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Abstract: The objective of this paper is to present a unique energy based model of the
human outer ear and the tympanic membrane. The developed model employs the Port
Hamiltonian modelling approach. The tympanic membrane is modelled as an Euler-Bernoulli
beam. The frequency response of the model at speech frequencies which are significant for sound
transmission are found to comparable to existing results in literature. This model can also be
used for investigation of tympanic membrane rupture or perforations. Future work will include
modelling of the ear canal as horn shaped and inclusion of the angular motion of the tympanic
membrane.
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1. INTRODUCTION

Hearing loss has an adverse impact on the ability of
an individual to communicate with others. This in turn
affects the interaction of the affected individual with others
within the community. Exposure to high occupational
noise causes severe damage to the auditory system. The
auditory system is divided into outer, middle and inner
ear. Hearing loss occurs when one of these segments of
the ear is damaged. An individual is then considered
to have Noise Induced Hearing Loss (NIHL). Madahana
et al. (2019b,c,a) details NIHL among mine workers and
proposes ways of minimizing NIHL risks. There is a
need for unique models that can assist in assessment of
diseases, injuries and sound transmission in any of the ear
parts. This assessment can then be used in provision of
early intervention, design of better hearing protection and
hearing aids, early diagnosis of diseases and prevention
of injury. The outer ear is composed of the pinna also
referred to as the auricle and the ear canal. The outer
ear is made of cartilage and acts as a sound reflector.
Sound waves below 1 KHz are not affected by the pinna.
However, the effect of the pinna becomes significant at
speech frequencies which occur between 2-3 KHz Everest
(2001) . At the speech frequencies, the sound pressure is
boosted significantly. The pinna has a behaviour similar
to the reflecting dish and directs sound towards the ear
canal. Both the reflected signal and direct signal enter the
ear canal in phase. There is a slight delay in the entry
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of the reflected wave at higher frequencies resulting in
destructive interference. When the entire path length is
a half wavelength then the greatest interference occurs.
Effects of boosting are noticeable above 1 KHz since the
size of the pinna becomes significant when the wavelength
approaches four times the size of the pinna. The outer
ear influences the spectral shaping of sound. Every human
being has a unique ear pinna and canal, which implies
the sound pressure at each individual’s ear drum varies in
the way it is distributed in the frequency domain. Sound
spectral and shaping to the ear is therefore affected by the
whole outer ear.

The ear canal extends from the concha (the bowl) to the
ear drum. It has a behaviour similar to a quarter-wave
resonator and hence amplifies the resonance frequencies.
The ear canal’s length determines the resonance frequen-
cies position. The average size of a human canal is 26 mm
in length and 7 mm in diameter. The ear canal connects
or terminates at the ear drum. The Pinna’s size and shape
together with the curvature of the ear canal have an effect
on the pressure frequency response at the tympanic mem-
brane Alvord and Farmer (I997). The ear drum is known as
tympanic membrane, tympanum or myrinx. It transmits
incoming sound from the ear canal to the ossicles. The
malleus bone is between the tympanic membrane. The
ear drum is concave shaped and terminates the ear canal
at approximately 40 degree slanted angle. The ear drum
is a thin robust layer consisting of the outer cutaneous
layer, fibrous layer (lamina propria) and the inner layer

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 16627



(Serous membrane). Rupture of the ear drum may result
in conductive hearing loss Xue et al. (2015).

Transmission of sound at high pressure level to the ossicles
can be influenced by the middle ear muscles,which con-
sists of stapedius and the tensor tympani. The tympanic
membrane tenses when the malleus pulls inward due to
the tensor tympani contractions. The intensity of sound
reaching the cochlea is reduced by the footplate of the
oval window pulling outward due to the contractions of
the stapedius. For high intensity sounds applied to the
left or the right ear, the stapidius responds reflexly with
fast contractions. The effect is observed from 90 to 95
dB for a sinusoidal input Xue et al. (2015). Development
of accurate ear models would result in understanding of
the functioning of the ear and how sound is transmitted.
This paper is structured as follows: section 1 is a brief
introduction, it is followed by the background in section
2, Mathematical preliminaries are provided in section 3.
System modelling, results and discussion are presented in
section 4 and 5 respectively. The conclusion and recom-
mendations are in section 6 of this work.

2. BACKGROUND

Investigations have been carried out over several decades
to investigate the overall effect of sound transmission to
the tympanic membrane through the ear canal. When
investigated at low frequencies, the ear canal exhibits the
behaviour of a simple rigid wall which can be represented
in circuits by a single capacitor De Paolis et al. (2017) or
the experimental data can be corrected Zwislocki (1957).
At high frequency, the ear canals length becomes compa-
rable to the wavelength as standing waves patterns form.
The ear canal may also be modelled as a combination of a
single mass-spring system Onchi (1961). Analytically, the
ear canal can be modelled as homogeneous transmission
line Wiener and Ross (1946). The non-homogeneous effect
of the transverse canal can be modelled using a one dimen-
sional modified horn equation Khanna and Stinson (1985.).
Hiipaka et al. (2009) models reports that an ear canal
may also be modelled as a lossless acoustic transmission
line with a sound source whose pressure is external with
internal acoustic impedance. Gigure and Woodland (1993)
models the auditory canal as approximately cylindrical
resonator and for frequencies up to the normal mode it
is assumed that the concha is a uniform transmission line.
This model, however does not put into consideration the
variation of the radius of the auditory canal along its
length Thejane (2013).

The Port-Hamiltonian description allows for a more sys-
tematic framework for analysing, controlling and simu-
lating intricate physical systems for both distributed pa-
rameter and lumped parameter models. The Hamiltonian
equations of motions have their foundation in analyti-
cal mechanics and Euler Lagrange equations. Hamilto-
nian dynamics are defined by the Dirac structures and
the Hamiltonian is termed as the total stored energy.
Port-Hamiltonian systems can therefore be defined as
open dynamical systems which interact with their envi-
ronment through ports van der Schaft (2006). The Port-
Hamiltonian method can be used to model complex and
atomically based interconnected systems for instance in-

ertias, springs and dampers van der Schaft (2006). A
Port-Hamiltonian model of a vocal fold fluid structure
interaction was reported by Mora et al. (2018). The focus
of the research carried out by Mora et al. (2018) was to
understand the energy transfer between the mechanical
structure and the moving fluid. Vocal fields can be cat-
egorized under mechanical structure which can easily be
modelled as a spring-damper system. Approximation of
the collision forces of the vocal folds assists in the diag-
nosis of phono traumatic voice pathologies. In summary,
the research was about the interacting forces and the
energy flux in the model. Angerer et al. (2017) proposed
a passivity centred control method in Port-Hamiltonian
framework for the cooperative manipulation system guided
by the human being. Seslija et al. (2010) used a Port-
Hamiltonian based model for reaction diffusion systems.
A clear geometric interpretation formalized by a stokes
Dirac structure allows for the dissipative systems to be
treated as interconnected.The main contribution in this
paper is the development of a novel Port-Hamiltonian
model of the human outer ear and tympanic membrane
for sound transmission. This model is not only useful for
investigation of sound transmission but it can also be
used in determination blast injuries due to the rupture
of the tympanic membrane and tympanic membrane per-
forations. Hearing losses that occur in the outer ear and
the tympanic membrane may result in conductive hearing
loss.

3. MATHEMATICAL PRELIMINARIES OF THE
PORT-HAMILTONIAN APPROACH

In this section, the mathematical preliminaries of the Port
Hamiltonian model necessary to model the outer ear and
the tympanic membrane are provided. The work consti-
tutes of three important theories van der Schaft (2006),
namely, the Port based modelling, geometric mechanics,
systems and control theories. The Port-Hamiltonian ap-
proach provides a unified framework for modelling systems
from different physical domains. Energy which is universal
can be stored, dissipated or routed through ports in the
system. Bond graphs are used to provide a graphical repre-
sentation of these physical systems van der Schaft (2006).
Port-Hamiltonian model is coordinate independent. One
advantage of Port Hamiltonian systems is that they can be
represented without using coordinates. A Dirac structure
is the geometric object used represent the interconnection.
An interconnected Dirac structure is also a Dirac struc-
ture. Using geometric mechanics core attributes of the
complex system can be analysed van der Schaft (2006).
Systems can interact with the environment and are af-
fected/interact with controllers van der Schaft (2006).

Informal definition of a Dirac structure Given a Hamil-
tonian H(x) = K(x) + U(x), where K, U and x are
the kinetic energy, potential energy and state variables,
respectively, the flows f and efforts e are defined as van der
Schaft (2006)

f = ẋ, e = ∇xH (1)

where ∇x is the gradient of the Hamiltonian along the
state x. The power is the product of the flows with their
respective efforts, for example, in electric circuits, power,
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P = V I, that is, the product of voltage, V with current
I. The state variable (flow) is current and the effort is
voltage. These elements are interconnected by the Dirac
structure.

Formal definition of a Dirac structure

Theorem 1. (Villegas, 2007; Le Gorrec et al., 2005) The
ith bond space, Bi, is defined as the product of the efforts
F i and flows E i

Bi = F i × E i (2)

where

F i =F i
h ×F i

r ×F i
I ×F i

∂ (3)

E i = E ih × E ir × E iI × E i∂ (4)

The subscripts on the flow and effort variables are de-
fined as follows: h =Hamiltonian, r =dissipative/resistive,
I =distributed input and ∂ =boundary.

Theorem 2. (Villegas, 2007; Le Gorrec et al., 2005) A
Dirac structure, DJe

, is a subspace of the N−dimensional

bond space B , B1 × B2 × · · · × BN given by the set

〈e1, (J − GRSG∗R)e2〉=
∫∫

Ω

(e1)T (J − GRSG∗R) e2 dΩ

=−〈−(J − GRG∗RS)e1, e2〉 (5)

where e1 = e2 = [e1 e2 e3]
T

.

4. SYSTEM MODELLING

Modelling parameters and assumptions taken while devel-
oping the Port Hamiltonian model of the human ear are
provided in the subsections that follow.

4.1 Modelling Parameters

Table 1. Air at 20◦ Celcius, Crittenden et al.
(2012)

Parameter Symbol Value

Density ρa 1.204× 10−3g/cm3

Speed of sound ca 3.43× 104cm/s
kinematic viscosity νa 0.1516cm2/s

Table 2. Tympanic Membrane Gan et al.
(2006, 2004b)

Parameter Symbol Value

Density ρTM 1.2g/cm3

Young’s Modulus EITM 3.5× 108cm/s
Damping βTM 1.2× 10−5s−1

4.2 Modelling assumptions

The assumptions taken during modelling are stated in this
section and repeated in the relevant sections for reference
purposes

(1) Assumptions Ear canal:
• The ear canal is modelled as a straight rectangu-

lar passage (the ear canal is curved).
• The effect of the Pinna is ignored.

• The effect of the convective term in the fluid
motion is very small and thus is ignored.
• The model is concerned with changes about the

resting state (equilibrium).
• The fluid is viscous.
• An isentropic fluid assumption is taken so that

the Navier-Stokes equations are given in the
velocity-pressure form.

(2) Assumptions Tympanic membrane:
• The Tympanic membrane lies perpendicular to

the flow of air in the ear canal (typically lies at
an angle to the flow).
• The Tympanic membrane is assumed to deflect

only in one direction (such that each cross-section
remains perpendicular to its equilibrium posi-
tion), that is, the Euler Bernoulli assumption.
The angular motion about and in-line along the
equilibrium are assumed to be negligible Goll and
Dalhoff (2011).
• The motion at the boundary between the air in

the ear canal and the Tympanic membrane is
assumed to be very small so that the boundary
is not time varying.
• The malleus is attached rigidly at the centre of

the Tympanic membrane.

• All boundaries remain constant, that is they do not
vary with time. Any displacements at the boundaries
of different media are very small and considered
negligible.

4.3 Outer ear modelling

Fig. 1. Outer ear model

Ear canal Air in the ear canal is modelled as a non-
viscous fluid that obeys the Navier-Stokes (N.S.) equations
in which the fluid pressure, P = P (ρ) depends only on the
density, ρ, of the fluid (a barometric fluid), under constant
entropy (isentropic) conditions. The N.S. equations are
expressed as follows:

P = P (ρ)

∂tρ=−∇ · (ρv)

ρ∂tv =−ρ (v · ∇)v −∇P (6)

where v = [vx vy]
T

is the fluid velocity vector, vx and vy
are the fluid velocities along the x and y-axis directions,
∂t is the partial derivative with respect to time and ∇ =

[∂x ∂y]
T

is the vector gradient operator and ∂(·) is the
partial derivative with respect to the spatial coordinates.

Ω1 = {x ∈ [0, Lx1 ], y ∈ [0, Ly1 ]}
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Assuming that the fluid is initially at rest and the sound
pressure waves entering the ear canal disturb the fluid
slightly (resulting in small perturbations, in this case only
first and second order perturbations are considered). The
perturbations are

ρ= ρa + ρb

P = Pa + Pb

v = va + vb (7)

where the subscripts a and b indicate whether the pa-
rameter is constant or time/spatially varying, respectively.
Since the fluid is initially at rest, va = 0. Under isentropic
conditions, speed of sound in air is related to the changes
in the air pressure, density as follows

C2
a =

(
∂P

∂ρ

)
s

(8)

The fluid pressure can now be written as P = Pa +
C2

aρb. The N.S. equations can be simplified by substituting
equation 7 into 6

P = Pa + C2
aρb

ρb∂tvb =−ρb (vb · ∇)vb −∇P
∂tρb =−∇ · (ρbvb) (9)

It is more appropriate to write the N.S. equations in
pressure-velocity form as opposed to the density-velocity
form given in equation 6, due to the interaction of the air
with the Tympanic membrane

Considering the interaction

κa =− 1

Vb

∂vb
∂Pb

= − 1

ρa

∂ρ

∂P
=

1

ρaC2
a

(10)

For small perturbations, (vb · ∇)vb ≈ 0 and is neglected.
Finally, the N.S. equations in pressure-velocity form are

ρa∂tva =−∇Pa

κa∂tPa =−∇ · va (11)

Equation 11 can now be converted to the Port-Hamiltonian
form by defining the state vector

x1 = [Πx1
Πy1

Ψ1]
T

(12)

where Πx1
= ρ1vx1

and Πy1
= ρ1vx1

are the fluid
momentum along the x and y-axis directions, respectively,
Ψ1 = κ1P1 is the fluid ”stiffness” and the subscript, 1
is used to identify the ear canal. The total energy, the
Hamiltonian, H1 (x1), is

H1 (x1) =
1

2

∫∫
Ω1

xT1 L1x1 dΩ1 (13)

where

L1 =

[
1/ρ1 0 0

0 1/ρ1 0
0 0 1/κ1

]
, dΩ1 = dx dy

in expanded form

H1 (x1) =
1

2

∫∫
Ω1

(
(Πx1

)
2

ρ1
+

(Πy1
)
2

ρ1
+

(Ψ1)
2

κ1

)
dΩ1

The state equations of the fluid in the ear canal in PH-form
are

∂tx1 =
(
J 1 − G1

RS1G∗1R
)

(δx1H1) (14)

where

J 1 =

[
0 0 −∂x
0 0 −∂y
−∂x −∂y 0

]
, G1

R = [∂x ∂y 0] (15)

G∗1R = −(G1
R)T ,

S1 =

[
0 0 0
0 0 0
0 0 0

]
, e1

p = S1f1
p (16)

(δx1H1) = L1x1 =

[
Πx1

/ρ1

Πy1
/ρ1

Ψx1/κ1

]
(17)

4.4 Tympanic membrane

The Tympanic membrane is modelled as an Euler-
Bernoulli beam with viscous damping B2 Goll and Dalhoff
(2011)

ρ2∂
2
t v2 = −∂2

y

(
EI2∂

2
yv2

)
−B2∂tv2 (18)

where the subscript 2 is used to identify the Tympanic
membrane, v2 is the displacement of the beam from the
undisturbed position, ρ2 and EI2 are the density per
unit length and flexural rigidity, respectively. Defining the
momentum and curvature, Π2 = ρ2∂tv2 and Ψ2 = ∂2

yv2,
respectively, the state vector of the P.H. model of the
Tympanic membrane, x2, is

x2 = [Π2 Ψ2]
T

(19)

Substituting these states into equation 18 and taking the
time derivative of x2, the following equations

∂tΠ2 =−∂2
yEI2Ψ2 −B2

Π2

ρ2

∂tΨ2 = ∂2
y

Π2

ρ2
(20)

are obtained, which can be derived from a Hamiltonian

H2 (x2) =
1

2

∫ b

a

(
(Π2)

2

ρ2
+ EI2 (Ψ2)

2

)
dy (21)

where which can be written as

H2 (x2) =
1

2

∫ b

a

xT2 L2x2 dy (22)

where

L2 =

[
1/ρ2 0

0 EI2

]
The P.H. model of the Tympanic membrane takes the form

∂tx2 =
(
J 2 −G2

RS
2G∗2R

)
(δx2

H2) +G2
Iu

2
I +G2u2

y2I
=G∗2I (δx2

H2)

y2 =G∗2 (δx2
H2) (23)

where
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J 2 = P 2
0 + P 2

1 ∂y + P 2
2 ∂

2
y ,

P 2
0 =

[
0 0
0 0

]
, P 2

1 =

[
0 0
0 0

]
, P 2

2 =

[
0 −1
1 0

]
,

G2
R =

[
1 0
0 0

]
, G∗2R = −(G2

R)T , S2 =

[
−B2 0

0 0

]
, (24)

, G2
I =

[
1
0

]
, G2 =

[
1
0

]
, (25)

(δx2
H2) = L2x2 =

[
Π2/ρ2

EI2Ψ2

]
The boundary ports are[

f∂
e∂

]
=

1√
2

[
Q2 −Q2

I I

] [
(δx2

H2)(b)
(δx2H2)(a)

]
(26)

=
1√
2

EI2∂yΨ2(a)− EI2∂yΨ2(b)
Π2∂yρ2(b)−Π2∂yρ2(a)

Π2ρ2(a) + Π2ρ2(b)
EI2Ψ2(a) + EI2Ψ2(b)

 (27)

where

Q2 = P 2
2 (28)

The Dirac structure is given by:

〈
e1,J e2

〉
L2,Ω

=

∫
Ω

(e1
2)TJ2e

2
2 dΩ

=

∫
Ω

[
e1

1 e
1
2

] [ 0 −∂2
y

∂2
y 0

] [
e2

1

e2
2

]
dΩ

=

∫
Ω

−e1
1∂

2
ye

2
2 + e1

2∂
2
ye

2
1 dΩ

=
[
−e1

1∂ye
2
2 + e1

2∂ye
2
1

]b
a

=−e1
1(b)∂ye

2
2(b) + e1

2(b)∂ye
2
1(b)

+e1
1(a)∂ye

2
2(a)− e1

2(a)∂ye
2
1(a)

Furthermore, it can be shown that:〈
e1,J e2

〉
L2,Ω

=−
〈
−J e1, e2

〉
L2,Ω

5. MODEL INTERCONNECTION/COUPLING

The individual Port-Hamiltonian model sub-systems were
coupled by considering the following boundary conditions:

(1) Sound Source/Ear canal interconnection:
• Sound pressure at the source is equal to the

pressure at the entrance of the ear canal

Psource(t) =
Ψ1(t, 0, y)

κ
(29)

(2) Ear canal/Tympanic membrane interconnection:
• At their interface, the Ear Canal’s air momentum

component along the x−axis direction, Π1, is
equal to the momentum of the Tympanic mem-
brane:

Π1(t, Lx, y) = Π2(t, y) (30)

• At their interface, air pressure of the Ear Canal,
Ψ1, is equal to the force per unit area of Tym-
panic membrane:

Ψ1(t, Lx, y)

κ1
=
F2(t, y)

A2
(31)

assuming the area of contact remains constant.
(3) Tympanic membrane/Middle Ear interconnection:

• The momentum of the Tympanic membrane, Π2,
is equal to the momentum of the Malleus at their
interface:

Π2(t, Lx,
Ly

2
) = Π3a

(t) (32)

6. TYMPANIC MEMBRANE RESULTS AND
DISCUSSION

Figure 2 shows the initial test that was performed on
the Tympanic membrane. An initial condition (non-zero
velocity at the centre of the Tympanic membrane) resulted
in waves of vibration moving towards the boundaries of the
Tympanic membrane as shown in figure 2.

Fig. 2. Tympanic Membrane

Fig. 3. Frequency response

6.1 Frequency response of the outer ear

The Port Hamiltonian ear model developed was validated
and verified by plotting the transfer function. The mag-
nitude versus frequency curve plotted is comparable to
Gan et al. (2004a) result. Gan et al. (2004a) result was
obtained through a comparison of responses of the middle
ear to harmonic pressure on the lateral side of the Tym-
panic membrane. A consistent pressure of 90dB SPL was
exerted on the lateral side of the Tympanic membrane
and the harmonic evaluation was carried out on the model
for frequencies between 200 and 8000 Hz using ANSYS.
Figure 3 shows the Port Hamiltonian frequency response
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of the Tympanic membrane. The outer ear consists of the
ear canal and the Tympanic membrane which forms the
boarder between the outer and the inner ear. The human
ear dynamic behaviour for sound transmission can be
characterized using the ratio of the Tympanic membrane
displacement to the ear canal sound pressure. This ratio
is defined as the transfer function for the middle ear at
the Tympanic membrane. The Tympanic membrane is
considered as the input port to the middle ear. The graph
in figure 3 starts at a magnitude of 1 × 10−7 and starts
roll to off at 1 kHz.

7. RECOMMENDATIONS AND CONCLUSION

Future improvements to this work would include:The
Tympanic membrane will terminate the flow of air in the
ear canal at an angle(typically lies at an angle to the
flow).Inclusion of the angular motion of the Tympanic
membrane and the motion at the boundary between the
air in the ear canal and the Tympanic membrane will be
perceived as significant hence the boundary will be time
varying. A Port-Hamiltonian model of the ear canal and
Tympanic membrane has been presented. The membrane
was modelled as an Euler-Bernoulli beam. The frequency
response of the model at speech frequencies followed a
similar trend as the models presented in Literature.
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