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Abstract: The work deals with a generalization of the internal model control method whereby the 

original process model is suitably simplified to facilitate direct parameterization of feedback controllers. 

Here, the m/n moment approximant is adopted as the simplified model. The parameterized feedback 

controller contains a filter that can the tuned for closed loop system acceptable characteristics. The 

method facilitates cheap computation of controllers satisfying desired performance and stipulated 

constraints. 
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1. INTRODUCTION 

The internal model control (IMC) method has simplified and 

expedited the design of simple controllers for single input 

single output (SISO) plants. Its direct generalization to 

multivariable systems is still a subject of continued research. 

To appreciate this fact, the reader may confirm the statement 

of masters in this area in their authoritative book (Morari and 

Zafiriou, 1989) where on p. 293 they state “except in trivial 

cases (minimum phase systems) the derivation of the IMC 

controllers for MIMO systems and the effect of right half 

plane zeros and poles is quite complex”. This work proposes 

the simplification of the process model to a form which 

engenders its direct use for rapid feedback controller 

parameterization. The applicability of the method to small 

and large plants or plants with or without time delays is 

equally simple. The method facilitates the design of feedback 

controllers satisfying desired performance and meeting 

stipulated constraints. One of the preliminary steps proposed 

in this generalization is the simplification of plant model as 

an m/n moment approximant directly facilitating simple 

feedback controller parameterization. This procedure is 

directly utilizable in SISO plants thereby further enhancing 

IMC utility. An exposition of the new method is given in 

section 2 and its application to various plants is given in 

section 3. A discussion of the results and conclusions from 

the work are given in section 4. 

2. DESCRIPTION OF THE METHOD 

 

2.1 Internal Model Control Generalization Using 

Moment Matching 

It is assumed that the plant transfer function was originally 

expressed in any commonly acceptable form. In order to 

facilitate direct feedback controller parameterization, the m/n 

moment approximant of the original transfer function G(s) 

(assumed asymptotically stable and strictly proper) is 

computed. This is undertaken by expanding G(s) into infinite 

series: 

𝐺(𝑠) = ∑ 𝐺𝑖
∞
𝑖=0 𝑠𝑖   (1) 

Its reduced model R(s) in the right matrix fraction form, 

without loss of generality, is expressed as: 

𝑅(𝑠) = (∑ 𝑉𝑖𝑠
𝑖𝑚

𝑖=0 )(∑ 𝑇𝑖𝑠
𝑖𝑛

𝑖=0 )−1, (𝑇𝑛 = 𝐼, 𝑚 < 𝑛) (2) 

R(s) is an m/n moment approximant at s=0 if R(s) is 

asymptotically stable and 

 ∑ 𝐺𝑗−𝑖𝑇𝑖
𝑛−1
𝑖=0 = −𝐺𝑗−𝑛 (𝑛 ≤ 𝑗 ≤ 𝑚 + 𝑛) (3) 

𝑉𝑗 = ∑ 𝐺𝑗−𝑖
𝑗
𝑖=0 𝑇𝑖  (0 ≤ 𝑗 ≤ 𝑚)    (4) 

In (3) and (4), Gj = 0, j < 0. A unique solution exists and  

R(s) = G(s) + O(sm+n+1)  (5) 

where the notation means that the power series expansions 

not only exist but also agree up to terms of degree (m+n). 

Note that the existence of the series (1) in a region R is 

assured if G(s) is analytic at all points s =s0 in R (Apostol, 

1982). However, if expansion about s=0 does not yield a 

stable m/n approximant, Taiwo and Krebs (1995) have shown 

how a stable approximant may be obtained by moment 

matching about more than the single point s = 0.  

2.2 Derivation of Feedback Controllers Using  

Simplified Moment Approximants 

Consider the situation where the 0/1 moment approximant is 

used as the moment approximant. Then 

R(s) = Vo(Is + To)−1  (6) 

hence the (improper) internal model controller Q̅, is given by  

Q̅(s) = R−1 = (Is + To)Vo
−1 (7) 

Properness of (7) is achieved by introducing the filter 

f = 1/(λs + 1)   (8) 

such that  
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𝑄(𝑠) = �̄�(𝑠)𝑓   (9) 

The conventional feedback controller C(s) (Fig 1) is given by  

𝐶(𝑠) =
1

𝜆𝑠
(𝑉0

−1𝑠 + Go
−1)  (10) 

And note that Go
−1 = 𝑇0𝑉0

−1 

For illustration purposes, suppose G(s) is 2×2, (10) simplifies 

to 

𝐶(𝑠) =
1

𝜆𝑠
[
�̄�11(𝑠) �̄�12(𝑠)
�̄�21(𝑠) �̄�22(𝑠)

]  (11) 

where  

�̄�𝑖𝑗(𝑠) = V̂oijs + Ĝoij  (12) 

and V̂oij, Ĝoij respectively denotes the (i,j)th element of 

Vo
−1  and Go

−1. It is therefore clear that 0/1 approximant 

parameterizes a PI controller and  is the tuning parameter 

which may be chosen to produce a closed loop system with 

desirable characteristics. 

 

Fig 1: IMC Feedback control structure 

Clearly, other values of m and n different from m = 0 and n = 

1 could be used when simplifying the plant model. For 

example 0/2 and 1/2 moment approximants can be used to 

parameterize PID controllers. Following exactly the same 

procedure given above, the 0/2 approximant can be used to 

parameterize the feedback controller 

𝐶(𝑠) =
1

𝜆𝑠
(𝑉0

−1𝑠2 + 𝑇1𝑉0
−1𝑠 + 𝑇0𝑉0

−1) (13) 

While the ½ approximant parameterizes the PID feedback 

controller 

𝐶(𝑠) =
1

𝜆𝑠
((𝑉0

−1 − 𝑇1𝑉0
−1𝑉1𝑉0

−1 + 𝑇0𝑉0
−2𝑉1

2𝑉0
−1)𝑠2 +

(𝑇1𝑉0
−1 − 𝑇0𝑉0

−1𝑉1𝑉0
−1)𝑠 + 𝑇0𝑉0

−1)   (14) 

It should be noted that unlike (10) and (13), equation (14) is 

part of an infinite series and was truncated after three terms to 

yield a controller possessing PID structure. The coefficient of 

s and the constant term in the matrix polynomials (10), (13) 

and (14) are always equal being respectively given 

by −𝐺0
−1𝐺1𝐺0

−1 and 
1

0

G whenever these coefficients result 

from recursions (3) and (4) and moments are matched about 

s=0 only. Consequently, the same PI controller would be 

parameterized by using these two coefficients from any of the 

three simplified models. The caveat to be observed here 

though is that it is expedient to utilize only matrix 

polynomials (10), (13) and (14) having their zeros in the left 

half plane to parameterize the PI or PID controllers. 

Consequently, the following steps should be followed in 

parameterizing controllers. After simplifying the original 

transfer function to a moment approximant, the stability of 

the latter should be ascertained. Unstable approximants 

should not be used for controller parameterization. Whenever 

instability is encountered, stable approximants can be 

obtained by matching moments about more than a single 

point as demonstrated by Taiwo and Krebs (1995).  Another 

issue is the choice of . 

Comments:  

1. A suitable value of  is usually based on acceptable 

system closed loop characteristics. 

2. It may be expedient in certain situations to use 

different tuning parameters for the different 

coefficients of the polynomials in (10), (13) or (14) 

(whichever one pertains to the problem at hand) 

3. If the desirable closed loop characteristics cannot be 

so expeditiously arrived at, it may sometimes be 

expedient to scale different columns of the 

coefficients in the matrix polynomials (10), (13) or 

(14) unequally.  

4. Whenever getting closed loop characteristics is not 

easily amenable to manual trial and error, automatic 

computation may be resorted to. 

The next section gives copious expositions of the new 

method. µRP denotes the structured singular value for robust 

performance. A closed loop system is said to have robust 

performance when µRP is less than 1. As usual, ISE and IAE 

respectively denote integral of squared error and integral of 

absolute error. 

3. ILLUSTRATIVE EXAMPLES 

3.1  Wood and Berry column 

Consider the Wood and Berry distillation column (1973) 

given as: 

   [
𝑦1
𝑦2

] = [

12.8𝑒−𝑠

16.7𝑠+1

−18.9𝑒−3𝑠

21𝑠+1

6.6𝑒−7𝑠

10.9𝑠+1

−19.4𝑒−3𝑠

14.4𝑠+1

] [
𝑢1
𝑢2

] + [

3.8𝑒−8.1𝑠

14.9𝑠+1

4.9𝑒−3.4𝑠

13.2𝑠+1

] [𝐹] (15) 

Where u1 = Overhead reflux flowrate, u2 = Bottoms steam 

flowrate, y1 = Overhead mole fraction of methanol, y2 = 

Bottoms mole fraction of methanol, F= feed flowrate into the 

column. It is desired to use a PI controller on this column. 

Consequently, C(s) is given by (10) where  

𝑉0
−1 = 𝑎1 =   [

1.7011 − 0.6479
0.5520 −1.0913

] (16a) 

Go
−1 = 𝑇0𝑉0

−1 = 𝑎0 =  [
0.1570 − 0.1529
0.0534 − 0.1036

]    (16b) 

It now remains to choose  in (10). Through tuning, 

acceptable closed loop responses were obtained with  

+ 

+ 

+ 

- 

u 
Q(s) 

R(s) 

G(s) 

d 

r y 

C(s) 
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𝐶(𝑠) =
𝑎1

7
+

𝑎0

3𝑠
          (17) 

Three closed loop systems are compared in Fig 2, where the 

closed loop system designed using the proposed method is 

generally favorable. In addition, the input uncertainty weight 

(wu) and the performance weight (wp) used for robustness 

analysis are given by: 

𝑤𝑢 =
0.5𝑠+0.1

0.4𝑠+1
, and  𝑤𝑝 =

5.1𝑠+0.34

15𝑠
  (18) 

Unless otherwise stated, only the responses to a unit step 

change in reference 1 and possibly simultaneous unit step 

disturbance changes have been displayed in order to conserve 

space. Nevertheless, the cost functions given in Tables are the 

cumulative values for responses to step changes in all 

reference inputs. 

 

Fig 2:  Responses of the Wood and Berry column 

 

Table 1:  Performance of the Wood and Berry column 

Method IAE ISE   μRP 

Proposed 

Shen et. al 

Nandong 

91.03 

157.5 

81.37 

60.74 

152.3 

64.77 

0.9463 

0.7253 

0.8176 

 

3.2 Alatiqi Column 

This model of a distillation column has been taken from Shen 

et al. (2010). It is given as  

𝐺(𝑠) = [

g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44

]  (19) 

Where;  𝑔
11

=
4.09𝑒−1.3𝑠

(33𝑠+1)(8.3𝑠+1)
  ; 𝑔12 =

−6.36𝑒−0.2𝑠

(31.6𝑠+1)(20𝑠+1)
; 

𝑔13
−0.25𝑒−0.4𝑠

(21𝑠+1)
; 𝑔14 =

 −0.49𝑒−5𝑠

(22𝑠+1)2 ;  𝑔21 =
−4.17𝑒−4𝑠

(45𝑠+1)
; 

𝑔22 =
6.93𝑒−1.01𝑠

(44.6𝑠+1)
; 𝑔23 =

−0.05𝑒−5𝑠

(34.5𝑠+1)2 ; 𝑔24 =
1.53𝑒−2.8𝑠

(48𝑠+1)
 ; 

𝑔31
−1.73𝑒−17𝑠

(13𝑠+1)2  ;     𝑔32
5.11𝑒−11𝑠

(13.3𝑠+1)2;    𝑔33
4.61𝑒−1.02𝑠

(18.5𝑠+1)
 ; 

𝑔34 =
−5.48𝑒−0.5𝑠

15𝑠+1
 ;      𝑔41 =

−11.18𝑒−2.6𝑠

(43𝑠+1)(6.5𝑠+1)
; 

𝑔42 =
14.04𝑒−0.02𝑠

(45𝑠+1)(10𝑠+1)
;    𝑔43 =

−0.1𝑒−0.05𝑠

(31.6𝑠+1)(5𝑠+1)
                       

𝑔44 =  
4.49𝑒−0.6𝑠

(48𝑠+1)(6.3𝑠+1)
; 

After computing a1 and a0 as in the previous example 

(omitted here to conserve space), the uncertainty and 

performance weights for this system are given by 

𝑤𝑢 =
2.5𝑠+0.1

2.5𝑠+1
, and 𝑤𝑝 =

𝑠/2.75+0.001

𝑠
  (20) 

On observing the responses, two sets of parameters were 

used, as shown in Table 2, to exemplify the responses 

obtained. Since, the responses of the system with larger gains 

have smaller integral error, this may be deemed better. The 

design here is favourable to that of Shen et al (2010). Fig 3 

displays the responses for the larger controller parameters. 

 

Fig 3:  Response of Alatiqi distillation column 

 

Table 2:  Performance of the Alatiqi distillation column 

Method     IAE    ISE µRP 

Centralized 

C(s)=[a1+a0/s]/50 

 247.6472 110.5697 0.6102 

Centralized 

C(s)=[a1+a0/s]/25 

 176.1605 70.5200 0.9233 

Shen et al.    311.3   171.5 16.8005 

 

3.3 Nandong (2015) 

This is a model of a two stage extractive five input, five 

output. alcoholic fermentation process. 
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
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


















5554535251

4544434241

3534333231

2524232221

1514131211

)(

ggggg

ggggg

ggggg

ggggg

ggggg

sG                 (21) 

Where:   𝑔11 =
−0.57𝑒−4.2𝑠

(33𝑠+1)
, 𝑔12=

0.25𝑒−4.7𝑠

(40.9𝑠+1)
, 𝑔13 =

53.6𝑒−2.1𝑠

(51.1𝑠+1)
, 

𝑔14 =
0.20𝑒−2.5𝑠

(31.9𝑠+1)
, 𝑔15 =

27.7𝑒−3.3𝑠

(64.3𝑠+1)
, 𝑔21 =

0.10(1−0.94𝑠)𝑒−1.6𝑠

(7.72𝑠+1)(1.53𝑠+1)
, 

𝑔22 =
−0.07(1−4.2𝑠)𝑒−1.7𝑠

(13.2𝑠+1)(1.5𝑠+1)
,    𝑔23=

−24𝑒−2.2𝑠

(7.39𝑠+1)
,  

 𝑔24 =
−0.04(1+146𝑠)𝑒−3.8𝑠

(210.2𝑠+1)(1.81𝑠+1)
,          𝑔25 =

0.25(1−0.14𝑠)𝑒−1.8𝑠

(5.65𝑠+1)(1.54𝑠+1)
,  

 𝑔31 =
−0.08(1+23.7𝑠)𝑒−4.2𝑠

(3.19𝑠+1)(2.42𝑠+1)
,𝑔32 =

0.06(1+27.2𝑠)𝑒−4.4𝑠

8𝑠2 +4.98𝑠+1
,              

𝑔33 =
−101𝑒−2.9𝑠

(10.6𝑠+1)
,      𝑔34 =

−0.28(1+13.4𝑠)𝑒−3.1𝑠

(9.57𝑠+1)(1.87𝑠+1)
,           

 𝑔35 =
−26.2(1−8.62𝑠)𝑒−3.3𝑠

(3.83𝑠+1)(2.25𝑠+1)
,𝑔41 =

−0.004(1+264.9𝑠)𝑒−1.9𝑠

(4.27𝑠+1)(1.95𝑠+1)
, 𝑔42 =

0.02(1+38.3𝑠)𝑒−4.5𝑠

(3.93𝑠+1)(2.13𝑠+1)
, 𝑔43 =

−4.93(1−33𝑠)𝑒−2𝑠

(4.34𝑠+1)(1.93𝑠+1)
, 

𝑔44 =
−0.73𝑒−1.1𝑠

(2.88𝑠+1)
, 𝑔45 =

−10.1(1−12.2𝑠)𝑒−1.4𝑠

(4.39𝑠+1)(1.93𝑠+1)
,  

𝑔51 =
−0.14𝑒−0.6𝑠

(4.26𝑠+1)
, 𝑔52 =

0.12𝑒−0.7𝑠

(4.33𝑠+1)
, 𝑔53 =

26.4𝑒−0.6𝑠

(4.34𝑠+1)
, 

𝑔54 =
−0.04(1+23.2𝑠)𝑒−1.2𝑠

(26.6𝑠+1)(4.36𝑠+1)
, 𝑔55 =

24.3𝑒−0.8𝑠

(4.37𝑠+1)
. 

  𝐶(𝑠) =
1

50
[ 𝑎1 +

𝑎0

𝑠
 ]         (22) 

The uncertainty and performance weights used for  

robustness analysis  are given as  

𝑤𝑢 =
0.01𝑠+0.15

0.0067𝑠+1
, and 𝑤𝑝 =

𝑠/2.75+0.01

𝑠
 (23) 

The closed loop responses with C(s) given above were 

deemed acceptable and the closed loop response for a change 

in reference 1 is given in Fig 4. This design is compared to 

that obtained by Nandong (2015) using the performance 

metrics given in Table 3. It is seen that the proposed system’s 

performance is favourable. 

Table 3:  Performance of the Nandong plant 

METHOD ISE IAE µRP 

C(s) (Proposed) 132.8470 309.6825 0.9632 

NANDONG 132.8865 404.5993 1.7639 

 

Fig 4. Responses of the Nandong plant with the proposed 

controller. 

 

3.4 HVAC System 

The HVAC is a four input, four output interactive system 

taken from Garrido et al (2011). It is represented by 

𝐺(𝑠) = [

g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44

]  (24) 

Where;𝑔11 =
−0.098𝑒−17𝑠

(122𝑠+1)
  ;   𝑔12 =

−0.036𝑒−27𝑠

(149𝑠+1)
 ; 𝑔13 =

−0.014𝑒−32𝑠

(158𝑠+1)
; 𝑔14 =

 −0.017𝑒−30𝑠

(155𝑠+1)
;  𝑔21 =

−0.043𝑒−25𝑠

(147𝑠+1)
; 𝑔22 =

−0.092𝑒−16𝑠

(130𝑠+1)
;  𝑔23 =

−0.011𝑒−33𝑠

(156𝑠+1)
; 𝑔24 =

−0.012𝑒−34𝑠

(157𝑠+1)
; 

𝑔31
−0.012𝑒−31𝑠

(153𝑠+1)
;  𝑔32 =

−0.016𝑒−34𝑠

(151𝑠+1)
;  𝑔33

−0.102𝑒−16𝑠

(118𝑠+1)
; 

𝑔34 =
−0.033𝑒−26𝑠

146𝑠+1
;    𝑔41 =

−0.013𝑒−32𝑠

(156𝑠+1)
;𝑔42 =

−0.015𝑒−31𝑠

(159𝑠+1)
; 

𝑔43 =
−0.029𝑒−25𝑠

(144𝑠+1)
   ; 𝑔44 =

−0.108𝑒−18𝑠

(128𝑠+1)
 

𝐶(𝑠) =
1

45
[ 𝑎1 +

𝑎0

𝑠
 ]         (25) 

The uncertainty and performance weights are given as: 

𝑤𝑢 =
10𝑠+0.2

5𝑠+1
, and 𝑤𝑝 =

𝑠/2+0.008

𝑠
      (26) 

Fig 5. Closed loop responses of the HVAC system with 

controller (25) 
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The closed loop responses using the proposed centralized 

controller (25) are displayed in Fig 5 and compared with that  

obtained by Garrido et al., who used the method of inverted 

decoupling, in Table 4. 

Table 4:  Performance of the HVAC system 

METHOD IAE ISE µRP 

Proposed 206.6 123.0 0.998 

Garrido et al. 281.5 193.8 0.970 

 

3.5 SISO System 

A non-minimum phase, single input single output (SISO) 

system has been taken from Luyben (2000).This system has 

also been studied by Chien et al., (2003) , and Kaya and 

Cengiz (2017). The transfer function is given by (27). 

𝐺(𝑠) =
(−0.2𝑠+1)𝑒−1.6𝑠

(𝑠+1)(𝑠+1)
     (27) 

PID controller parameterization was achieved for this system 

after computing the ½ moment approximant of the model as 

described under section 2; giving, a2 =6.24; a1 = 3.80; a0 = 1. 

Where a2, a1 and a0 are the coefficients of the polynomial in 

(14), from left to right. The parameterized PID controller 

upon tuning is given by: 

𝐶(𝑠) = [ 
𝑎1

4.5
+

𝑎0

2.8𝑠
+

𝑎2𝑠

9
]    (28) 

The closed loop response with the proposed controller (28) is 

compared with the closed loop responses obtained with the 

PID controllers from Chien et al., (2003), Kaya and Cengiz 

(2017), and the conventional IMC procedure. The responses 

are shown in Fig 6 and the performance metrics are given in 

Table 5. 

 

Fig 6. Closed loop responses of the SISO system 

Table 5:  Performance of the SISO system 

METHOD IAE ISE 

 Proposed 2.9656 2.4522 

 Kaya and Cengiz  3.0537 2.5157 

Chien et al.(2003) 5.6138 3.5918 

Conventional IMC 3.0491 2.4972 

3.6 Heat Integrated Distillation Column 

The model in (29) is that of an integrated distillation column 

which was first studied by Ding and Luyben (1990), and has 

also been used by Escobar and Trierweiler (2013), where 

frequency response approximation was proposed for 

controller parameterization. 

[

𝑋𝐵1

𝑋𝐷2

𝑋𝑆2

𝑋𝐵2

] = [

𝑔11 𝑔12 𝑔13 𝑔14

𝑔21 𝑔22 𝑔23 𝑔24

𝑔31 𝑔32 𝑔33 𝑔34

𝑔41 𝑔42 𝑔43 𝑔44

]  [

𝑄1

𝑅2

𝑆2

𝑄2

]+[

0 0
𝑔𝑑21 𝑔𝑑22

𝑔𝑑31 𝑔𝑑32

𝑔𝑑41 𝑔𝑑42

] [
𝑍1
𝑍2

]   (29)  

Where: 𝑔11 =  
−7.39𝑒−𝑠

(11𝑠+1)(𝑠+1)
, 𝑔12 = 0, 𝑔13 = 0, 𝑔14 = 0, 

𝑔21 =   
−0.11(200𝑠+1)𝑒−5𝑠

(20𝑠+1)3 , 𝑔22 =
10.1𝑒−𝑠

(28𝑠+1)(4𝑠+1)
 , 

𝑔23
1.18𝑒−11𝑠

   (31𝑠+1)(6𝑠+1)
, 𝑔24  

−18.3𝑒−𝑠

(28𝑠+1)(5𝑠+1)
,  𝑔31 =

1.9𝑒−2𝑠

(4𝑠+1)2,            

𝑔32 =
1.7(200𝑠+1)𝑒−1.4𝑠

(108𝑠+1)(𝑠+1)2 ,  𝑔33 =   
−3.15𝑒−𝑠

(3𝑠+1)(0.3𝑠+1)
,  

 𝑔34 =   
−1.27(188𝑠+1)𝑒−𝑠

(68𝑠+1)(𝑠+1)
, 𝑔41 =

4.9𝑒−1.6𝑠

(40𝑠+1)(3𝑠+1)
,                   

𝑔42 =
−8.21𝑒−2.5𝑠

(24𝑠+1)(3𝑠+1)
 𝑔43 =

12𝑒−1.5𝑠

(29𝑠+1)(3𝑠+1)
, 𝑔44 =

−19.4𝑒−𝑠

(26𝑠+1)(3𝑠+1)
 

𝑔𝑑11 = 𝑔𝑑12 = 0; 𝑔𝑑21 =
2.42𝑒−5𝑠

(3𝑠+1)(26𝑠+1)2, 𝑔𝑑22 =

−2.47𝑒−5𝑠

(3𝑠+1)(22𝑠+1)2; 𝑔𝑑31 =
0.592𝑒−5𝑠

(7𝑠+1)2 , 𝑔𝑑32 =
1.83𝑒−6𝑠

(25𝑠+1)(2𝑠+1)
; 

𝑔𝑑41 =
−1.51𝑒−19𝑠

(45𝑠+1)(5𝑠+1)2, 𝑔𝑑42 =
−4.52𝑒−8𝑠

(50𝑠+1)(7𝑠+1)2 

The 0/1 moment approximant of this model was found to be 

unstable upon expansion about s=0 only. Therefore, 

expansion was done about s=0 and another point (s=0.0391), 

obtained by optimization, as explained in Taiwo and Krebs 

(1995). By tuning, 

𝐶(𝑠) =
1

11
[ 𝑎1 +

𝑎0

𝑠
 ]                (30) 

The uncertainty and performance weights for robustness 

analysis are given as  

𝑤𝑢 =
𝑠+0.15

0.5𝑠+1
, and 𝑤𝑝 =

𝑠/2.25+0.04

𝑠
                            (31) 

However, it was found that closed loop responses did not 

deteriorate much when all the other elements apart from 

element (1,1) in column 1 were set equal to zero for a1 and a0 

in  (30). In a bid to improve the overall (servo and regulatory) 

closed loop responses, the latter controller was used as the 

starting point in the automatic computation of the final 

controller given in (32) using MATLAB optimization 

toolbox. 

𝐶(𝑠) = [

−0.2777 0 0 0
0 0.3965 0.1188 0.4442
0 0.6300 −0.1022 0.4260
0 −0.1741 −0.0925 0.1619

] 

+ 
1

𝑠
[

−0.0161 0 0 0
0 0.0706 0.1312 0.0371
0 −0.0252 −0.0930 0.0257
0 0.0332 0.0899 0.0153

] (32) 
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 The closed loop responses obtained using the proposed 

controller (32) which are displayed in Fig 7 are compared 

with those  obtained by Escobar and Trierweiler, (2013) in 

Table 6 respectively for unit step changes in XB1 reference at 

t=0, disturbance reference Z1 at t = 200, and disturbance 

reference Z2 at t=600.  

 

Fig 7. Closed loop responses of the heat integrated column  

with the proposed controller (32) 

 

Table 6:  Performance of the heat integrated column  

METHOD IAE ISE µRP 

Proposed 246.2751 42.7055 0.9962 

Escobar and 

Trierweiler,(2013) 
375.4781 76.9556 1.3703 

 

4 DISCUSSION AND CONCLUSIONS 

The philosophy of IMC is to compute the controller by 

inverting either the full or suitably modified process model. 

This direct approach usually encounters difficulties especially 

in the case of multivariable transfer functions. The approach 

taken here is to simplify the model using moment matching. 

Thereafter, the proposed procedure can be used to determine 

controller type and parameters. Determination of controller 

parameters is based on choosing a tuning parameter. Easy 

determination of a tuning parameter that would make the 

system meet several closed loop performance demands is a 

welcome development in view of the complexity of the 

typical multivariable system. This is a general method which 

is also applicable to SISO systems. Several examples are 

given in the paper to show how erstwhile difficult feedback 

control problems can be easily solved by the proposed 

technique. The new method has been used to design simple 

PI(D) feedback controllers for MIMO and SISO systems. 

Although the new method utilizes a single tuning parameter, 

more than one tuning parameter may sometimes make the 

procedure more versatile. It may therefore be expedient to 

use different values of the tuning parameter for the 

proportional and integral part of, for example, a PI controller 

in order to ensure flexibility as well as engendering faster and 

best results. The method also does not preclude the use of 

optimization when necessary in which case the best tuned 

values would be initial parameters. 
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