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Abstract: A new composite adaptive backstepping control is proposed in this paper, which
achieves parameter estimation convergence without persistent excitation and reduces estimation
problem dimension for less computational complexity. A composite adaptation law is utilized to
improve estimation and tracking performance. Relaxation of the persistent excitation require-
ment for parameter convergence is accomplished by making information matrix full rank only
with finite excitation. The adaptation law for the proposed composite adaptive backstepping
control algorithm estimates parameters in each loop separately by taking an advantage from
a cascade control structure of backstepping control. Comparing to the adaptation laws which
estimate whole parameters of the dynamic system at once, the designed adaptation law deals
with smaller estimation problems, resulting in reduced computational complexity.

Keywords: Backstepping Control, Composite Adaptive Control, Finite Excitation, Persistent
Excitation, Cascade Control Structure, Computational Complexity

1. INTRODUCTION

Backstepping(BKS) control is one of the most widely and
successfully applied nonlinear flight control methods Koko-
tovic (1992); Kim and Kim (2013); Ghommam and Saad
(2017). BKS has a cascade control structure, where a state
for an inner loop acts on an outer loop as a pseudo input
driving a state for an outer loop to its desired value. This
implies that a control law design for a system with large
dimension can be split into several control law designs for
simple systems with smaller dimension in recursive way.
The closed-loop system with BKS fulfils a desired system
response with known stability and convergence properties
under Lyapunov framework. One of the critical issues
about BKS is that it is sensitive to model uncertainties,
because it requires full model information for implemen-
tation of the algorithm. Since it is difficult to get accurate
model information in general, it is important to make BKS
less dependent on model information.

In this paper, a composite adaptive control approach
Slotine et al. (1991); Duarte and Narendra (1989); Ciliz
(2009) is introduced to BKS in order to reduce its model
dependency by estimating part of model parameters online
and utilizing the estimates for controller implementation.
In order to improve estimation performance, an estimation
error based term is introduced to a tracking error based
adaptation law, resulting in a composite adaptation law.

A tracking error based adaptation law can be interpreted
as a simple integration of a tracking error signal, while a
composite adaptation law appears to be a low pass filter on
a tracking error signal due to the additionally introduced
estimation error based term. This implies that, when adap-
tation gains are increased to enhance estimation speed,
oscillations on estimation and tracking response in tran-
sient phase can be amplified with a tracking error based
adaptation law. On the other hand, increase of adaptation
gains enlarges a bandwidth of a composite adaptation law
without excessive amplifications of oscillatory behaviors
in estimation and tracking response in transient phase.
Thus, a composite adaptation law achieves smoother tran-
sient response than a tracking error based adaptation law,
resulting in enhanced tracking performance and system
robustness.

One of the main issues with the composite adaptation law
is that persistent excitation (PE) is required to guarantee
parameter convergence. This PE condition results in per-
sistent oscillations of state and control input signals, which
is unrealistic for practical applications. There have been
previous studies Chowdhary et al. (2013, 2014); Parikh
et al. (2018); Cho et al. (2017) on relaxation of PE con-
dition to finite excitation (FE) condition for composite
adaptation laws. To achieve convergence of parameter esti-
mation only with FE, they utilize a similar approach as fol-
lows. An information matrix is obtained by accumulating
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regressor data and algorithms to make use of richer regres-
sor signals for the information matrix are introduced. This
results in full rank of the information matrix after a certain
time, only with FE. Besides, speed in the slowest adapta-
tion direction is maximized since the information matrix
which maximizes its minimum eigenvalue is selected. The
approaches in Chowdhary et al. (2013, 2014); Parikh et al.
(2018) require larger memory than Cho et al. (2017), since
they store all regressor matrices for the information matrix
calculation. To the best of our knowledge, relaxation of
PE condition has not been discussed for the composite
ABKS Ciliz (2007). Chowdhary et al. (2013) and Cho
et al. (2017) are based on full-state feedback control, and
Chowdhary et al. (2014) and Parikh et al. (2018) utilize
dynamic inversion control scheme.

For successful design of an adaptation law, it is also impor-
tant to consider practical issues related to computational
complexity induced from the adaptation law structure. A
structure of an adaptation law is highly dependent on a
structure of a baseline control algorithm. If the baseline
control law has a cascade control structure, it is possible
to design the adaptation law for each loop of the control
system. In previous studies Chowdhary et al. (2013, 2014);
Parikh et al. (2018); Cho et al. (2017), baseline control
algorithms do not have cascade control structures. Even
in Ciliz (2007) with ABKS, an adaptation law design does
not fully take advantage of the structural characteristics
of BKS. As a result, adaptation laws in relevant literature
Ciliz (2007); Chowdhary et al. (2013, 2014); Parikh et al.
(2018); Cho et al. (2017) are designed to estimate all
the uncertain parameters in the dynamic system at once.
Since a dimension of an augmented parameter estimation
problem enlarges as the number of dynamic equations and
uncertain parameters increases, matrix operations with
excessively large matrices are required, resulting in high
computational complexity. Thus, a structure of the pro-
posed adaptation law needs to be designed in a way to
decrease the estimation problem dimension.

In this paper, a composite ABKS control algorithm is de-
signed, where its estimation problem dimension is reduced
and PE requirement is relaxed. The composite adaptation
law which enhances both estimation and tracking perfor-
mance is utilized. The relaxation of PE requirement to
FE for parameter convergence is accomplished by utilizing
information matrix construction and selection methods
based on Cho et al. (2017). One of the main contributions
of this paper is that the adaptation problem for the overall
dynamic system is divided into smaller estimation prob-
lems with the new composite ABKS. By taking advantages
from a cascade control structure of BKS, the proposed
adaptation law estimates model parameters in each loop
separately, rather than estimates whole parameters of the
system at once. This results in decreased computational
complexity from reduced estimation problem dimension.

This paper is organized as follows. System dynamics with
model uncertainty is defined in Section 2. Derivation
and stability analysis of the proposed composite ABKS
are addressed in Section 3. In Section 4, simulations are
conducted to show performance and characteristics of the
new composite ABKS. The overall concluding remarks are
stated in Section 5.

2. SYSTEM DYNAMICS

In this paper, system dynamics with model uncertainty is
considered as follows.

ẋ = f(x) + g(x)u+ ∆(x)

where

x = [x1, x2, · · · , xn]
T

x′i = [x1, x2, · · · , xi]T (i = 1, · · · , n)

f(x) =
[
f1(x′1), f2(x′2), · · · , fn(x′n)

]T
g(x) = diag

[
g1(x′1), g2(x′2), · · · , gn(x′n)

]
u = [u1, u2, · · · , un]

T
with ui =

{
xi+1 (i = 1, · · · , n− 1)

δ (i = n)

∆(x) =
[
∆1(x′1),∆2(x′2), · · · ,∆n(x′n)

]T
(1)

x ∈ Rn×1 indicates a state vector and x′i ∈ Ri×1 is a subset
of the state vector x. f(x) ∈ Rn×1 and g(x) ∈ Rn×n
represent known model information. u ∈ Rn×1 denotes
a control input vector. Model uncertainty is expressed as
∆(x) ∈ Rn×1, which satisfies the matching condition in
Leitmann (1979). Since a control algorithm based on the
backstepping methodology will be proposed, the system
dynamics (1) is suggested in a strict-feedback form. First,
fi(x

′
i) and gi(x

′
i) in f(x) and a diagonal matrix g(x) only

depend on x′i. Second, a real control input δ is applied for
the innermost loop and a state becomes a pseudo input
for the next outer-loop in recursive way, constructing the
control input vector u as (1).

A structured model uncertainty ∆(x) which is linearly
parameterized, is utilized in this paper as below.

∆i(x
′
i) = θTi φi(x

′
i) (i = 1, · · · , n)

where

θi =
[
θi1 , θi2 · · · θimi

]T
φi(x

′
i) =

[
φi1(x′i), φi2(x′i) · · ·φimi (x

′
i)
]T (2)

θi ∈ Rmi×1 is a vector of unique constant true parameters,
which is unknown. φi(x

′
i) ∈ Rmi×1 represents a known

regressor vector which is continuously differentiable.

3. COMPOSITE ADAPTIVE BACKSTEPPING
CONTROL

3.1 Derivation

A control command vector uc ∈ Rn×1 is defined as (3)
from (1). Subscript c indicates a command.

uc = [u1c , u2c , · · · , unc ]
T

with uic =

{
xi+1c (i = 1, · · · , n− 1)

δc (i = n)

(3)

uic is a command which ui should follow in order to
drive xi to xic . Under the assumption of ideal actuator,
unc = δc = δ.

A tracking error z ∈ Rn×1 is given as below.

z = [z1, z2, · · · , zn]
T

where zi = xi − xic
(4)
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The unknown vector θi of true parameters will be es-
timated as θ̂i by the adaptation law (7). A vector of
parameter estimation errors is given as (5).

θ̂i − θi =
[
θ̂i1 − θi1 , θ̂i2 − θi2 , · · · , θ̂imi − θimi

]T
(5)

A recursive design methodology for the control command
uc with an adaptation law is utilized under Lyapunov
framework, resulting in (6) with (7). Asymptotic stability
is achieved for the closed loop system with (6) and (7),
which will be proved under Lyapunov stability analysis
framework in following subsection 3.2.

A derived control command uic is suggested as follows.

uic =
1

gi

[
−Cizi − gi−1zi−1 − fi − θ̂

T

i φi + ẋic

]
where g0z0 , 0

(6)

Ci is a constant and positive design parameter for the
control law to achieve a desired closed-loop response.

θ̂i in (6) can be obtained from the adaptation law (7).

d

dt
θ̂i = ziΓiφi − λiΓi

(
Ωiθ̂i − ηi

)
(7)

Γi = diag
[
γi1 , γi2 , · · · , γimi

]
∈ Rmi×mi is a matrix of

constant and positive design parameters for the adaptation
law. Constant and positive λi is a relative weight factor on
the estimation error based term to the tracking error based
term. Ωi ∈ Rmi×mi denotes an information matrix to be
designed. ηi ∈ Rmi×1 denotes an auxiliary vector, which
can be expressed as ηi = Ωiθi. Since θi is unknown, ηi
should be calculated from known signals in another way,
which will be discussed in later part related to a regressor
filtering scheme. The estimation error based term in the
composite adaptation law (7) leads to smoother transient
estimation and tracking response, resulting in enhanced
system performance.

Regressor filtering scheme is utilized to compute the aux-
iliary vector without state derivative information. For the
i-th loop, (1) can be rewritten as (8) with g′i , giui.

ẋi = fi + g′i + θTi φi (8)

By applying Laplace transform to (8),

sxi(s) = fi(s) + g′i(s) + θTi φi(s) (9)

Filtered dynamics (10) can be obtained by multiplying a
first order filter F (s) = 1

ks+1 with the filter parameter k
for both sides.

sF (s)xi(s) = F (s)
{
fi(s) + g′i(s) + θTi φi(s)

}
(10)

Using sF (s) = 1
k (1−F (s)), (10) can be rearranged as (11).

1

k

{
xi(s)− F (s)xi(s)

}
= F (s)fi(s) + F (s)g′i(s) + θTi

{
F (s)φi(s)

} (11)

Filtered dynamics in the time domain (12) is obtained by
applying inverse Laplace tranform to (11).

1

k

(
xi − xif

)
= fif + g′if + θTi φif

(12)

where (·)f represents a filtered signal by F (s).

Let

ζif ,
1

k
xif + fif + g′if (13)

(14) is obtained by rearranging (12) in terms of θTi φif and

substituting (13) into the rearranged equation.

θTi φif =
1

k
xi − ζif

where

φ̇if =
1

k

(
φi − φif

)
ζ̇if =

1

k

(
1

k
xi + fi + g′i − ζif

) (14)

θTi φif information in (14) will be utilized to calculate

the auxiliary vector in (15). Without regressor filtering

scheme, θTi φi information is required to calculate the

auxiliary vector instead of θTi φif information, and θTi φi

information can be obtained from (8), resulting in us-
age of the state derivative information. In general, state
derivatives are difficult to be measured, and noise in state
measurement signals can be amplified if the state deriva-
tives are calculated via differentiation of the state mea-
surements. Hence, it is advantageous to utilize regressor
filtering scheme and prevent usage of the state derivative
information in auxiliary vector calculation.

Update laws for the information matrix Ωi and the auxil-
iary vector ηi are designed as (15).

Ω̇i(t) = −K(t)Ωi(t) + φif (t)φi
T
f (t)

η̇i(t) = −K(t)ηi(t) + φif (t)

(
1

k
xi(t)− ζif (t)

)T (15)

with Ωi(t0) = 0mi×mi and ηi(t0) = 0mi×1. K(t) is a
forgetting factor to be designed, which is positive and
bounded. The information matrix update law in (15) con-
sists of two terms. The first term is defined by introducing
the forgetting factor (17) to the current information matrix
obtained from accumulated regressor data for previous
time interval. The second term represents the effects of the
current filtered regressor φif on the information matrix
update.

Ωi and ηi are derived by integrating the update laws (15).

Ωi(t) =

∫ t

t0

e
−
∫ t
τ
K(ν)dν

φif (τ)φi
T
f (τ)dτ

ηi(t) =

∫ t

t0

e
−
∫ t
τ
K(ν)dν

φif (τ)

(
1

k
xi(τ)− ζif (τ)

)T
dτ

= Ωi(t)θi
(16)

It can be observed from (16) that the information matrix
Ωi is positive semi-definite. Besides, (16) implies that the
information matrix can have full rank and become positive
definite matrix over time, when the regressor signal is
excited.

K(t) is a forgetting factor, which is designed as below.

K(t) = kL + (kU − kL) tanh
(
ϑ‖φ̇if (t)‖

)
(17)
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kL and kU indicate lower and upper bounds of K(t) with
positive constant values, respectively. ϑ is a constant and
positive design parameter for the forgetting factor.

The effects of the forgetting factor on the information
matrix are addressed as follows. First, the forgetting factor
enables the information matrix to be upper bounded in its
norm. Second, the forgetting factor makes richer signal
to be reflected more on the information matrix update
(15). The forgetting factor (17) becomes larger when φif

contains richer data with large ‖φ̇if (t)‖. Consequently,
the information matrix is updated to consider the current
filtered regressor signal more and the accumulated data
less. On the other hand, when φif does not contain rich

data with small ‖φ̇if (t)‖, the forgetting factor (17) gets
smaller. As a result, the current filtered regressor signal
is reflected less and the accumulated data affects more to
the information matrix update.

After the excitation is finished, the information matrix
will be degenerated due to the forgetting design and the
incoming filtered regressor signal which is not rich. In order
to prevent this phenomena, information matrix selection
method is introduced.

Ωib(t) , Ωi(tb), ηib(t) , ηi(tb)

tb , max

{
argmax
τ∈(t0,t)

F(Ω(τ))

}
where F(Ω(τ)) = σmin(τ)

(18)

F(Ω(τ)) is selected as a minimum eigenvalue of the in-
formation matrix. Eigenvalues of the information matrix
are related to speed for the estimation error based term
of the adaptation law in corresponding eigenvector direc-
tions. This means that maximizing the minimum eigen-
value can be interpreted as maximizing the adaptation
speed of the slowest direction. Information matrix becomes
positive definite during excitation, but after FE it might
become positive semi-definite again with rank deficiency.
The selection method (18) has an effect which automat-
ically excludes positive semi-definite matrices with zero
eigenvalues. Hence, the condition to guarantee parameter
convergence is relaxed from PE to FE through accumula-
tion and selection procedures.

A final adaptation law is suggested as (19), with best
information matrix and auxiliary vector from (18).

d

dt
θ̂i = ziΓiφi − λiΓi

(
Ωibθ̂i − ηib

)
(19)

Note that the adaptation law (19) is designed to estimate
θi for each loop separately. If all θi are augmented into
one parameter estimation problem for whole system, the
size of this augmented matrix for the unknown parameters
is
∑n
i=1mi × n, and the size of the corresponding infor-

mation matrix becomes
∑n
i=1mi×

∑n
i=1mi in maximum.

This implies that complex matrix operations, like matrix
multiplication and eigenvalue calculation for matrix selec-
tion, should be conducted with an excessively large size
of a matrix. Since the computational complexity of those
matrix operations dramatically increases as the matrix size
enlarges, it is beneficial to divide the adaptation problem
into smaller ones and conduct estimation for parameters
in each loop, as addressed in (19).

3.2 Stability Proof

A Lyapunov candidate function Vn considering both track-
ing and parameter estimation errors, is selected as below.

Vn =
1

2

n∑
i=1

z2i +
1

2

n∑
i=1

mi∑
j=1

1

γij

(
θ̂ij − θij

)2
(20)

Vn is positive definite for all tracking and parameter
estimation errors except the origin.

V̇n, derivative of Vn, can be derived as (21).

V̇n =

n∑
i=1

ziżi +

n∑
i=1

mi∑
j=1

1

γij

(
θ̂ij − θij

)
˙̂
θij

=

[
z1

{
−C1z1 + g1z2 − θ̃T1 φ1

}
+

n−1∑
i=2

zi

{
−Cizi − gi−1zi−1 + gizi+1 − θ̃Ti φi

}
+zn

{
−Cnzn + gn−1zn−1 − θ̃Tnφn

}]
+

n∑
i=1

mi∑
j=1

1

γij

(
θ̂ij − θij

)
˙̂
θij

=−
n∑
i=1

Ciz
2
i −

n∑
i=1

mi∑
j=1

(
θ̂ij − θij

)
φijzi

+

i∑
i=1

mi∑
j=1

1

γij

(
θ̂ij − θij

)
˙̂
θij

=−
n∑
i=1

Ciz
2
i −

n∑
i=1

λi

(
θ̂i − θi

)T (
Ωibθ̂i − ηib

)
=−

n∑
i=1

Ciz
2
i −

n∑
i=1

λi

(
θ̂i − θi

)T
Ωib

(
θ̂i − θi

)

(21)

Since Ωib becomes positive definite under FE, V̇n becomes
negative definite for all tracking and parameter estimation
errors except the origin. To this end, the asymptotic
stability for the closed-loop system is guaranteed.

4. SIMULATION

Simulations are carried out to check performance of the
proposed composite ABKS. As an illustrative example,
simulation results with short period mode dynamics for
an aircraft will be suggested in this section.

A short period mode dynamics is considered in this simu-
lation as follows.[

α̇
q̇

]
=

[
Z∗α 1
M∗α M∗q

] [
α
q

]
+

[
Z∗δ
M∗δ

]
δ (22)

State variables α and q represent an angle of attack and
a pitch rate, respectively. δ denotes a deflection angle of
an elevator. Z∗α, M∗α, M∗q , Z∗δ and M∗δ are aerodynamic
derivatives.

(22) is rewritten in the strict-feedback form in (1) with (2)
under the assumption that the effect of Z∗δ is negligible
McLean (1990).
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x = [α, q]
T

f(x) = [0, 0]
T

g(x) = diag [1,M∗δ ]

u = [q, δ]
T

∆(x) =
[
∆1(x′1),∆2(x′2)

]T
=
[
θT1φ1(x′1),θT2φ2(x′2)

]T
where

θ1 = [Z∗α]

φ1(x′1) = [α]

θ2 =
[
M∗α,M

∗
q

]T
φ2(x′2) = [α, q]

T

(23)

Note that Z∗α, M∗α and M∗q are considered as unknown

model parameters to be estimated as θ̂1 =
[
Ẑ∗α

]
and

θ̂2 =
[
M̂∗α, M̂

∗
q

]T
with the proposed composite ABKS.

The estimate (̂·) of the parameter (·) is defined as (̂·) =
(·)(1 + D(·)), where D(·) is a parameter uncertainty level
on (·) in percentage. True values for the model parameters

are set to be θ1 = [−1.963] and θ2 = [−4.749,−3.933]
T

and M∗δ = −26.685.

To have critical understandings about closed-loop charac-
teristics with the proposed composite ABKS, simulation
results with BKS will be additionally suggested and inves-
tigated for cases with and without D(·), as references. For
BKS and the proposed composite ABKS, C1 and C2 are
set to be 1.5, and angle of attack command αc is given as
low pass filtered 0◦ → 1.5◦ → 0◦ → −1.5◦ → 0◦ with 1

s+1 .
Simulation parameters for the proposed composite ABKS
can be summarized as Table. 1.

Table 1. Simulation parameters for ABKS

Γ1 λ1 Γ2 λ2 k kL kU ϑ

104 0.5 diag
[
104, 104

]
0.5 10−3 0.1 10 1

Figure. 1 shows each α response for nominal BKS, BKS
with D(·) = 5% and ABKS.

Magnitudes of tracking errors for each case and estimation
errors with the proposed composite ABKS are suggested
in Figure. 2.

It is shown in Fig. 1 that the closed-loop system with BKS
under true model information tracks a desired response
determined by C1 and C2 without any steady state error.
However, for BKS, 5% error on model information results
in about 30% steady state error. The angle of attack
response with new composite ABKS converges to the com-
mand without any prior knowledge on model parameters.
At the early stage, since the parameter estimation is not
converged yet, it is observed in Fig. 1 and Fig. 2 that the
tracking performance with the proposed composite ABKS
is worse than with BKS for the nominal case. As the pa-
rameter estimation converges, the tracking performance of
the system with new composite ABKS is enhanced, show-
ing similar performance with nominal BKS, as addressed
in Fig. 1 and Fig. 2. These simulation results imply that

0 5 10 15 20 25 30 35 40

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

c

BKS with True Model Information

BKS with Model Uncertainty

ABKS

Fig. 1. α Response

0 5 10 15 20 25 30 35 40

Time (s)

0

0.5

0 5 10 15 20 25 30 35 40

Time (s)

0

1

2

0 5 10 15 20 25 30 35 40

Time (s)

0

5

Fig. 2. Tracking and Estimation Error

the information matrix becomes full rank with the finite
excitation and the information matrix is maintained to be
full rank after the finite exitation. The proposed composite
ABKS shows high estimation and tracking performance
without persistent excitation.

5. CONCLUSION

A new composite ABKS control is successfully suggested
with relaxation of PE requirement to FE for parameter
convergence and reduction of computational complexity
from decreased estimation problem dimension. A com-
posite adaptation method is applied for enhanced esti-
mation and tracking performance. Parameter convergence
is accomplished without PE by making the information
matrix full rank only with FE. The adaptation law of the
proposed composite ABKS is designed by taking advan-
tage of a cascade control structure of BKS. As a result,
this adaptation law estimates uncertain model parameters
of each loop separately and computational complexity is
decreased from the reduced estimation problem dimension.
Simulation results are provided to show performance with
the proposed composite ABKS under FE.
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