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Abstract: The work deals with a generalization of the internal model control method whereby the
original process model is suitably simplified to facilitate direct parameterization of feedback controllers.
Here, the m/n moment approximant is adopted as the simplified model. The parameterized feedback
controller contains a filter that can the tuned for closed loop system acceptable characteristics. The
method facilitates cheap computation of controllers satisfying desired performance and stipulated

constraints.
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1. INTRODUCTION

The internal model control (IMC) method has simplified and
expedited the design of simple controllers for single input
single output (SISO) plants. Its direct generalization to
multivariable systems is still a subject of continued research.
To appreciate this fact, the reader may confirm the statement
of masters in this area in their authoritative book (Morari and
Zafiriou, 1989) where on p. 293 they state “except in trivial
cases (minimum phase systems) the derivation of the IMC
controllers for MIMO systems and the effect of right half
plane zeros and poles is quite complex”. This work proposes
the simplification of the process model to a form which
engenders its direct use for rapid feedback controller
parameterization. The applicability of the method to small
and large plants or plants with or without time delays is
equally simple. The method facilitates the design of feedback
controllers satisfying desired performance and meeting
stipulated constraints. One of the preliminary steps proposed
in this generalization is the simplification of plant model as
an m/n moment approximant directly facilitating simple
feedback controller parameterization. This procedure is
directly utilizable in SISO plants thereby further enhancing
IMC utility. An exposition of the new method is given in
section 2 and its application to various plants is given in
section 3. A discussion of the results and conclusions from
the work are given in section 4.

2. DESCRIPTION OF THE METHOD

2.1 Internal Model Control Generalization Using
Moment Matching

It is assumed that the plant transfer function was originally
expressed in any commonly acceptable form. In order to
facilitate direct feedback controller parameterization, the m/n
moment approximant of the original transfer function G(s)
(assumed asymptotically stable and strictly proper) is
computed. This is undertaken by expanding G(s) into infinite
series:

Copyright lies with the authors

G(s) =X, G;st (1)

Its reduced model R(s) in the right matrix fraction form,
without loss of generality, is expressed as:

R(s) = ELoVisHEoTisH™, (Ta=1, m<n) (2)
R(s) is an m/n moment approximant at s=0 if R(s) is
asymptotically stable and

Z?;()l Gj—iTi = _G]—Tl (n S] <m-+ n) (3)

Vi =3,GT (0<j<m )
In (3) and (4), G;=0, j <0. A unique solution exists and
R(s) = G(s) + O(s™*"*) (5)

where the notation means that the power series expansions
not only exist but also agree up to terms of degree (m+n).
Note that the existence of the series (1) in a region R is
assured if G(s) is analytic at all points s =so in R (Apostol,
1982). However, if expansion about s=0 does not yield a
stable m/n approximant, Taiwo and Krebs (1995) have shown
how a stable approximant may be obtained by moment
matching about more than the single point s = 0.

2.2 Derivation of Feedback Controllers
Simplified Moment Approximants

Using
Consider the situation where the 0/1 moment approximant is
used as the moment approximant. Then
R(s) = Vo(Is + T,) ™" (6)
hence the (improper) internal model controller Q, is given by
Q) =R =(Is+T)Vo " ™
Properness of (7) is achieved by introducing the filter
f=1/(As+ 1) (3)

such that
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Q) =Q)f ©)
The conventional feedback controller C(s) (Fig 1) is given by

C(s) = (Vo 's + G (10)

And note that G51 = TVt

For illustration purposes, suppose G(s) is 2x2, (10) simplifies
to

C(s) _1 G11(s)  G12(s)

T 251G21(5)  Ga2(5) (i

where

Gij (s) = Voijs + Goj (12)
and Voij, Goi]- respectively denotes the (ij)th element of
V5! and Gy1. It is therefore clear that 0/1 approximant
parameterizes a PI controller and A is the tuning parameter
which may be chosen to produce a closed loop system with
desirable characteristics.

d
C(s)
+ + u
r Q(s) G(s) —>y
} +
R(s)
Fig 1: IMC Feedback control structure

Clearly, other values of m and » different from m =0 and n =
1 could be used when simplifying the plant model. For
example 0/2 and 1/2 moment approximants can be used to
parameterize PID controllers. Following exactly the same
procedure given above, the 0/2 approximant can be used to
parameterize the feedback controller

(13)

While the %2 approximant parameterizes the PID feedback
controller

C(s) = % Vo ts? + TyVits + ToVgh)

C(s) = % ((Vo_1 - T1V0_1V1V0_1 + ToVo_2V12Vo_1)52 +
(T Vgt = ToVg 'aVg s + ToVg ) (14)

It should be noted that unlike (10) and (13), equation (14) is
part of an infinite series and was truncated after three terms to
yield a controller possessing PID structure. The coefficient of
s and the constant term in the matrix polynomials (10), (13)
and (14) are always equal being respectively given

by —G;'G,Gy* and G, ' whenever these coefficients result

from recursions (3) and (4) and moments are matched about
s=0 only. Consequently, the same PI controller would be
parameterized by using these two coefficients from any of the

three simplified models. The caveat to be observed here
though is that it is expedient to utilize only matrix
polynomials (10), (13) and (14) having their zeros in the left
half plane to parameterize the PI or PID controllers.
Consequently, the following steps should be followed in
parameterizing controllers. After simplifying the original
transfer function to a moment approximant, the stability of
the latter should be ascertained. Unstable approximants
should not be used for controller parameterization. Whenever
instability is encountered, stable approximants can be
obtained by matching moments about more than a single
point as demonstrated by Taiwo and Krebs (1995). Another
issue is the choice of A.

Comments:

1. A suitable value of A is usually based on acceptable
system closed loop characteristics.

2. It may be expedient in certain situations to use
different tuning parameters for the different
coefficients of the polynomials in (10), (13) or (14)
(whichever one pertains to the problem at hand)

3. If the desirable closed loop characteristics cannot be
so expeditiously arrived at, it may sometimes be
expedient to scale different columns of the
coefficients in the matrix polynomials (10), (13) or
(14) unequally.

4. Whenever getting closed loop characteristics is not
easily amenable to manual trial and error, automatic
computation may be resorted to.

The next section gives copious expositions of the new
method. prp denotes the structured singular value for robust
performance. A closed loop system is said to have robust
performance when prp is less than 1. As usual, ISE and IAE
respectively denote integral of squared error and integral of
absolute error.

3. ILLUSTRATIVE EXAMPLES
3.1 Wood and Berry column

Consider the Wood and Berry distillation column (1973)
given as:

12.8¢~5 -18.9e73S 3.8~ 818
y1 _ |167s+1  21s+1 [u1]+ 149541 | 1p] (15)
y2 6.6e”75 —19.4e73%| [y2 4.9¢734S

10.9s+1  14.4s+1 13.25+1

Where u; = Overhead reflux flowrate, u, = Bottoms steam
flowrate, y1 = Overhead mole fraction of methanol, y, =
Bottoms mole fraction of methanol, F= feed flowrate into the
column. It is desired to use a PI controller on this column.
Consequently, C(s) is given by (10) where

1 [L7011  —0.6479
o =a= 55520 —1.0913 (162)
o1 101570 —0.1529
Go =ToVo" = a0 = [ o534 — 0.1036] (16b)

It now remains to choose A in (10). Through tuning,
acceptable closed loop responses were obtained with
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a o
Three closed loop systems are compared in Fig 2, where the
closed loop system designed using the proposed method is
generally favorable. In addition, the input uncertainty weight
(wy) and the performance weight (w,) used for robustness
analysis are given by:

_ 5.15+0.34

= 2201 and wy, = - (18)

0.45+1°

Wy

Unless otherwise stated, only the responses to a unit step
change in reference 1 and possibly simultaneous unit step
disturbance changes have been displayed in order to conserve
space. Nevertheless, the cost functions given in Tables are the
cumulative values for responses to step changes in all
reference inputs.

step in y1
T
Proposed
== === Shen et al.
i‘ """ Nandong |
=4
o
A b
.
1
) O
- 5 L\ 5
(%
=4
sy
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e \..__
: : c c
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time(s)

Fig 2: Responses of the Wood and Berry column

Table 1: Performance of the Wood and Berry column

Method IAE ISE URP

Proposed 91.03 60.74  0.9463
Shen et. al 1575 1523  0.7253
Nandong 81.37 64.77 0.8176

3.2 Alatiqi Column

This model of a distillation column has been taken from Shen
et al. (2010). It is given as

811 812 813 814
G(s) = 821 822 823 B4 19
31 32 33 34
841 842 B43 By
4.09¢713s —6.36¢-025
Where; =— ; =
ere,  In (335+1)(83s+1) > 912 (31.65+1)(20s+1)
—0.25e 7045 _ —0.49e755 =417
RE (21s+1) 214 = (225+1)2 ’ 921 = (455+1) °
_ 6.93¢7101s __ —0.05e755 _ 1537285
922 = (44.65+1) ° 923 = (34.55+1)2 924 = (48s5+1) ’

-1.73e7175 511115 4.61e~1:025
931 (13s+1)2 ° 932 (13.35+1)2 933 (18.55+1) ’
__ —5.48e7055 _ -11.18e7265
93¢ = Tisort 0 9N T Gasrnessty’

_ 14.04e70025 _ —0.1e7005
942 = (455+1)(10s+1)’ 943 = Gles+D)(s5+1)
4.498_0'65
Gas =

(485+1)(6.35+1)’

After computing a; and ao as in the previous example
(omitted here to conserve space), the uncertainty and
performance weights for this system are given by

_ 2.55+0.1

__5/2.75+0.001
Wy = 5 - -
2.55+1

N

and w, (20)

On observing the responses, two sets of parameters were
used, as shown in Table 2, to exemplify the responses
obtained. Since, the responses of the system with larger gains
have smaller integral error, this may be deemed better. The
design here is favourable to that of Shen et al (2010). Fig 3
displays the responses for the larger controller parameters.

step in y1(Proposed)
1 T 13

0.8

0.6

c : . . :
o 50 100 150 200 250 300
time(s)

Fig 3: Response of Alatiqi distillation column

Table 2: Performance of the Alatiqi distillation column

Method TIAE ISE MRP
Centralized 247.6472 110.5697 0.6102
C(s)=[aitao/s]/50

Centralized 176.1605 70.5200 0.9233
C(s)=[aitao/s]/25

Shen et al. 311.3 171.5 16.8005

3.3 Nandong (2015)

This is a model of a two stage extractive five input, five
output. alcoholic fermentation process.
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r ] step in y1 (Proposed)
Eu &n 8 8 &is 1 : : ;
—
En 8n 8xn 8u 8 AR
= -
G(s)=|85 &n &s 8&u & ey /L e vl |
84 8o 8s 8u 8
1851 852 853 8s4  8ss
Where: __ —0.57¢™*2S _0.25e~%7S __53.6e7218
C 9= (33s+1) 912 (40.95+1)’g13 T (51.15+1)°
G1a = 0.20e258 g1 = 27.7¢7338 Go1 = 0.10(1-0.945)e 165 oz : : : : : : :
147 31.95+1)” 915 7 (643s5+1)° 921 T (7.725+1)(1.53s+1)° 0 % 0o e b, s wowe
_ —0.07(1-4.25)e"17S _ —24¢7228 Fig 4. Responses of the Nandong plant with the proposed
922 = (13.25+1)(1.55+1) 923 (7.39s+1)° controller.
_ —0.04(1+1465)e 388 _0.25(1-0.14s)e"18S
924 = Giozsrna 81s+1)’ 925 = 3 655+1)(1.545+1)°
’ : : : 3.4 HVAC System
__ —0.08(1+23.7s)e”*2S _0.06(1+27.25)e*4S . . . .
931 = m:gsz = T asZta0sst1i The HVAC is a four input, fourloutput interactive system
—101e—295 ~0.28(1+13.45)e 315 taken from Garrido et al (2011). It is represented by
933 = > 934 T oo e
10.65+1 9.575+1)(1.875+1
(10.65+1) 575+ (A875+1) 811 812 813 B
_ —26.2(1-8.625)e 335 _ —0.004(1+264.95)e 195 _ _|821 822 823 824
935 = “Gazstn22sstn) 91 T (4.275+1)(1.955+1) 942 = G(s) = €31 832 833 L3 @4
—4.5 -2
0.02(1+38.35)e ™45 Gaz = —4.93(1-33s)e ™25 g41 L4z L4z Baa
(3.935+1)(2.135+1)” 943 7 (4.345+1)(1.935+1)°
i Cias Where: _ —0.098e”17S _ —0.036e”27S _
Gan = —-0.73e~ L Gus = -10.1(1-12.25)e~ L ere;gi = Tzzsty | 912 = Tavs+1) 913 =
(2.885+1) ’ (4.395+1)(1.935+1) -0.014e7325 _ —0.017¢7305 _ —0.043¢7255 _
0146065 0126-075 26.40-065 (sss+n) > J1a (sss+ny 921 aars+n > Y922
Js1 = — , Js2 = — , Js3 = ———, —0.092e~165 _ —0.011e7335 _ —0.012e73%
(4.265+1) (4.335+1) (4.34s+1) (1305+1) 23 = (1565+1) 1924 = —(157S+1) 5
_ -12 -0.8 —0.012¢ 318 —0.016e 345 —0.102e~16S
Jsa = -004(1+2325)e7 % Jss = 243707 931 (153511 > 932 = “(isisrn) * 933 "(qassen)
(26.65+1)(4.365+1) ’ (4.37s+1)
1 ag _ —0.033¢7265 __ —0.013¢7325 __ —0.015e7315
C(s) = 5[01 +5 (22) 93¢ = Teer1 7 99 T Tisesen 0942 T T(isesen)
_ —0.029¢7255 __ —0.108e~185
The uncertainty and performance weights used for 943 = Tqmasin 094 T T(zestn)
robustness analysis are given as 1 a
0
C(s) = =[ay +2 (25)
0.015+0.15 5/2.75+0.01 45 s
w=———andw, = ——— (23) . . .
0.0067s+1 The uncertainty and performance weights are given as:
The closed loop responses with C(s) given above were _ 105102 L 5/2+0008 y
deemed acceptable and the closed loop response for a change Wy = — 1> andw, = s (26)
in referen.ce 1 is given in Fig 4. This d.es1gn is compared to step in y1(Proposed)
that obtained by Nandong (2015) using the performance ! T
metrics given in Table 3. It is seen that the proposed system’s —
performance is favourable. > o
Table 3: Performance of the Nandong plant il |
METHOD ISE IAE 1re m ]
C(s) (Proposed)  132.8470 309.6825 0.9632 ]
e P
NANDONG 132.8865 404.5993 1.7639 v
7020 5r0 1[’)0 1;0 2(’)0 2;0 360 35;0 4{)0 4;0 500

time(s)

Fig 5. Closed loop responses of the HVAC system with
controller (25)
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The closed loop responses using the proposed centralized
controller (25) are displayed in Fig 5 and compared with that
obtained by Garrido et al., who used the method of inverted
decoupling, in Table 4.

Table 4: Performance of the HVAC system

METHOD IAE ISE URP
Proposed 206.6 123.0 0.998
Garrido et al. 281.5 193.8 0.970

3.5 SISO System

A non-minimum phase, single input single output (SISO)
system has been taken from Luyben (2000).This system has
also been studied by Chien et al., (2003) , and Kaya and
Cengiz (2017). The transfer function is given by (27).

__ (—0.2s+1)e165

G(s) = (s+1)(s+1) (27)

PID controller parameterization was achieved for this system
after computing the > moment approximant of the model as
described under section 2; giving, a; =6.24; a; = 3.80; ap = 1.
Where az, a1 and ag are the coefficients of the polynomial in
(14), from left to right. The parameterized PID controller
upon tuning is given by:

a a, azs
Cls) = [2+224%2 (28
The closed loop response with the proposed controller (28) is
compared with the closed loop responses obtained with the
PID controllers from Chien et al., (2003), Kaya and Cengiz
(2017), and the conventional IMC procedure. The responses

are shown in Fig 6 and the performance metrics are given in
Table 5.

stepiny

- nm

Proposed

=== Kaya and Cengiz (2017) | |
Chien et al. (2003)

------ Conventional IMC

02 : c : c :
0 10 20 30 40 50 60
time(s)

Fig 6. Closed loop responses of the SISO system
Table 5: Performance of the SISO system

METHOD TAE ISE
Proposed 2.9656 2.4522
Kaya and Cengiz 3.0537 2.5157

Chien et al.(2003) 5.6138 3.5918

Conventional IMC 3.0491 2.4972

3.6 Heat Integrated Distillation Column

The model in (29) is that of an integrated distillation column
which was first studied by Ding and Luyben (1990), and has
also been used by Escobar and Trierweiler (2013), where
frequency response approximation was proposed for
controller parameterization.

XBy 911 91z 913 YG14] [CQ1 0 0
XDp| _|921 922 923 Gas| |Rz N gdz1  gdz Zl] (29)
XS, 931 Y932 93z YGsza| |S2| |9dsz1  gdsz| 122
XB, ga1 sz Gaz Gaal 1Q2) lgdy  gdy
—-7.39¢~%
Where: g;; = Tsinery J12 = 0,913=0,914=0,
_ —0.11(200s+1)e”>S _ 10.1e~S

921 = (20s+1)3 > J22 7 (8s+1)(4s+1)’

1.18e~ 115 -18.3e”° _ 19e7%
923 (31s+1)(6s+1)’ 924 (28s+1)(55+1)’ 931 = (4s+1)2’

_ 1.7(200s+1)e”14S _ -3.15¢~°
932 (108s+1)(s+1)2 ’ 933 (3s+1)(0.3s+1)’

_ —1.27(188s+1)e” _ 49e716s
934 (68s+1)(s+1) »Ga1 (40s+1)(3s+1)

_ -821e¢725S _ 12e715s _ -194e”S
942 = (24s+1)(3s+1) 943 = (29s+1)(3s+1)’ Gaa = (265+1)(3s+1)

2.42¢75S

di,=g9d,=0;,g9dyy = ————=, gd,, =
gadi1 = gaqz » 9a21 (3S+1)(26S+1)2,9 22
—2.47e755 d _ 0.592¢75S _ 183e”%
s+1)(225+1 T (7s+1 T (25s+1)(25+1
Gsrn@zs+nz 9931 = Toamz» 992 T Graesay

d. = -1.51e719% dun = —4.52¢788
9841 = oGz 942 T Gosrn (7412

The 0/1 moment approximant of this model was found to be
unstable upon expansion about s=0 only. Therefore,
expansion was done about s=0 and another point (s=0.0391),
obtained by optimization, as explained in Taiwo and Krebs
(1995). By tuning,
1 ay
@) =17] @+~ ] (30)

The uncertainty and performance weights for robustness
analysis are given as

_ 5+0.15
T 05541’

5/2.25+0.04
S

u and w, = (31)
However, it was found that closed loop responses did not
deteriorate much when all the other elements apart from
element (1,1) in column 1 were set equal to zero for a; and ag
in (30). In a bid to improve the overall (servo and regulatory)
closed loop responses, the latter controller was used as the
starting point in the automatic computation of the final
controller given in (32) using MATLAB optimization
toolbox.

-0.2777 0 0 0
C(s) = 0 0.3965 0.1188 0.4442
0 0.6300 —0.1022 0.4260
0 —-0.1741 -0.0925 0.1619
—0.0161 0 0 0
1 0 0.0706 0.1312 0.0371
* s 0 —0.0252 -0.0930 0.0257 (32)
0 0.0332 0.0899 0.0153
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The closed loop responses obtained using the proposed
controller (32) which are displayed in Fig 7 are compared
with those obtained by Escobar and Trierweiler, (2013) in
Table 6 respectively for unit step changes in XB; reference at
t=0, disturbance reference Z1 at t = 200, and disturbance
reference Z2 at t=600.

step in XB1 (Proposed)

1k
— B 1
0.8 - D2 |
xs2
sl [ 82| |
> 04 4
o
0.2 »n B
N i\
- "~
0B ren ou v v _.-‘ln... —————— X I rsErr e um e ———
°H ¥ [T
Hd W e
oal¥ TR ,
0.4 : e : : : ¢ e e :
0 100 200 300 400 500 600 700 800 900 1000

time(s)

Fig 7. Closed loop responses of the heat integrated column
with the proposed controller (32)

Table 6: Performance of the heat integrated column

METHOD IAE ISE URP
Proposed 246.2751 42.7055 0.9962
Escobar and 375.4781 76.9556 1.3703

Trierweiler,(2013)

4 DISCUSSION AND CONCLUSIONS

The philosophy of IMC is to compute the controller by
inverting either the full or suitably modified process model.
This direct approach usually encounters difficulties especially
in the case of multivariable transfer functions. The approach
taken here is to simplify the model using moment matching.
Thereafter, the proposed procedure can be used to determine
controller type and parameters. Determination of controller
parameters is based on choosing a tuning parameter. Easy
determination of a tuning parameter that would make the
system meet several closed loop performance demands is a
welcome development in view of the complexity of the
typical multivariable system. This is a general method which
is also applicable to SISO systems. Several examples are
given in the paper to show how erstwhile difficult feedback
control problems can be easily solved by the proposed
technique. The new method has been used to design simple
PI(D) feedback controllers for MIMO and SISO systems.
Although the new method utilizes a single tuning parameter,
more than one tuning parameter may sometimes make the
procedure more versatile. It may therefore be expedient to
use different values of the tuning parameter for the
proportional and integral part of, for example, a PI controller
in order to ensure flexibility as well as engendering faster and
best results. The method also does not preclude the use of

optimization when necessary in which case the best tuned
values would be initial parameters.
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