
A Path-Velocity Decomposition Approach
to Collision Avoidance for Autonomous
Passenger Ferries in Confined Waters

Emil H. Thyri ∗ Morten Breivik ∗ Anastasios M. Lekkas ∗

∗ Centre for Autonomous Marine Operations and Systems (AMOS),
Department of Engineering Cybernetics, Norwegian University of
Science and Technology (NTNU). NO-7491 Trondheim, Norway.

Abstract: A deliberate collision avoidance approach for autonomous surface vehicles operating
in confined waters with high traffic is presented. The approach focuses on dynamic obstacles, by
assuming a predefined set of paths that are collision-free with respect to static obstacles. Hence,
the collision avoidance problem is reduced to a velocity planning problem, which is solved by
first transforming all dynamic obstacles to a path-time space and subsequently constructing a
conditioned visibility graph and traversing it with Dijkstra’s algorithm. The performance of this
approach is demonstrated through both simulations and full-scale experiments in Trondheim
harbor, using the NTNU milliAmpere ferry platform and virtual dynamic obstacles.

Keywords: Autonomous surface vehicle, collision avoidance, path-velocity decomposition

1. INTRODUCTION

Zero-emission autonomous passenger ferries have received
increasing attention in recent years. Such ferries can pro-
vide a much needed option for reducing the stress on
existing urban infrastructure by utilizing the waterways.
Moreover, their acquisition and operation are expected to
cost less than pedestrian and bicycle bridges, while at the
same time enabling bridge-free waters for leisure boats and
sailboats. In addition, electric autonomous transport can
reduce operator cost by automation, and air pollution by
replacing fossil-fuel alternatives. The task repetitiveness
and small area of operation restrict the complexity of au-
tonomous navigation for urban waterways, and make it a
fine case for bridging the interaction between autonomous
systems and humans.

There are two major tasks that must be solved for au-
tonomous systems to become a reality:

(1) Situational awareness, which is sensing and describing
all aspects of the situation that are relevant for the
execution of the mission. For autonomous surface
vehicles (ASVs) this includes navigation and obstacle
tracking.

(2) Automated planning in accordance with the under-
standing of the situation in a way that solves the
mission in a satisfactory manner. For ASVs, this con-
sists of planning trajectories from the current position
to a desired destination which gives a predictable
behaviour and avoids collision.

In the remainder of this paper, we will focus on the task
of collision avoidance (COLAV) through deliberate trajec-
tory planning. We assume that data on position, heading,
velocity and extent of all relevant moving obstacles is
available.

Previous work considering COLAV in the maritime do-
main includes development of reactive short-term and
deliberate long-term methods, as well as combinations of
such methods in hybrid structures. The hybrid structures
can reap the benefit of both the long-term or global plan-
ning that often comes at a high computational cost, as well
as the short-term responsiveness of reactive algorithms
which typically have low computational cost. Figure 1
illustrates such a hybrid COLAV architecture with a long-
term path and trajectory planner in combination with a
reactive short-term COLAV algorithm. The work done
by Bitar et al. (2019) describes a long-term trajectory
planner that uses an optimization-based path planner to
determine a path that is collision-free with static obstacles,
in combination with an MPC approach to plan a local
trajectory that is collision-free with regard to dynamic
obstacles. In (Kuwata et al., 2014), a version of the re-
active velocity obstacle (VO) algorithm with COLREGs
features is implemented and validated through full-scale
experiments. The VO algorithm selects a velocity pair from
a finite set of admissible velocities that ensure no collision,
at the cost of potentially deviating from the initial trajec-
tory. Another reactive algorithm is the branching-course
model predictive control (BC-MPC) algorithm developed
by Eriksen et al. (2019). The algorithm simulates a finite
set of maneuvers for a short time-horizon and chooses the
best combination of maneuvers according to some cost
function. Both the VO and BC-MPC algorithms receive
a path or trajectory which they track while adapting to
dynamic obstacles by generating adjustments to the head-
ing and velocity references. However, such adjustments can
cause large deviations from the nominal path and might
not be feasible for confined waters.

In this paper, we propose a trajectory planning method
with COLAV functionality for the specific case of au-
tonomous passenger ferries operating in confined waters

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 14829

Fig. 1. A hybrid COLAV architecture as suggested in
(Eriksen, 2019), with support functions such as ENC
and situational awareness.

with high traffic. The approach is based on the princi-
ple of path-velocity decomposition, where the paths are
predetermined and collision-free with regard to any static
obstacles. The paths can be computed either offline or in
a higher level in the COLAV architecture as in Fig. 1.
The proposed method is suitable as a mid-level COLAV
system in a hybrid system as the one depicted. In addition
to the trajectory planning capabilities of the method, it is
augmented with functionality for validation of the current
trajectory according to updated obstacle data, where a
failed validation triggers a replanning. This augmentation
provides reactive features that make the method robust to
changes in obstacle course and velocity.

The method of path-velocity decomposition was first sug-
gested in (Kant and Zucker, 1986), where the moving ob-
stacles are transformed onto the path-time space, based on
the assumptions of constant obstacle behaviour, which in
our case correspond to constant course over ground (COG)
and speed over ground (SOG). A conditioned visibility-
graph (Vgraph) is constructed in path-time space, and
then traversed with Dijkstra’s algorithm to find a collision-
free velocity profile. This approach has been suggested for
land-based robotics in (Fraichard and Laugier, 1993), and
a similar approach is also applied to maritime COLAV
with regard to static obstacles as a path-planner in
(Casalino et al., 2009), but has to our best knowledge
not been applied to COLAV for dynamic obstacles in the
maritime domain.

We use a three degree-of-freedom (3-DOF) notation where
ηv = [Nv, Ev, ψv]T is the ownship vessel pose in an Earth-
fixed North-East-Down (NED) reference frame denoted
{n}, and ηk = [Nk, Ek, ψk]T is the pose of obstacle k in
{n}.
The remainder of this article is structured as follows: In
Section 2, the velocity planning algorithm is described in
detail along with its reactive features. Section 3 presents
the simulation environment and results, while Section

4 presents the full-scale experimental results. Finally,
Section 5 provides concluding remarks and future work.

2. COLLISION AVOIDANCE APPROACH

The suggested COLAV approach can be separated into
two algorithms:

• Algorithm 1 is the deliberate part of the COLAV
system, which calculates a velocity profile for a path,
and outputs a trajectory.

• Algorithm 2 is the reactive part, which validates
the current trajectory against most recent obstacle
data. Algorithm 2 is used to trigger a replanning in
Algorithm 1, see pseudocode below.

Algorithm 1 VELOCITY PLANNER()

Input: Paths, Obstacle Tracking Data,Waypoints
atDestination = false
while atDestination == false do

isValid = VALIDATE CURRENT WAYPOINTS();
if isValid == false then

calculate obstacle representations();
transform obstacles to path time();
construct Vgraph();
traverse Vgraph();
calculate trajectory from waypoints();

end
atDestination = check if at destination();

end

Algorithm 2 VALIDATE CURRENT WAYPOINTS()

Input: Waypoints, Obstacle Tracking Data
Output: boolean isValid
isValid = true;
if Current Waypoints is Empty then

isValid = false;
return isValid;

else
calculate obstacle representations();
for Every subpath in Waypoints do

transform obstacles to path time();
Intersection=test for intersection(subpath);
if Intersection then

isValid = false;
return isValid;

end
end
return isValid;

end

2.1 Predefined Paths

A set of five nominal paths is used. The paths are num-
bered 1 to 5, from port to starboard relative to the transit
direction. Each nominal path is defined by n indexed
waypoints, with n− 1 subpaths connecting the waypoints.
The subpaths are assumed to be straight lines between two
consecutive waypoints. However, a path can be made up
from an arbitrary number of waypoints to approximate a
curved path. All nominal paths end up in the same point,
the destination of the transit, but do not have the same
starting point. Since the position of the ferry might not

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14830

Fig. 2. Nominal paths and adjusted paths for a vessel
at [Nv, Ev] = [4,−60]. The branch angle of 30° is
illustrated in red for the first nominal path.

be on any of the nominal paths, a set of five adjusted
paths are constructed. The first waypoint of all adjusted
paths, wp1, is the position of the ferry. For each of the five
adjusted paths, the position of the second waypoint wp2
is found by identifying the subpath i in the corresponding
nominal path that is closest to the ferry, and subsequently
calculating the position of wp2 on the subpath such that
the line from wp1 to wp2 makes a 30° angle to subpath i.
We call this angle the branch angle. If the coordinates of
wp2 exceed the length of the subpath, wp2 is set to the
position of waypoint i+ 1. Lastly, the nominal waypoints
from index i + 1 to n are added to the adjusted paths.
Fig. 2 shows the nominal paths through an east-west
oriented canal, and the adjusted paths for a vessel located
in [Nv, Ev] = [4,−60]. The branch angle is illustrated in
red. In the choice of branch angle, factors such as passenger
comfort, vessel maneuverability, transit length and COL-
REGs should be considered. As a compromise between
readily apparent maneuvers and excessive maneuvering,
we have used a branch angle of 30°.

2.2 Obstacle Representation

For robustness and ease of computation, we suggest a
simplified obstacle representation that captures the rele-
vant features of a dynamic obstacle. A diamond shaped
region of collision (ROC) is placed around the obstacle
in a way that fully encapsulates its estimated extension,
in addition to the extension of ownship (OS), which is
a designation used for the ferry. By doing this, the OS
can be considered as a point without extension when con-
structing the Vgraph in the path-time space. A method for
calculating the extent of the ROC is described by Lozano-
Perez (1983). In addition to the ROC, we introduce two
more regions: The high penalty region (HPR) and the low
penalty region (LPR). A simplified obstacle representation
is shown in Fig. 3. Each of the ROC, HPR and LPR for
obstacle k are calculated according to

cf = [Nk + lfcos(ψk), Ek + lfsin(ψk)], (1)

ca = [Nk + lacos(ψk + π), Ek + lasin(ψk + π)], (2)

cs = [Nk + lscos(ψk + π/2), Ek + lssin(ψk + π/2)], (3)

cp = [Nk + lpcos(ψk − π/2), Ek + lpsin(ψk − π/2)], (4)

where cf , ca, cs and cp are the coordinates of the vertices
in {n} for the fore, aft, starboard and port direction
respectively, and lf , la, ls and lp denote the corresponding
lengths of extension from the center of the obstacle. An
appropriate length needs to be assigned to comply with
the dimensions of the OS and the obstacle, including

-40 -30 -20 -10 0 10 20 30 40

-20

-10

0

10

20

30 Obstacle Heading ROC HPR LPR

Fig. 3. Simplified obstacle representation for an 8 m long
and 4 m wide obstacle traveling west.

any desired safety factor and perimeter size. Here, a
symmetrical extension has been used, with

lf = la = (lk + los + lfa region) (5)

ls = lp = (wk + los + lsp region) (6)

where lk and wk are the length and width of obstacle
k, and los is the length of OS. The variables lfa region

and lsp region are the additional region sizes and are set
to lsp LPR > lsp HPR > lsp ROC > 0 and lfa LPR >
lfa HPR > lfa ROC > 0 for the ROC, HPR and LPR,
respectively.

2.3 Transformation to Path-Time Space

To construct the Vgraph, the obstacle representation in
{n} is transformed to the path-time space. The transfor-
mation gives surfaces in path-time space that correspond
to the obstacle representations occupation of the path in
time. Since the obstacle representation consists of line seg-
ments moving in {n}, the problem consists of finding the
intersection between each line segment with each subpath
as a function of time. The assumption of constant obstacle
behaviour ensures that the intersection is a line segment,
and can be defined by its end-points I1 = [p1, t1] and
I2 = [p2, t2] in path-time space, where the intersection
line can be parameterized as

I =
p− p1
p2 − p1

=
t− t1
t2 − t1

, I ∈ [0, 1], (7)

where [p, t] is a point on the line I. A general method for
finding the intersection in R3 is given in (Kant and Zucker,
1986). We use the following method for finding I1 and I2
in R2:

The subpath Pj is subpath no. j in an adjusted path. In
particular, Pj starts in wps = [Ns, Es], ends in wpe =

[Ne, Ee] and has length dj =
√

(Ne −Ns)2 + (Ee − Es)2.
The subpath is parameterized by

Pj =
N −Ns

a
dj + dj−1 =

E − Es

b
dj + dj−1, (8)

where the point [N,E] is located on the subpath for
Pj ∈ [dj−1, dj], with a = Ne −Ns and b = Ee − Es where

dj−1 =

j−1∑
m=1

dm (9)

is the accumulated length for all prior subpaths. This
gives the path the intuitive unit [m]. Further, assume an
obstacle representation line segment L from l1 = [N1, E1]
to l2 = [N2, E2] at time t = t0, moving with a linear
velocity v = [vN , vE]. The line is parameterized as

L =
N −N1 − vN (t− t0)

c
=
E − E1 − vE(t− t0)

d
, (10)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14831

where the point [N,E] is located on the line segment for
L ∈ [0, 1] with c = N2 −N1 and d = E2 − E1, giving the
four equations

Pj − dj−1

dj
a+Ns = N, (11)

Pj − dj−1

dj
b+ Es = E, (12)

Lc+N1 + vN (t− t0) = N, (13)
Ld+ E1 + vE(t− t0) = E. (14)

By combining (11) and (13), and (12) and (14), N and E
is eliminated, and the set of equations is reduced to

Lc+N1 + vN (t− t0) =
Pj − dj−1

dj
a+Ns, (15)

Ld+ E1 + vE(t− t0) =
Pj − dj−1

dj
b+ Es. (16)

Equations (15)-(16) contain three unknown variables, Pj ∈
[dj−1, dj], L ∈ [0, 1] and t ∈ (−∞,∞).

There are three possibilities for the intersection: I) the full
length of L passes through Pj , II) L does not pass through
Pj , or III) part of L passes through Pj . Start by assuming
the first case, and solve (15)-(16) for L = 0 and L = 1 to
get I1 and I2 respectively. If this gives p1, p2 ∈ [dj−1, dj]
this corresponds to I. If either p1, p2 < dj−1 or p1, p2 > dj ,
this is II and I1, I2 = ∅. Any other combination, where p1
and p2 is either on each side of the set [dj−1, dj], or one
is within the set and one is outside the set, corresponds
to III. In this case, for each pi 6∈ [dj−1, dj], i ∈ [1, 2], set
Pj = dj−1 or Pj = dj , corresponding to the boundary pi
is violating, and solve (15)-(16) to find ti. The path-time
coordinates of the ends of the intersection are Ii = [pi, ti].

The I1 and I2 coordinates are calculated for all line
segments in all obstacle representations, for each subpath
to construct one path-time space representation for each of
the five adjusted paths. Figure 4(a) shows the transformed
obstacle representation of four moving obstacles onto a
104 m long straight-line path. In the transformation, three
sets are constructed for each adjusted path; N is the node
set, containing all intersection-points I1 and I2 from the
transformation of all HPR and LPR, also including the
node IOS = [0, t] at the start of the path, where t is the
current time. R and H are the set of intersection line
segments I from the transformation of all ROC and HPR,
respectively.

2.4 Constructing the Vgraph

A traditional Vgraph is constructed from all edges con-
necting two nodes that do not intersect any edges in R.
Since the Vgraph is in the path-time space, it requires a
few additional conditions, the second and third condition
were formulated in (Kant and Zucker, 1986). First, time
along an edge must be monotonically increasing. Further-
more, the velocity of an edge must be limited to the
maximum velocity of the ferry, Vmax. In addition, since the
OS is located at IOS = [0, t], edges that are not reachable
from the current coordinates are also omitted. For the
Vgraph to span from IOS to the end of the path, a set
of end-nodes N̄ are calculated, one for each node in N .
For all end-nodes n̄s, ps = dn−1 according to (9), and

ts = tk +
ps − pk
Vdes

(17)

0 20 40 60 80 100

0

20

40

60

80

100

120

140

160

180

(a) (b)

Fig. 4. Path-time space. (a) Four obstacle representa-
tions transformed to path-time space. (b) Constructed
Vgraph with ROC from four obstacles.

where pk and tk are the path and time coordinates of the
corresponding node in N , and Vdes is the desired transit
velocity. The edge set E, for the Vgraph, is determined
by including all combinations of node pairs (ni, nj) from
N ∪ N̄ that hold the conditions

C1: ni, nj ∩R = ∅,
C2: |pj−pi

tj−ti
| ≤ Vmax,

C3: ti < tj ,
C4: | pi

ti−t | ≤ Vmax and
C5: ti > t.

For each edge in E, a cost is calculated as

cij = ct + cv + cl + cn + cHPR, (18)

where ct, cv and cl is the cost on time, velocity and length,

ct = (tj − ti)kt, (19)

cv =
∣∣∣ (pj − pi)

(tj − ti)
− Vdes

∣∣∣kv, (20)

cl = |pj − pi|kl, (21)

where kt > 0, kv > 0 and kl > 0 are tuning parameters, cn
is the cost related to the node nj and is either kHPR > 0
or kLPR > 0 depending on whether the node originates
from the HPR or LPR. Lastly, cHPR is set to kHPR if
ni, nj ∩H 6= ∅ and 0 if ni, nj ∩H = ∅ to penalize edges
that pass through high penalty regions.

Figure 4(b) shows a Vgraph in path-time space with
the four obstacles from Fig. 4(a). Joseph Kirk’s Matlab
implementation of Dijkstra’s algorithm is used to traverse
the graph (Kirk, 2015).

2.5 Trajectory from Waypoints

Dijkstra’s algorithm outputs a set of path-time waypoints
that make up the minimum-cost path. Furthermore, (11)-
(12) are used to find the corresponding NED waypoints
of the path-time waypoints. From the NED waypoints,
along with time-coordinates of the path-time waypoints,
we calculate a time-parameterized reference trajectory by
using a third-order reference model (Fossen, 2011).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14832

Fig. 5. The milliAmpere moving in Trondheim harbour.

2.6 Validation and Replanning

Algorithm 2 introduces the reactive features to the
COLAV approach by periodically validating the current
trajectory. The validation is performed by first construct-
ing the set R like in Subsection 2.3, by transforming
the ROC of all obstacles onto the path spanned by the
current NED waypoints. Then, the algorithm constructs
the set S of line segments from all subpaths connecting two
consecutive waypoints in the current path-time waypoints,
and lastly, checks for any intersections between the two
sets. The current trajectory is valid if S ∩R = ∅, and not
valid if S ∩R 6= ∅. If the test renders the current trajec-
tory not valid, a replanning is performed in Algorithm 1,
while the other case triggers no actions. In the simulations
and experiments, the validation is performed with a time
period of T = 4 s. The validation period should reflect the
situational awareness system’s ability to detect changes in
obstacle speed and course. Another approach could be to
trigger the validation when a change in course or heading
for one or more of the obstacles is detected. In that case,
only the ROCs of the obstacles with changed behaviour
need to be transformed onto the path-time space.

3. SIMULATION RESULTS

Three simulations are implemented in Simulink with a
3-DOF model of the experimental ferry prototype mil-
liAmpere shown in Fig. 5. A system overview of the simu-
lator and guidance, navigation and control (GNC) system
is given in Fig. 6. The vessel model and thruster model
parameters are taken from the work of Pedersen (2019),
where the vessel and thruster parameters used are listed in
tables 3.4 and 3.9 respectively. The control system is the
model reference adaptive controller described in (Sæther,
2019).

In the simulations, obstacle data without noise is available
at all times. The data is provided by an obstacle simulator
that can simulate different obstacle behaviours. In the
presented results, three obstacle behaviours have been
used; constant behaviour, ”pass in front” and ”slow down”.
The ”pass in front” behaviour for obstacle k is active when
it has a relative bearing to the ferry brel ∈ (π/4, 3π/4) or
brel ∈ (−3π/4,−π/4), while having closing speed vclose >

0 and l < ltrig, where l =
√

(Nv −Nk)2 + (Ev − Ek)2 is
the distance from the obstacle to the ferry and ltrig > 0
is a trigger distance. When the ”pass in front” behaviour
is triggered, the obstacle course is adjusted to aim for a

Fig. 6. Simulator and GNC system overview. The orange
box contains the modeled vessel and sensor systems.
The guidance and control systems are the same for
both the simulations and experiments.

Table 1. Parameters

Name Value Unit

Vdes 1.0 m · s−1

Vmax 1.2 m · s−1

kt 10 s−1

kv 2 s ·m−1

kl 1 m−1

ltrig 40 m
r1 40 m
r2 10 m

Name Value Unit

kHPR 20 1
kLPR 0 1

lfa ROC 5.0 m
lsp ROC 2.5 m
lfa HPR 12.5 m
lsp HPR 11.2 m
lfa LPR 20.0 m
lsp LPR 17.5 m

point 20 m straight in front of the ferry. The ”slow down”
behaviour scales the obstacle velocity according to

v̄k = vkf(l) (22)

where v̄k and vk are the scaled and nominal velocity of
obstacle i respectively, and

f(l) =

1, if l > r1
l−r2
r1−r2

, if r1 ≥ l ≥ r2
0, otherwise,

(23)

where r1 > r2 > 0 are the limits for the scaling. The
parameter values for simulations and experiments are
given in Table 1.

The COLAV approach is tested in two environments:

• Environment 1 is a crossing over a narrow canal with
traffic traveling close to perpendicular to the nominal
paths.

• Environment 2 is a canal-crossing with a majority of
the transit along the canal and hence parallel to the
traffic.

3.1 Simulation 1

Simulation 1 is in Environment 1, with four obstacles
traveling along the canal, two approaching from each side.
The obstacles have constant behaviour. The ferry starts
with initial condition ηv0 = [0, 0, 0.2915]T. Fig. 7 gives
situation overviews at different times of the transit. In the
situation overviews, the ferry with course and track history
is blue, and the obstacles with course and track history are
red. The obstacle representations are included. The grey
dashed lines give the nominal paths, and the solid grey
areas indicate the canal-banks. The along path velocity
and velocity reference are shown in Fig. 8, where the green
dashed line denotes the time of velocity-planning.

From the figures, one can see that the ferry starts off with
a close to zero velocity to let the two obstacles approaching
from the port side pass, while moving from path3 to path4.
Subsequently it accelerates to near transit velocity for the
remainder of the transit. The change of path allows the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14833

(a) (b)

(c) (d)

Fig. 7. Simulation 1: Situation overview of the transit.
Obstacles have constant behaviour.

ferry to keep transit velocity and still pass behind the two
obstacles approaching from starboard. From Fig. 8 one can
see that only the initial planning was necessary. This is due
to the obstacle behaviour complying with the assumptions
made in the transformation to the path-time space.

Fig. 8. Simulation 1: Along-path velocity and reference.
Only the initial velocity-planning was necessary.

3.2 Simulation 2

Simulation 2 is also in Environment 1, with four dynamic
obstacles traveling along the canal, two approaching from
each side. The obstacles maneuver to pass in front of the
ferry if they enter the enabling sector. The ferry has initial
condition ηv0 = [0, 0, 0.2915]T. Fig. 9 shows snapshots
from the transit and Fig. 10 shows the along-path velocity
and velocity reference.

From the velocity profile, we can see that the ferry starts
off at transit velocity, and performs a replanning at t =
8 s, which is triggered by one of the obstacles from the
port side adjusting its heading as it enters the enabling
sector. The replanning makes the ferry stop and wait for
the obstacles to pass, as can be seen from Fig. 10. At t =
36 s, the ferry proceeds at transit velocity. At t = 84 s,
a second replanning is triggered by the second obstacle
approaching from the starboard side as it alters its course.
This gives a re-planned trajectory that changes to path5
and follows this path at transit velocity to the destination.
This simulation shows the reactive qualities of the COLAV
system that are introduced by Algorithm 2.

3.3 Simulation 3

Simulation 3 is in Environment 2 with ten dynamic obsta-
cles traveling along the canal, five approaching from each

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Simulation 2: Situation overview of the transit.
Obstacles have the ”pass in front” behaviour. The
ferry changes path at each replanning.

Fig. 10. Simulation 2: Along-path velocity and reference.
Two replans are triggered in addition to the initial
velocity-planning.

side. The obstacles have constant behaviour. The ferry
starts with initial condition ηv0 = [0,−50, 0]T. Fig. 11
shows snapshots from the transit, and Fig. 12 shows the
along-path velocity and reference. This simulation demon-
strates two interesting aspects of the COLAV method.
One is the ability to handle high traffic, where the OS
merges in-between five moving obstacles, and is unaffected
by the five moving obstacles passing in the other direction
within a short distance to the OS. An optimization-based
algorithm like the one in (Hagen et al., 2018) might handle
the same situation by altering course and/or heading to
minimize some risk function. The other aspect is its ability
to trail behind (or in front of) another obstacle at matching
velocity in a lane-keeping manner, which is an intuitive and
safe way of maneuvering in such confined waters.

4. EXPERIMENTAL RESULTS

The experiment is conducted with milliAmpere depicted
in Fig. 5. The experimental test platform is a 5 m by 2.8 m
prototyping platform developed by NTNU that is used for
developing and testing sensor systems, situational aware-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14834

Fig. 11. Simulation 3: Situation overview of the transit.
Obstacles have constant behaviour.

Fig. 12. Simulation 3: Along-path velocity and reference.
Only the initial velocity-planning is necessary due to
constant obstacle behaviour.

ness algorithms, human machine interaction and COLAV
systems. The experiment is conducted in a shielded part
of Trondheim harbour with little traffic. The guidance and
control system is the same as for the simulations. The
code is generated from Simulink to run in ROS 1 , and runs
on an Axiomtek eBOX670-883-FL with an Intel Core I7
processor and Ubuntu OS. The sensor model is replaced by

1 Robot operating system, https://www.ros.org/about-ros/

(a) (b)

(c) (d)

(e) (f)

Fig. 13. Experiment: Situation overview of the transit. Ob-
stacles act according to the ”slow-down” behaviour.

Fig. 14. Experiment: Along-path velocity and reference.
Several replans are triggered due to the unpredictable
obstacle behaviours.

a navigation system consisting of a Vector™ VS330 GNSS
Receiver with Real Time Kinematic (RTK) capacity, and
an Xsens MTi-20 IMU, providing a position accuracy of
10 mm in the horizontal plane and 0.05° in heading. The
experiment is run with virtual obstacles in the same obsta-
cle simulator as for the simulations. The reference filter,
control system, thrust allocation and obstacle simulator
all run with a period of 0.1 s to ensure sufficient trajectory
tracking. As mentioned, the COLAV algorithms run the
validation with eventual replanning at a period of 4 s. In
a scenario with 4 moving obstacles and 5 nominal paths,
each made from 3 subpaths, Algorithm 2 and Algorithm
1 in sequence are able to finish calculations in about 0.2 s
without any effort to optimize the code for runtime.

The presented experiment is chosen from the set of exper-
iments in (Thyri, 2019). In the experiment the obstacles

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14835

act according to the ”slow-down” behaviour. Figure 13
gives a situation overview of the transit and Fig. 14 gives
the planned and actual velocity profile for the transit. The
ferry starts off along path5 at about 0.8 m/s to pass behind
the two obstacles heading north-east. As the obstacles slow
down, a replan is triggered that brings the ferry to a stop
for about 15 s awaiting the obstacles to pass. Subsequently,
the ferry moves back to path3 to pass behind the two
obstacles traveling south-east. As the obstacles slow down,
the current plan is rendered infeasible, and a series of
replans are triggered around 80 s into the transit. The ferry
is eventually halted for about 50 s to wait for the obstacles
to proceed before the transit is completed without further
replans. This scenario shows how the reactive features of
the COLAV approach makes it able to adapt to devia-
tions from the assumptions on constant obstacle behaviour
that are made in the transformation to path-time space.
Another remark is that the velocity planner causes the
ferry to stop at two occasions which is because the 30°
branch angle used in calculating the adjusted paths and
the short distance to the closest obstacle makes all five
adjusted paths pass through the ROC of that obstacle.
A solution to this could be to have a dynamic construc-
tion of the adjusted paths, e.g. in a higher level of the
COLAV architecture. Another solution could be to pair the
velocity planner with a more reactive COLAV algorithm
that would allow deviations from the adjusted paths. A
third thing to note about the stop-and-go behaviour is
that it puts demands on the vessel actuation system. For
the algorithm to work in the presence of environmental
disturbances from wind and current, the vessel needs to
be fully actuated in order to maintain tracking for both
position and heading when stationary. This is particularly
important for passenger transport to ensure passenger
comfort and safety. For underactuated ASVs, a solution
can be to introduce a Vmin > 0 condition on the edges
when constructing the Vgraph.

5. CONCLUSION

A simple and robust deliberate COLAV approach for
autonomous passenger ferries is presented in this paper.
The method can run in real time and produces predictable
and intuitive trajectories in confined waters with high-
traffic. It can also adapt to unforeseen changes without
deviating from the predefined transit paths, ensuring safe
maneuvering in confined waters.

Future work includes improving COLREGs compliance
by augmenting the obstacle representation, analyzing the
completeness of the method, pairing the velocity planner
with a reactive COLAV algorithm, improving the trajec-
tory tracking and control system, and testing the COLAV
approach together with real object tracking data from
exteroceptive sensors to see how it handles noise and
uncertainty.

ACKNOWLEDGEMENTS

This work was supported by the NTNU Digital trans-
formation project Autoferry and the Research Council of
Norway through the Centres of Excellence funding scheme
with project number 223254.

REFERENCES

Bitar, G., Eriksen, B.O.H., Lekkas, A.M., and Breivik,
M. (2019). Energy-optimized hybrid collision avoidance
for ASVs. In Proc. 18th European Control Conference
(ECC), 2522–2529. Naples, Italy. doi:10.23919/ECC.
2019.8795645.

Casalino, G., Turetta, A., and Simetti, E. (2009). A
three-layered architecture for real time path planning
and obstacle avoidance for surveillance USVs operating
in harbour fields. In Proc. OCEANS 2009-EUROPE,
1–8. Bremen, Germany. doi:10.1109/OCEANSE.2009.
5278104.

Eriksen, B.O.H., Breivik, M., Wilthil, E.F., Fl̊aten, A.L.,
and Brekke, E.F. (2019). The branching-course model
predictive control algorithm for maritime collision avoid-
ance. Journal of Field Robotics. doi:10.1002/rob.21900.

Eriksen, B.O.H. (2019). Collision Avoidance and Motion
Control for Autonomous Surface Vehicles. Ph.D. the-
sis, Norwegian University of Science and Technology
(NTNU), Trondheim, Norway.

Fossen, T.I. (2011). Handbook of Marine Craft Hydrody-
namics and Motion Control. John Wiley & Sons.

Fraichard, T. and Laugier, C. (1993). Path-velocity de-
composition revisited and applied to dynamic trajectory
planning. In Proc. IEEE International Conference on
Robotics and Automation (ICRA), volume 2, 40–45.
Atlanta, USA.

Hagen, I.B., Kufoalor, D.K.M., Brekke, E.F., and Jo-
hansen, T.A. (2018). MPC-based collision avoidance
strategy for existing marine vessel guidance systems. In
Proc. IEEE International Conference on Robotics and
Automation (ICRA), 7618–7623. Brisbane, Australia.
doi:10.1109/ICRA.2018.8463182.

Kant, K. and Zucker, S.W. (1986). Toward efficient
trajectory planning: The path-velocity decomposition.
The International Journal of Robotics Research, 5, 72–
89.

Kirk, J. (2015). Dijkstra’s minimum cost path algorithm.
URL https://se.mathworks.com/matlabcentral/
fileexchange/20025-dijkstra-s-minimum-cost-
path-algorithm.

Kuwata, Y., Wolf, M.T., Zarzhitsky, D., and Huntsberger,
T.L. (2014). Safe maritime autonomous navigation with
COLREGs, using velocity obstacles. IEEE Journal of
Oceanic Engineering, 39(1), 110–119. doi:10.1109/JOE.
2013.2254214.

Lozano-Perez (1983). Spatial planning: A configuration
space approach. IEEE Transactions on Computers, C-
32(2), 108–120. doi:10.1109/TC.1983.1676196.

Pedersen, A.A. (2019). Optimization Based System Identi-
fication for the milliAmpere Ferry. Master’s thesis, Nor-
wegian University of Science and Technology (NTNU),
Trondheim, Norway.

Sæther, B. (2019). Development and Testing of Navigation
and Motion Control Systems for milliAmpere. Master’s
thesis, Norwegian University of Science and Technology
(NTNU), Trondheim, Norway.

Thyri, E.H. (2019). A Path-Velocity Decomposition Ap-
proach to Collision Avoidance for Autonomous Passen-
ger Ferries. Master’s thesis, Norwegian University of
Science and Technology (NTNU), Trondheim, Norway.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14836

