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Abstract: Recently, the problem of boundary stabilization and estimation for unstable linear
constant-coefficient reaction-diffusion equation on n-balls (in particular, disks and spheres) has
been solved by means of the backstepping method. However, the extension of this result to
spatially-varying coefficients is far from trivial. Some early success has been achieved under
simplifying conditions, such as radially-varying reaction coefficients under revolution symmetry,
on a disk or a sphere. These particular cases notwithstanding, the problem remains open. The
main issue is that the equations become singular in the radius; when applying the backstepping
method, the same type of singularity appears in the kernel equations. Traditionally, well-
posedness of these equations has been proved by transforming them into integral equations
and then applying the method of successive approximations. In this case, with the resulting
integral equation becoming singular, successive approximations do not easily apply. This paper
takes a different route and directly addresses the kernel equations via a power series approach,
finding in the process the required conditions for the radially-varying coefficients and stating the
existence of the series solution. This approach provides a direct numerical method that can be
readily applied, despite singularities, to both control and observer boundary design problems.

1. INTRODUCTION

In this paper we introduce an explicit boundary output-
feedback control law to stabilize an unstable linear
radially-dependent reaction-diffusion equation on an n-ball
(which in 2-D is a disk and in 3-D a sphere).

This paper extends the spherical harmonics [4] approach
of [20], which assumed constant coefficients, using some of
the ideas of [24]; for the sake of brevity we will mainly show
the modifications required with respect to [20], skipping
the details when they are identical. For a finite number of
harmonics, we design boundary feedback laws and output
injection gains using the backstepping method [7] (with
kernels computed using a power series approach) which
allows us to obtain exponential stability of the origin in
the L2 norm. Higher harmonics will be naturally open-loop
stable. The required conditions for the radially-varying co-
efficients are found in the analysis of the numerical method
and are non-obvious (evenness of the reaction coefficient).
The idea of using a power series to compute backstepping
? This work was supported by the National Natural Science Foun-
dation of China (61773112), the Fundamental Research Funds for
the Central Universities and Graduate Student Innovation Fund
of Donghua University (CUSF-DH-D-2019089) and the scholarship
from China Scholarship Council (CSC201806630010). R. Vazquez
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kernels was first seen in [2] (without much analysis of
the method itself, but rather numerically optimizing the
approximation) and later in [6], where piecewise-smooth
kernels require the use of several series. Here, we state
that the method provides a unique solution leaving the
question of convergence of the series (i.e., analyticity of the
kernel) for future work; the proof of the result is skipped
due to page limitation and will be given in an upcoming
publication.

Some partial results towards the solution of this problem
were obtained in [22] and [21] for the disk and sphere,
respectively; however they required simmetry conditions.
Older results in this spirit were obtained in [18] and [12].

Previous results and applications in multi-dimensional
domains include multi-agent deployment in 3-D space [13]
(by combining the ideas of [20] and [10]), convection
problem on annular domains [19], PDEs with boundary
conditions governed by lower-dimensional PDEs [14, 24],
multi-dimensional cuboid domains [11].

The backstepping method has proved itself to be an
ubiquitous method for PDE control, with many other
applications including, among others, flow control [16, 23],
nonlinear PDEs [17], hyperbolic 1-D systems [9, 3, 1], or
delays [8]. Nevertheless, other design methods are also
applicable to the geometry considered in this paper (see
for instance [15] or [5]).
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The structure of the paper is as follows. In Section 2 we
introduce the problem. In Section 3 we state our stability
result. We state the well-posedness of the kernels in Sec-
tion 4, but the proof is skipped due to page limitation. We
briefly talk about the observer in Section 5, but skip most
details based on its duality with respect to the controller.
Next we give some simulation results in Section 6. We
finally conclude the paper with some remarks in Section 7.

2. N -D REACTION-DIFFUSION SYSTEM ON AN
N -BALL

Following [20], a varying coefficient reaction-diffusion sys-
tem in an n-dimensional ball of radius R can be writ-
ten in n-dimensional spherical coordinates, also known as
ultraspherical coordinates (see [4], p. 93), which consist
of one radial coordinate and n − 1 angular coordinates.
Then, using a (complex-valued) Fourier-Laplace series of
Spherical Harmonics 1 to handle the angular dependen-
cies, one reaches the following independent complex-valued
1-D reaction-diffusion equation for each harmonic:

∂tu
m
l =

ε

rn−1
∂r
(
rn−1∂ru

m
l

)
− l(l+n− 2)

ε

r2
uml +λ(r)uml ,

(1)
evolving in r ∈ [0, R], t > 0, with boundary conditions

uml (t, R) =Uml (t), (2)
In these equations, we have considered Dirichlet boundary
conditions. The measurement would be the flux at the
boundary, namely ∂ruml (t, R).

In the above equations, the integers m and l stand for the
order and degree of the harmonic, respectively. Note that
the higher the degree (corresponding to high frequencies),
the more “naturally” stable (1)–(2) is, as seen next. Define
the L2 norm

‖f(r)‖2L2 =

R∫
0

|f(r)|2rn−1dr. (3)

and the associated L2 space as usual, where |f |2 = ff∗,
being f∗ the complex conjugate of f .
Lemma 1. Given λ(r) and R, there exists L ∈ N such that,
for all l > L, the equilibrium uml ≡ 0 of system (1)-(2) is
open loop exponentially stable, namely, for Uml = 0 in (1)
there exists a positive constant D1, such that for all t

‖uml (t, ·)‖2L2 ≤ e−D1t‖uml (0, ·)‖2L2 . (4)
D1 is independent of l, and only depends on n, λ(r), ε, and
R, and can be chosen as large as desired just by increasing
the values of L.

The proof is skipped as it mimics [24] just by using the L2

norm as a Lyapunov function and Poincare’s inequality.

Thus one only needs to stabilize the unstable mode with
|l| < L. Since the different modes are not coupled, it
allows us to stabilize them separately and re-assembling
them. Moreover since only a finite number of harmonics is
stabilized, there is no need to worry about the convergence
of the control law as in [20], with its Spherical Harmonics
series being just a finite sum.
1 Spherical harmonics were introduced by Laplace to solve the
homonymous equation and have been widely used since, particu-
larly in geodesics, electromagnetism and computer graphics. A very
complete treatment on the subject can be found in [4].

Our objective can now be stated as follows. Considering
only the unstable modes, design an output-feedback control
law for Uml using, for each mode, only the measurement
of ∂ruml (t, R). Our design procedure is established in the
next section along with our main stability result.

3. STABILITY OF CONTROLLED HARMONICS

Next, for the unstable modes we design the output-
feedback law. The observer and controller are designed sep-
arately using the backstepping method, by following [20];
in this reference it is shown that both the feedback and
the output injection gains can be found by solving a
certain kernel PDE equation, which is essentially the same
for both the controller and the observer. Thus, for the
sake of brevity and to avoid repetitive material, we only
show how to obtain the (full-state) control law, giving the
basic observer design and some additional remarks later in
Section 5.

3.1 Design of a full-state feedback control law for unstable
modes

Based on the backstepping method [7], our idea is utilizing
a invertible Volterra integral transformation

wml (t, r) = uml (t, r)−
r∫

0

Kn
lm(r, ρ)uml (t, ρ)dρ, (5)

where the kernel Kn
lm(r, ρ) is to be determined, which

defined on the domain Tk = {(r, ρ) ∈ R2; 0 ≤ ρ ≤
r ≤ R} to convert the unstable system (1)-(2) into an
exponentially target system:

∂tw
m
l = ε

∂r(r
n−1∂rw

m
l )

rn−1
− εl(l + n− 2)

wml
r2
− cwml , (6)

wml (t, R) = 0, (7)
where the constant c > 0 is an adjustable convergence
rate. From (5) and (7), let r = R, we obtain the boundary
control as the following full-state law

Uml (t) =

R∫
0

Kn
lm(R, ρ)uml (t, ρ)dρ. (8)

Following closely the steps of [20] to find conditions for the
kernels, and defining Kn

lm(r, ρ) = Gnlm(r, ρ)ρ
(
ρ
r

)l+n−2, we
finally reach a PDE that the G-kernels need to verify:

λ(ρ) + c

ε
Gnlm = ∂rrG

n
lm + (3− n− 2l)

∂rG
n
lm

r

−∂ρρGnlm + (1− n− 2l)
∂ρG

n
lm

ρ
, (9)

with only one boundary condition:

Gnlm(r, r) =−
∫ r
0

(λ(σ) + c)dσ

2rε
. (10)

We assume as usual that these kernel equations are well-
posed and the resulting kernel is bounded in T ; this will be
analyzed later in Section 4, providing a numerical method
for its computation.

3.2 Closed-loop stability analysis of unstable modes

To obtain the stability result of closed-loop system, we
need three elements. We begin by stating the stability
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result for the target system. We follow by obtaining the
existence of an inverse transformation that allows us to
recover our original variable from the transformed variable.
Then we relate the L2 norm with spherical harmonics.
With these elements, we construct the proof of stability
mapping the result for the target system to the original
system. This is done by showing that the transformation
is an invertible map from L2 into L2.

We first discuss the stability of the target system, having
the following Lemma:
Lemma 2. For all l ∈ N, and for c ≥ 0, the equilibrium
wml ≡ 0 of system (6)–(7) is exponentially stable, i.e., there
exists a positive constant D2 such that for all t,

‖wml (t, ·)‖2L2≤ e−D2t‖wml (0, ·)‖2L2 , (11)

where the constant D2 is independent of n, l or m, and
only depends on c, ε, and R; it can be chosen as large as
desired just by increasing the value of c.

Proof. Consider the Lyapunov function:

V2(t) =
1

2
‖wml (t, ·)‖2L2 , (12)

then, taking its time derivative, we obtain

V̇2 =

R∫
0

w̄ml ∂tw
m
l + wml ∂tw̄

m
l

2
rn−1dr

≤−
( ε

4R2
+ c
)
‖wml ‖2L2 (13)

choosing

c =
D2

2
− ε

4R2
(14)

we then obtain, independent of the value of n,

V̇2 ≤ −D2V2, (15)

thus proving the result.
Lemma 3. For |l|≤ L, let c be chosen as in Lemma 2,
and assume that the kernel Kn

lm(r, ρ) is bounded and
integrable. The system (1) with boundary control (8)
is closed-loop exponentially stable, namely there exists
positive constants C and D2 such that

‖uml (t, ·)‖2L2≤ Ce−D2t‖uml (0, ·)‖2L2 , (16)
C and D2 are independent of m or l, and only depend on
n, L, λ(r), ε and R.

Proof. The proof consists of two parts, one is existence
of an inverse transformation, and then showing the equiv-
alence of norms of the variables unlm and wnlm; the result
then follows from the stability of the target system.

As shown in [20], whenKn(r, ρ) is bounded and integrable,
the map (5) is reversible and its inverse transformation is

uml (t, r) = wml (t, r) +

r∫
0

Lnlm(r, ρ)wml (t, ρ)dρ, (17)

which is also bounded and integrable. Call now K̄ and L̄
the maximum of the bounds of the function Ǩn

lm and Ľnlm
for a given n and all |l| ≤ L in their respective domains.
It is easy to get

‖wml (t, ·)‖2L2≤M1‖uml (t, ·)‖2L2 , (18)

‖uml (t, ·)‖2L2≤M2‖wml (t, ·)‖2L2 . (19)
where M1 = 2 + R4K̄/(2n) and M2 = 2 + R4L̄/(2n).
Combining then Lemma 2 with the norm equivalence
between uml and wml system stated as in (18) and (19),
it is easy to obtain
‖uml (t, ·)‖2L2≤M2‖wml (t, ·)‖2L2

≤M2e
−D2t‖wml (0, ·)‖2L2≤M1M2e

−D2t‖uml (0, ·)‖2L2 . (20)
Let C = M1M2, the result then follows. 2

Note that combining Lemmas 1 and 3 and taking D =
min{D1, D1}, we get the following stability result for all
spherical harmonics and thus the full physical system.
Theorem 4. The equilibrium uml ≡ 0 of system (1)-(2)
under control law (8) is closed-loop exponentially stable,
namely, there exists a positive constant D, such that for
all t

‖uml (t, ·)‖2L2 ≤ Ce−Dt‖uml (0, ·)‖2L2 . (21)
where D can be chosen as large as desired just by increas-
ing the value of L and c in the control design process.

4. WELL-POSEDNESS OF THE KERNEL
EQUATIONS

Next, we state a kernell well-posedness result, which was
in part implicitly assumed in Theorem 4, also giving the
requirements for λ(r). This result also provides a numerical
method to compute the kernels, which is an alternative to
successive approximations which do not work so well in
this case (due to the singularities present at the origin;
see for instance [22] to see the resulting singular integral
equation that needs to be solved).
Theorem 5. Under the assumption that λ(r) is an even
analytic function in [0, 1], then for a given n > 1 and all
values of l ∈ N, there is a unique power series solution
Gnlm(r, ρ) for (9)–(10), even in its two variables in the
domain T . In addition, if λ(r) is analytic but not even,
then there is no power series solution to (9)–(10) for all
l ∈ N.
Remark 1. The requirement of evenness for λ(r) might
seem strange at first sight. However, note that r =√
x21 + x22 + . . .+ x2n, therefore in physical space λ(r) will

be non-smooth unless it is even. Thus, while the kernels
might exist for non-even λ(r), we cannot expect them to
be smooth, which might be indeed problematic for higher-
order harmonics; not so much for lower-order, as shown
in [22], which only considers the 0-th order harmonic and
consequently only requires boundedness of λ(r).

The proof of Theorem 5 cannot be given due to page limi-
tation and will appear in a subsequent journal publication.
It is based on expressing a solution to (9)–(10) in the form:

Gnlm(r, ρ) =

∞∑
i=0

 i∑
j=0

Cijr
jρi−j

 , (22)

Note that the series in (22) has been written in a way that
collects together (in the parenthesis) all the polynomial
terms with the same degree.

5. OBSERVER DESIGN

This section designs an observer for (1)-(2) from the
measured output ∂ruml (t, R) as follows:
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∂tû
m
l =ε

∂r
(
rn−1∂rû

m
l

)
rn−1

− l(l + n− 2)
ε

r2
ûml + λ(r)ûml

+ pnlm(r)(∂ru
m
l (t, R)− ∂rûml (t, R)), (23)

with boundary condition
Ûml (t) = Uml (t). (24)

We need to design the output injection gain pnlm(r). Closely
following [20], define the observer error as ũ = u− û. The
observer error dynamics are given by

∂ũlmt
∂t

=
ε

rn−1
∂r
(
rn−1∂rũlm

)
− l(l + n− 2)

ε

r2
ũlm

+λ(r)ũlm − pnlm(r)∂rũlm(t, R), (25)
with boundary conditions

ũlm(t, R) = 0. (26)
Next we use the backstepping method to find a value
of pnlm(r) that guarantees convergence of ũ to zero. This
ensures that the observer estimates tend to the true state
values. Our approach to design p(r) is to seek a mapping
that transforms (25) into the following target system

∂w̃lmt
∂t

=
ε

rn−1
∂r
(
rn−1∂rw̃lm

)
−cw̃lm − l(l + n− 2)

ε

r2
w̃lm, (27)

with boundary conditions

w̃lm(t, R) = 0. (28)

The transformation is defined as follows:

ũlm(t, r) = w̃lm(t, r)−
∫ R

r

Pnlm(r, ρ)w̃lm(t, ρ)dρ, (29)

and then pnlm(r) will be found from transformation kernel
as an additional condition.

From [20], one obtains the following PDE that the kernel
must verify:

1

rn−1
∂r
(
rn−1∂rP

n
lm

)
− ∂ρ

(
ρn−1∂ρ

(
Pnlm
ρn−1

))
−l(l + n− 2)

(
1

r2
− 1

ρ2

)
Pnlm = −λ(r)

ε
Pnlm (30)

In addition we find a value for the output injection gain
kernel

pnlm(r) = εPnlm(r,R) (31)

Also, the following boundary condition has to be verified

0 = λ(r) + ε (∂rP
n
lm(r, ρ))

∣∣∣∣
ρ=r

+
ε

rn−1
d

dr

(
rn−1Pnlm(r, r)

)
+ε∂ρ

(
Pnlm(r, ρ)

ρn−1

) ∣∣∣∣
ρ=r

rn−1, (32)

which can be written as

0 = λ(r) + ε∂rP
n
lm(r, r) + ε

d

dr
(Pnlm(r, r)) + (n− 1)

εPnlm(r, r)

r

+ε∂ρP
n
lm(r, r)− (n− 1)

εPnlm(r, r)

r
. (33)

Following [20], and after some computations, we reach
boundary conditions for the kernel equations as follows

Pnlm(0, ρ) = 0, ∀l 6= 0 (34)

Pnlmr(0, ρ) = 0, ∀l 6= 1 (35)

Pnlm(r, r) =−
∫ r
0
λ(σ)dσ

2ε
. (36)

It turns out the observer kernel equation can be trans-
formed into the control kernel equation, therefore obtain-
ing a similar explicit result. For this, define

P̌nlm(r, ρ) =
ρn−1

rn−1
Pnlm(ρ, r), (37)

and it can be verified that the equation now verified by
P̌nlm(r, ρ) is exactly the equation verified by Kn

lm(r, ρ).
Thus P̌nlm(r, ρ) = Kn

lm(r, ρ) and we can apply our previous
result of Section 4.

The observer error ũ has the same stability properties
derived in Section 3 for the closed-loop system under the
full-state control. As in the controller case, only a limited
number of modes need to be estimated; namely, those that
are not naturally stable by virtue of Lemma 2, this being
the main difference with the result given in [20].

Finally, the controller-observer augmented system can be
proved closed-loop stable as in [20], using the separation
principle given the linearity of the system, with desired
convergence rate, and without much modification; we skip
the details for lack of space, which requires going up to H1

stability, as in [20].

6. SIMULATION STUDY

In this section, the simulation experiment on three-
dimensional ball (n=3) is taken as an example to illustrate
the effectiveness of proposed control. The system with the
output-feedback control law is simulated over 0 ≤ t ≤ 2s
with the following parameters: ε = 1, λ(r) = 10r4 +50r2 +
50, c = 3. We consider that the system is initially at the
random quantity, u0 ∈ [0, 10], and the observer’s initial
condition is set as actual state plus an error of normal
distribution with zero mean and σ2 = 0.5.

Fig. 1 shows the plots of the polynomial approximation of
kernels K3

lm, which is obtained by using (22) up to a cut-
off at the p-th powers. The value of K does not depend
on m so we omit that sub-index. The value of p is chosen
as p = 15. Applying Lemma 1, one can obtain L to be
11; however, here to save space, we only show the first
six approximate numerical solutions of control gains. As
shown in Fig. 1, we find that the Kl becomes increasingly
smaller when l increases.

In order to avoid a dramatic increase in the complex-
ity of simulation caused by the high dimension, in our
simulations we employ a method also based on spherical
harmonics expansions which greatly reduces the error.
Thus, we only calculate the harmonics ulm which only
need discretization in the radial direction, and then sum
a finite number S of harmonics to recover u. When S > 0
is a large enough integer, the error caused by the use of
a finite number of harmonics is much smaller than the
angular discretization error. Thus, the simulation is carried
out using the formula

u(t, r, θ1, θ2) =

l=S∑
l=0

m=l∑
m=−l

uml (t, r)Y 3
lm(θ1, θ2) (38)

where the spherical harmonics are defined as
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Fig. 1. Polynomial approximation of the first six control
gains Kl(r, ρ), l = 0, 1, . . . , 5.
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Fig. 2. Open-loop evolution.

Y 3
lm(θ1, θ2) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
P 3
lm(cos(θ1))ejmθ2

(39)
with P 3

lm the associated Legendre polynomial defined as

P 3
lm(s) =

1

2ll!
(1− s2)m/2

dl+m

dsl+m
(s2 − 1)l (40)

Fig. 2 and Fig. 3 illustrate the transients of open-loop
and closed-loop responses at different times, respectively,
where the colour denotes the value of the position at this
time. The evolutions of average value of u are plotted in
Fig. 2(d) and Fig. 3(e), respectively. (Note that the ranges
of color bars are different. And thus avoid the appearance
of almost similar colors in fig. 3 of using same upper limit.)
Comparing the open-loop and closed-loop evolution, the
validity of proposed method is illustrated more intuitively.
Fig. 3(f) shows the average of the observation errors, from
which it can be found that the system begins to converge to
its zero equilibrium after the observation error has already
settled to zero as well. The evolutions at different layers,
namely r = 0.002, r = 0.3, r = 0.5 and r = 0.8, are
shown in Fig. 4 (a), (c) , as well as the observer errors are
presented in Fig. 4 (b), (d). For clarity, only the first 0.4s
of response are shown here. Fig. 5 depicts control effort at
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Fig. 3. Closed-loop evolution using output feedback con-
trol. (a)-(d) Transient states. Note that the different
upper ranges of the color bars in Fig. 2 and 3. (e)
Mean of system state u. (f) Mean of observer error ũ.
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Fig. 4. The details of closed-loop evolution at different r
or θ. (a) (c) Actual states. (b) (d) Observer errors
between the actual and estimated states.

the boundary. It can be seen that the system driven by
the proposed boundary control eventually converges after
a short-term fluctuation.
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Fig. 5. The control effort at different θ.

7. CONCLUSION

We have shown a design to stabilize a radially-varying
reaction-diffusion equation on an n-ball, by using an
output-feedback boundary control law (with boundary
measurements as well) designed through a backstepping
method. The radially-varying case proves to be a challenge
as the kernel equations become singular in the radius;
when applying the backstepping method, the same type
of singularity appears in the kernel equations and suc-
cessive approximations become difficult to use. Using a
power series approach, a solution is found, thus providing
a numerical method that can be readily applied, to both
control and observer boundary design. In addition the
required conditions for the radially-varying coefficients are
revealed (analyticity and evenness).

In practice, this result can be of interest for deployment
of multi-agent systems, by following the spirit of [13];
thus, the radial domain mirrors a radial topology of
interconnected agents which follow the reaction-diffusion
dynamics to converge to equilibria, that represent different
deployment profiles. Since one can choose the plant as
desired (thus setting the behaviour of the agents), using
analytic reaction coefficients is not actually a restriction,
but rather opens the door to richer families of deployment
profiles compared with the constant-coefficient case of [13].

On the other hand, the theoretical side of the result needs
to be further investigated; besides convergence issues,
another avenue of research that can be explored is the
relaxation of the analyticity hypothesis by using reaction
coefficients belonging to the Gevrey family; the kernels
can then be analyzed to verify if they are still analytic, or
rather Gevrey-type kernels, or simply do not diverge.
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