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Abstract: This paper deals with the modeling of soil moisture retrieval from multispectral and
infrared (IR) images using convolutional neural network (CNN). Since it is difficult to measure
the soil moisture level of large fields, it is essential to retrieve soil moisture level from remotely
sensed data. Quadrotor unmanned aerial vehicle (UAV) is considered as sensing platform in order
to acquire data with high spatial resolution at anytime by non-experts. With considerations
both on the availability of sensors for the platform and the information needed to overcome
the effects of the canopies covering soil, IR and multispectral images are selected to be used
for soil moisture retrieval. In order to prevent information loss by the calculation of parameters
from measurements and enhance the applicabiliy for online operations, CNN is applied for the
construction of soil moisture retrieval model to use the sensor measurement images directly
as input data. Training and testing are conducted for the proposed CNN-based soil moisture

retrieval model using the data from actual quadrotor flight over an agricultural field.
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1. INTRODUCTION

Soil moisture is obviously one of the most crucial factor
to be monitored in agricultural fields. The stress level
and health of crops are highly dependent on the moisture
contained in them, which is directly related with the soil
moisture level. Thus, it is essential to observe the moisture
content of soil and conduct proper irrigation. However, for
large areas of agricultural fields, it is difficult and expensive
to construct static sensor systems for soil moisture level
measurement to cover all the areas. Measuring the soil
moisture level with mobile sensors require a lot of time
and manpower. This means that an algorithm or a model
to estimate the soil moisture level from the remotely sensed
data of the agricultural field is required.

Several points are required to be considered for the design
of soil moisture retrieval system. The first point is which
platform to utilize for the remote sensing. Satellites are
commonly utilized remote sensing platforms for the soil
moisture retrieval of the previous studies in Sandholt
et al. (2002); Ahmad et al. (2010); Younis and Igbal
(2015); Paloscia et al. (2008). The sensors are able to
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be mounted on an aircraft, as proposed in Notarnicola
et al. (2006). However, the spatial resolution of the images
acquired from satellites or large agricultural aircrafts are
too low. This implies that the precise investigation on
the soil moisture level for each point of the agricultural
field is difficult. Also, these platforms are difficult and
expensive to operate. More importantly, the availability
of the platforms are highly limited. A satellite can observe
a certain agricultural field only when it passes over that
area. Aircrafts require trained and experienced pilots,
who are not always available. In this study, a small
quadrotor unmanned aerial vehicle (UAV) is utilized as
a remote sensing platform. Since it fly over the fields at
extremely lower altitude than satellites or aircrafts, the
spatial resolutions of the data measured with UAV are
much higher. Also, this platform obviously requires much
less cost, and it can be operated easily by non-experts.
Moreover, UAV can conduct data acquisition at anytime
required by users.

The next consideration is the selection of sensors to be
utilized for soil moisture retrieval. Since remote sensings
are usually conducted from the above of the agricultural
field, when the field is covered by crops or grass, the
measurements on soil are affected by the canopy. Thus,
it is important to decide a sensor or a combination of
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sensors to obtain the soil moisture information and exclude
the effects of the canopy. Radiometer has been utilized
for the soil moisture retrieval of canopied soil in previous
studies. Microwave radiometers are applied in Liou et al.
(2001); Del Frate et al. (2003). Sandholt et al. (2002) used
multiple-channel radiometer (Advanced Very High Res-
olution Radiometer, AVHRR). Synthetic aperture radar
(SAR) (ENVIronmental SATellite, ENVISAT/Advanced
Systhetic Aperture Radar, ASAR) is considered in Palos-
cia et al. (2008). Also, combinations of radar with an
additional sensor have been suggested in the previous liter-
ature. Ahmad et al. (2010) introduced radar with AVHRR,
and radar and optical camera are utilized together in
Notarnicola et al. (2006). However, radiometers and radar
are usually too heavy to be equipped on small agricul-
tural UAVs. Also, to the best of the authors’ knowledges,
there is no appropriate commercial radiometer or radar
for small UAVs. The combination of infrared(IR) sen-
sor with Fourier-transform infrared spectroscopy (FTIR)
and multispectral sensor is proposed in Younis and Igbal
(2015). IR image sensors and multispectral cameras for
UAVs are available and easy to be integrated with UAV
systems. This means that the utilization of those sensors
is practical and cost-effective with UAVs. Thus, the soil
moisture retrieval model proposed in this paper is designed
with IR and multispectral images selected as the remotely
sensed data.

The last point to be considered is the methodology to
construct a soil moisture retrieval algorithm or model.
In Sandholt et al. (2002), a dryness index for land sur-
face, Temperature-Vegetation Dryness Index (TVDI), is
designed from the empirical parameterization of the re-
lationship between land surface temperature and Nor-
malized Difference Vegetation Index (NDVI). Younis and
Igbal (2015) conducted correlation and regression analysis
to discuss on the relationship between TVDI and soil
moisture measurement. The Bayesian approaches using
backscattering coefficients in Notarnicola et al. (2006) or
backscattering coefficients with emissivities in Notarnicola
et al. (2008) are proposed. A regression technique, support
vector machine (SVM), is used to estimate soil moisture
level from radar backscatter, incidence angle, and NDVI.
The algorithms discussed so far require to calculate the pa-
rameters, which have been studied to be related to the soil
moisture level, like NDVI or backscattering coefficients,
from the sensor measurements using the models proposed
in the previous studies. This implies that there are pos-
sibilities of information loss during these procedures, and
the modeling can be restricted by the previous knowledges
between the parameters and soil moisture level. Neural
network-based approaches have been proposed by several
studies in Del Frate et al. (2003); Liou et al. (2001); No-
tarnicola et al. (2008); Paloscia et al. (2008). However, the
input data of those neural network-based algorithms are
parameters, like backscattering coefficients, emissivities or
brightness temperature, which are still needed to be calcu-
lated from the sensor measurements using existing models.
In this paper, a convolutional neural network (CNN) in
Krizhevsky et al. (2012) is introduced to design a soil mois-
ture retrieval model. CNN is used in various applications
on image classifications and regressions. Since CNN takes
images as input data directly, by constructing soil moisture
retrieval model using this technique and define input as

images from IR and multispectral sensors, the procedures
to figure out parameters are not required. This means
that the information possessed in the images are not lost
while calculation of input parameters for previous neural
network-based algorithms from sensor data can result in
the loss of information. The trained CNN-based model is
free from the previous knowledges, implying the possibility
of figuring out hidden correlations between input images
and soil moisture level. Also, since the trained CNN-
based model conduct soil moisture retrival directly from
the image measurements within a short time, it can be
implemented for the online operations. Another important
feature of the CNN is that the input image is not required
to be flattened; it can be a 2-dimensional image with
multiple layers form different channels. Thus, the spatial
information of pixels are remained and it could be reflected
to the trained CNN-based model.

This paper is organized as follows. The descriptions on
the procedures of data collection are provided in Section
2. Section 3 deals with the development of the soil moisture
retrieval model using CNN. The training and testing
results are addressed in Section 4. The overall concluding
remarks of the paper are discussed in Section 5.

2. DATA COLLECTION

2.1 Trial Site

Fig. 1. Trial Site

The aerial remote data and soil moisture level data acqui-
sition took place on September 2018. The trial site is near
Claxton, York, United Kingdom. The overall image of trial
site is provided in Fig. 1. It is shown in Fig. 1 that most of
the trial site is covered with plants. This implies that it is
difficult to remotely obtain images of bare soil. Thus, an
algorithm or model to estimate the moisture level of the
soil beneath the canopy from the airborne images acquired
from the UAVs is required to be designed.

2.2 Remote Sensing Platform

The drone system for remote data collection is constituted
as shown in Fig. 2. Inpire 1 from DJI is selected as a
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Fig. 2. Drone and Sensor Equipment for Data Collection

sensing platform. The sensor marked with a red circle is
the multi-spectral sensor, RedEdge-M by MicaSense. It
acquires images of 5 different frequencies, which are blue,
green, red, red edge and near-IR, at the same time. The
infra-red sensor, ZENMUSE XT of FLIR, is highlighted
with a blue circle in Fig. 2. Since the two types of images,
multi-spectral and infra-red, are required to be obtained
simultaneously, multi-spectral and infra-red sensors are
equipped on the platform at the same time.

In order to maintain the spatial resolutions of the images,
the altitude of the platform is maintained to be constant
during the data acquisition. When the altitude is higher,
the spatial resolution becomes lower. If the platform flies
at a lower altitude, the spatial resolution of the image
could get higher. However, the crops could move due to
the vortex from the platform, resulting in the distortions
on the images. Thus, the flight altitude should be selected
with these points in considerations. The airborne data
utilized in this paper are obtained at the altitude of 50
m.

2.3 Ground Truth Measurement

(b) HH2 Moisture Meter

Fig. 3. Soil Moisture Sensor System

The ground truth data of soil moisture level is measured
with the sensor system composed of the devices in Fig.

3. The figures of the equipments in Fig. 3 are available at
Delta-T (2019). SM200 in Fig. 3(a) is a soil moisture sensor
by Delta-T devised to measure soil moisture content level
at a single position. It consists of a plastic body with two
stainless steel rods for sensing. The moisture meter in Fig.
3(b) is HH2 by Delta-T to show the measured soil moisture
level on the display. The overall soil moisture measurement
system is constructed by conneting the soil moisture sensor
with the moisture meter. In order to measure the moisture
content of soil at a certain point, the first step is to
drive both of the stainless steel rods of the soil moisture
sensor into soil at the point to conduct a measurement.
A waveform is generated and applied to the stainless steel
rods when power is connected to the sensor. This drives
the stainless steel rods to generate electromagnetic field
into surrounding soil. The permittivity of soil is dominated
by the water content, and this permittivity affects the
electromagnetic field from the sensor. This influence from
the permittivity of moisture in soil is measured by the
sensor as a voltage signal. The soil moisture level is derived
from this voltage signal, and displayed on the moisture
meter. The result can be displayed in either of mV or %Vol
unit. The unit for the soil moisture level is selected to be
%Vol in this paper.

2.4 Data Collection Procedures

The most important requirement for the data is that the
remotely sensed data and ground truth data should be
acquired for the same points on the ground. In other
words, a certain point where each soil moisture measure-
ment is conducted has to be identified as a pixel on the
airborne images. Thus, before starting data collection, two
reference positions are defined and marked with white
pannels on the trial site. The points for soil moisture level
measurement are defined as a relative positions from the
reference positions. The ground truth data acquisitions are
conducted for those points. After the soil moisture level
measurement, airborne multispectral and IR images are
obtained with the remote sensing platform. On the air-
borne images, the reference positions are clearly marked.
Since the distance between the reference points is known
and the relative position of the soil moisture level measure-
ment points are given, the soil moisture level measurement
points are identified on the images as pixels.

3. CONVOLUTIONAL NEURAL NETWORK FOR
SOIL MOISTURE RETRIEVAL

3.1 Input Image Data Processing

The objective of the soil moisture retrieval modeling is to
estimate the soil moisture level at a certain point from
the remotely sensed image data. Also, as will be discussed
in the next subsection, the CNN-based models get multi-
layered images as input data. This means that the images
for each soil moisture measurement point are needed to be
defined and identified from the measurements on the whole
agricultural field obtained by both IR and multispectral
image sensors. The whole procedures of cropping and
stacking images for input data definition are addressed in
Fig. 4.

Since the multispectral image sensor utilizes 5 different
frequencies, the sensor combination of this paper acquires
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Fig. 4. Cropping and Stacking Images for Soil Moisture Measurement Point

total 6 different frequencies of images. For an arbitrary
i-th soil moisture measurement point, the first step to
construct input image is to identify the point on each
image. The reference points of the trial sites are marked
with white pannels, so they are easily found on the
measurement images. Since the position of the i-th point
is defined relatively from the reference points, from the
relationship between the coordinates on the ground and
those on the images, the pixel which represents the i-
th point on each image is identified. The next step is
to define and crop input image of each frequency for
the i-th point. The size of input image is defined as a
constant odd-number parameter, p. For each image, the
input image for the i-th point is defined to be a (p X p)-
image with the pixel of i-th point on the center. Note that
the information of the surrounding area of the i-th point,
such as the gradient of pixel values, can be included and
considered in the input image by increasing p. However,
the increase of p means that the ratio of the data on the
i-th point to the input data decreases. Thus, the size of
the input images p is needed to be designed carefully to
enhance the performance of the overall model. The last
step is to stacking the images of 6 frequencies for the i-th
point. Those 6 images for the i-th point are stacked up
into a single image with 6 layers. This makes the pixels
representing the same point on the ground to be stacked
up and corrlated within the obtained input image. This
spatial data of the pixels could be utilized by the CNN-
based model.

Note that those procedures for input image construction
do not include any parameter calculation from the image
data. Complex image processings are not conducted and
only the cropping of the images around the pixels of the
soil moisture measurement points into a desired size is
introduced. Thus, there is no data loss during the input
image construction, and the proposed CNN-based model
utilizes the constructed images directly as input data.

8.2 Convolutional Neural Network Design

CNN is applied for designing the soil moisture estima-
tion model in this paper. The CNN-based models intake
an image with multiple layers from various channels as
input data and perform classification or regression. The
overall structure of the proposed CNN-based soil moisture
retrieval model is addressed in 5.

The proposed CNN-based model consists of 2 convolution
layers with activation functions and 1 fully connected
layer. At the first step of estimation, a stacked IR and
multispectral image is given as an input image, and the
first convolution layer is applied to this image. In the first
convolution layer, a set of weighting parameters, called
filter, is slided over the input image. A filter is a 2-
dimensional array of weights and its size is a design param-
eter. Also, the number of filters can be defined to be equal
to or more than 1 for each convolution layer. The training
of the CNN-based model is performed to optimize those
weights on all the filters to minimize regression errors.
Dot products are conducted between the weights in the
filter and the values of the pixels on the image overlapped
by the filter. The results obtained from the dot products
for all the pixels covered by the filter are summed up to
be a single number. These procedures are defined to be
a convolution operation. The convolution operations are
conducted for all the possible partial areas of the input
image with the size of the filter. The results from all the
parts of input image with all the filters are accumulated
while keeping their relative positions in the original image,
resulting in feature maps. The second convolution layer
takes these feature maps as input data and returns another
feature maps by conducting the similar operations. Note
that the filters of the second convolution layer are different
from those of the first layer. The activation functions are
introduced after each of convolution layer. They induce
nonlinearities on the model and enable the model to con-
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Fig. 5. Structure of Convolutional Neural Network for Soil Moisture Retrieval

duct self-training with backpropagation techniques. The
feature maps obtained from the second convolution layer
is converted into a 1-dimensional vector. This procedure is
called as flattening. The fully connected layer is a con-
ventional neural network structure with multiple layers
of perceptrons for regression. The weights and biases of
perceptrons are optimized during training to enhance the
regression performance. This layer gets the 1-dimensional
vector from the flattening as input and returns a single
number, which is the prediction on the soil moisture level
at the point where the input image is obtained. As a result,
the proposed CNN-based soil moisture retrieval model in
Fig. 5 takes stacked IR and multispectral image as an input
and returns the soil moisture level prediction. The training
and test of the proposed model with the data from the
trial explained in Section 2 are described in the following
section.

4. TRAINING AND TESTING OF CNN-BASED SOIL
MOISTURE RETRIEVAL MODEL

The training and testing results for the designed CNN-
based soil moisture retrieval model with the airborne
remotely sensed data are proposed in this section to show
the applicability of the CNN to the soil moisture retrieval.
In the trial described in Section 2, the soil moisture
measurements are conducted for 130 points. 110 points
are randomly selected among those points and the data
of these selected points are utilized for training the soil
moisture retrieval model. Another randomly chosen 10
points are defined to be the data set for validations during
training the model. The remaining 10 points are utilized
as test data set for the trained model. The input image
size for each point is defined to be p = 1. The distribution
of the actual soil moisture level are addressed in Fig. 6 for
each data group.

As discussed in Section 3, the CNN-based model proposed
in this paper has 2 convolution layers. The size of the filter
is defined to be 1 for both layers. The number of filters for
the first and second convolution layers are selected to be
15 and 5, respectively. The activation function is ReLLU.

Distribution of Soil Moisture Level Measurements
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Fig. 6. Soil Moisture Level Measurement Distribution

For the model training, the Adam optimizer, which is an
extension of stochastic first-order gradient descent algo-
rithm, is used. The maximum number of epochs is chosen
to be 1000. Validations are designed to be conducted for
every 50 epochs. The initial learning rate is defined to
be 0.1, and it is reduced by 10% every 100 epochs. The
training results and the prediction results with test data
set are addressed in Fig. 7 and 8, respectively.

The elapsed time for training is 17 seconds. It is shown
in Fig. 7 that loss function and root mean square error
(RMSE) of the training data set diminishes fast. The loss
function drops from 3.0542 to 2.785x 10~4, and the RMSE
decreases from 2.4715%Vol to 2.3601 x 1072%Vol. The
validation results show similar trends. The loss function
of the validation set starts from 1.6669 and diminishes to
9.8833 x 107°. The RMSE goes down from 1.8259% Vol to
1.4059 x 10~2%Vol.

The prediction errors and corresponding prediction error
levels in percentages with the test data set are proposed
in Fig. 8. The prediction error is defined by substract-
ing the predicted soil moisture level from the acutual
measurement, and its corresponding prediction error level
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Fig. 7. Training Results for CNN-based Model
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Fig. 8. Prediction Results with Test Data Set

is designed to be the ratio between the prediction error
and the actual measurement. The magnitude of prediction
error is shown to be less than 0.04%Vol, and the RMSE
is calculated to be 2.0163 x 1072%Vol. This results in
the less than 6% of prediction error level, and the root
mean square of the prediction error level in percentage is
2.4509%, showing that the prediction error is small with
the test data set.

5. CONCLUSION

Soil moisture retrieval for agricultural field covered by
canopy using the remotely sensed airborne data is dis-
cussed in this paper. The remote sensing platform is se-
lected to be a small quadrotor UAV equipped with IR
and multispectral image sensors. In order to minimize the
information loss of the input images and intake possibil-
ity of finding uncovered relationships between the images
and soil moisture level, CNN is applied for soil moisture
retrieval model design. The cropping and stacking im-
ages to define an input image of a certain soil moisture
measurement point is addressed. The overall architecture

and principles of the proposed CNN-based model are de-
scribed. The training and testing results indicate that the
soil moisture retrieval model proposed in this paper shows
small estimation error with the test data set.

In further studies, training and testing of proposed CNN-
based soli moisture retrieval model with a larger size of
dataset could be conducted to verify the applicability of
the model more clearly. The effects of the input image
size, spatial resolution change due to platform altitude
change, and hyperparameter tuning on the CNN-based
soil moisture retrieval model are required to be studied
for the enhancements on training speed and estimation
performance.
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