subgraph Anomalies. Classification Accuracy (%).

L-structured DL Separable L-Class DL Classification OC-SVM

91.31 90.64 89.55 81.1

Remark 3. (Improvements via Parallelism). The special
dictionary structure of SBO and its effects on the repre-
sentation and training stages make it a good candidate
for parallelization. Indeed, this is demonstrated by the
GPU implementation from Irofti (2016) where P-SBO
is proposed (P stands for parallel). P-SBO expands the
set of bases by more than one at a time which, besides
improving parallelism, has been shown to also reduce the
representation error.

Remark 4. (Advantages over AK-SVD). Due to the sim-
plicity of the representation stage, O(m2) for representa-
tion and O(m) for thresholding, the main computation
demand of SBO is the dictionary training stage, whose
complexity is driven by the final number of bases in the
dictionary and the number of rounds necessary to train
them. On the other hand, OMP is usually the algorithm of
choice when performing representation with unstructured
dictionaries due to its speed and representation power.
However, it is also the main computational bottleneck of
the K-SVD family, having a complexity of O(ms(Bm +
s2)), which makes AK-SVD pale in comparison with SBO
in terms of execution time for both DL and signal repre-
sentation (see the execution times in Irofti (2016)).

Imposing Laplacian structure on the dictionary can also be
achieved by adapting the SBO algorithm presented previ-
ously. Indeed, during training, we initialize each orthog-
onal basis with a fixed, orthogonalized Laplacian matrix.
The SBO training rounds performed on each basis will
further adapt and refine this original laplacian to better
fit the signals using the current basis.

The end goal is to classify signals that are known to lie on
a graph whose structure is unknown. This is achieved at
the end of the learning process by employing a SRC-like
scheme for handling the classification task, that can be
now performed by simply using the basis allocation scheme
described in Proposition 1. As such, our application per-
forms a separate SBO instance for each class specific signal
training set. The key is to initialize the bases with the
orthogonalized true Laplacian of the corresponding class
and then we can proceed with the standard P-SBO. The
resulting union of bases of each class Q(c) are collected
together and classification consists in applying (10) on the
set of all bases such that the chosen basis indicates the
signal class.

6. RESULTS

The aim of the following two synthetic experiments is
to show how transferring structural information from the
graphs to the dictionary atoms themselves improves the
performance in classification tasks when compared to
standard DL methods that are oblivious to the nature of
the signals. The first considers the case where the signals
directly express network topologies, the second deals with
more generic signals that rest on a graph.

6.1 Anomalous Subgraph Patterns

Our first experiment is designed to test the ability of
our proposed methods to distinguish between different
network structures. As such, we test our Separable Lapla-
cian Learning and the Laplacian-structured method on a
synthetic graph 2-class classification dataset, constructed
with the application of anomaly detection in mind. All
signals are generated to have the same network topology,
while on a small number of signals we implant an anomaly,
namely a structurally distinct subgraph. We design two
different types of anomalous subgraphs that are relevant
to fraud detection.

The normal graphs are constructed using a stochastic
block model with 8 modules, strong intra-module con-
nectivity (controlled by the diagonal dominance of the
probability matrix) and inter-module probability of 0.05.
Each graph has mn = 50 nodes. The first type of anomalies
consists in Watts-Strogatz graphs of ma = 10 nodes, with
mean degree k = 4 and rewiring probability β = 0.2. The
configuration leads to a network with prominent circular
structure. All weight values, regardless of whether the
edges are in the normal or anomalous part of the graph, are
distributed normally in [0, 100]. We construct Nn = 5000
normal graphs and Na = 500 anomalies and compute
their Laplacian matrices. We only consider the case of
undirected graphs, however the solutions can be used for
directed graphs, as well.

We test the ability of two of our approaches in learn-
ing to classify these Laplacians and compare with the
classic SRC-like scheme, where, as described in Sec-
tion 2.1, we train different dictionaries on the signals of
each class. Moreover, we compare the DL methods with
One-Class Support Vector Machine (OC-SVM) (see Tian
et al. (2018)), a reliable unsupervised anomaly detection
method, that has been successfully employed for anti-
money laundering tasks (see T. Jun (2005)). OC-SVM
takes the true anomaly ratio (10%) as input parameter
in order to derive the decision bound between the normal
signals and the outliers.

In order to suit the classical DL and OC-SVM algorithms,
we vectorize the Laplacian matrices. Vectorization is also
needed in our proposed Laplacian-structured Dictionary
Learning method. Our Separable Laplacian Classification
adaptation, on the other hand, works directly on the
matrices. The appropriate sparsity level is not given before
hand and optimal values are usually determined through
empirical tests. There is however the typical value of

√
m,

which is known to yield good results in some applications.
An adaptation of this popular choice to the problem of
Laplacian learning asks for setting s to be roughly the
square root of the number of edge connections in the
graph. However, since this value differs slightly in different
network realizations, for consistency reasons we set s = 30
in all experiments. All the algorithms were applied on 80%
of the signals. The remaining 20% are used to test the
classification performance.
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Fig. 1. Classification success on clique subgraph anomalies

Classification accuracy (i.e. percentage of correctly labeled
graphs) results presented in Table 6 show that imposing
or exploiting structure leads to increased performance.
For compactness, we have use the ”L-structured DL” ab-
breviation to denote our Laplacian-structured dictionary
learning method; ”Separable L-Class” to denote our Sep-
arable Laplacian Classification algorithm and refer to the
standard SRC-like classification method as ”DL Classifica-
tion”. Results show that when the DL model incorporates
known information on the signals (i.e. their Laplacian
structure), the solution leads to a more accurate iden-
tification of anomalous graphs, compared to the ”blind”
SRC-like method and OCSVM.

The same testing procedure is applied to a second type
of subgraph anomalies, namely cliques. We now implant
clique-structured subgraphs in the normal graphs, which
we construct as before. The location of the implanted
anomaly is chosen at random. We assess the performance
on different sized cliques. In the case of our Separable
L-Class algorithm, the smaller anomalies (of 4 and 5
nodes respectively) require an adjustment of the dictionary
overcompleteness factor (which dictates the number of
atoms with respect to signal size). In those cases, the
best performance is obtained for n = 6mn, while for the
rest n = 2mn suffices. Recall that mn represents the
number of nodes in the normal graph. Figure 1 shows
the classification accuracy of our two proposed algorithms,
Laplacian-Structured Dictionary Learning and Separable
Laplacian Classification compared to the plain Dictionary
Learning Classification and One-Class SVM.

Money laundering schemes most often entail unnatural
connections between the nodes of the transactions graph,
such as circular or clique patterns, addressed in our
synthetic experiment. The performance of the proposed
methods is encouraging with respect to identifying other
anomalous network structures as well.

6.2 Anomalous Signals on Graphs

In a second set of experiments we test our adaptation
of SBO to the problem of classifying signals that sit
on different graph topologies. It is common practice in
synthetic DL experiments to generate the data as a linear
combination of s atoms of a known random dictionary. In
our case, we also require the signals to rest on a known
graph with Laplacian L. We follow the principle described
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Fig. 2. Influence of SBO parameters on performance

in Yankelevsky and Elad (2016) that ensures a proper
coupling between the generating Laplacian and dictionary
and construct the signals of each class using the following
scheme.

Starting with a random initial D[0] (i.e. having random
vectors as atoms), we obtain our true dictionary as D =
(λI + L)−1D[0], where L is the graph Laplacian of the
corresponding class. We use the same normal and circular
topologies as in the previous experiment. The parameter
λ controls the smoothness of the dictionary atoms. While
atom smoothness is not crucial to our application, the
choice of the parameter will be reflected in how well the
signals adhere to the underlying graph structure. As per
the above mentioned reference, we set λ = 5. Following
the construction of D, we generate the signals using
s = 4 random atoms and add Gaussian noise of level
SNR = 20. We set N1 = 6000 for the normal class
and N2 = 600 for the anomalies. As previously, 80% of
the signals are used for training, while the remaining for
testing. To initialize the union of orthogonal blocks, we
orthogonalize the true generating Laplacians. These initial
2 blocks are subsequently refined using N/8 signals of
the corresponding class. Figure 2 shows the influence that
the number of blocks and fraction ν of badly represented
signals used for basis construction have on performance.
We perform 7 rounds of base refinement and learn 6 bases
in parallel (see Remark 3).

Best results, 99.70% classification accuracy, are obtained
when working with 48 bases for each class and retraining
on 30% of the signals. Applying the SRC-like classification
on the dataset yields 99.77%. The small difference is how-
ever compensated by the definite complexity advantage of
SBO over SRC Irofti (2016), as detailed in Remark 4.

7. CONCLUSIONS

We proposed three dictionary learning methods for ex-
ploiting the structural information of graphs in order to
improve the network classification task. When working
directly with the structure of the graphs, our method of
imposing Laplacian structure on the dictionary atoms has
yielded better results compared to the standard dictionary
classification algorithm and to OCSVM. Our adaptation
of the separable dictionary learning problem, which takes
into account vicinity patterns in 2D data also constitutes a
better alternative to the classical solution, which is obliv-
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ious to the underlying structure, as well as to OCSVM.
As for the more general problem of signals that lie on
graphs, our adaptation of a block orthogonal algorithm,
that imposes a Laplacian-like structure on the dictionary
has yielded similar performance compared to the clas-
sic dictionary classification method, however with known
computational advantages.
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