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Abstract: The Simultaneous Long-Short (SLS) controller for trading a single stock is known to
guarantee positive expected value of the resulting gain-loss function with respect to a large class
of stock price dynamics. In the literature, this is known as the Robust Positive Expectation (RPE)
property. An obvious way to extend this theory to the trading of two stocks is to trade each one
of them using its own independent SLS controller. Motivated by the fact that such a scheme
does not exploit any correlation between the two stocks, we study the case when the relative sign
between the drifts of the two stocks is known. The main contributions of this paper are three-
fold: First, we put forward a novel architecture in which we cross-couple two SLS controllers
for the two-stock case. Second, we derive a closed-form expression for the expected value of the
gain-loss function. Third, we use this closed-form expression to prove that the RPE property is
guaranteed with respect to a large class of stock-price dynamics. When more information over
and above the relative sign is assumed, additional benefits of the new architecture are seen. For
example, when bounds or precise values for the means and covariances of the stock returns are
included in the model, numerical simulations suggest that our new controller can achieve lower
trading risk than a pair of decoupled SLS controllers for the same level of expected trading gain.

Keywords: Finance, Robustness, Stochastic Control, Uncertain Dynamic Systems.

1. Introduction
The starting point for this paper is the fact that the
so-called Simultaneous Long-Short (SLS) stock trading
controller, see [1–6], guarantees satisfaction of the Robust
Positive Expectation (RPE) property, which means the
following: The trading gain-loss function is guaranteed to
have positive expected value for a broad class of stock-price
processes. In this paper, we go beyond the single-stock
results cited above and pursue this theme in a more gen-
eral two-stock trading scenario. To this end, we introduce
Cross-Coupled SLS controllers to exploit a “correlation”
between the stocks. For this new controller, we prove an
RPE theorem which holds when the sign of the cross-
coupling coefficient is chosen appropriately. When addi-
tional information about the price processes is assumed,
our numerical examples suggest that cross-coupled SLS
controllers can achieve lower trading risk than a pair of
decoupled SLS controllers for the same target value of the
expected trading gain.
For an SLS controller trading a single stock, the key idea
in existing literature involves generating the investment
level in the stock from calculations based on hypothetically
holding both long and short positions at the same time.
This is accomplished using two complementary controllers.
The associated RPE results, obtained using linear feed-
back, differ from earlier work which is based on sample
paths such as [7–9], and model-specific trading strategies

such as [10–13]. In addition to the work in [1–6], other
contributions to the SLS theory involve robustness results
with respect to stock prices having time-varying drift and
volatility [14], prices generated from Merton’s diffusion
model [15], generalization to the case of PI controllers [16],
and discrete-time systems with delays [5]. More recently,
in [17], the authors generalize the RPE Theorem to the
case of an SLS controller which can have different param-
eters for the long and short sides of the trade and suggest
procedures for controller parameter selection to minimize
trading risk based on historical data. In [18], the authors
start with a problem formulation which treats prices as
if they are disturbances, as in [19], and obtain the SLS
controller parameters as the solution of an appropriately
constructed H∞ optimization problem.
A noticeable attribute of the SLS literature is that it
addresses single-stock trading scenarios. For the multi-
stock case, the obvious approach for using existing results
would be to independently trade each stock using its own
SLS controller, without exploiting any information about
their price correlation. Influenced by these considerations,
the innovation in [6] is to trade one stock with a long-
only linear feedback and the other with a short-only linear
feedback instead of using two separate SLS controllers.
Additionally, a strong assumption on the price relation-
ships between the two stocks is made. In contrast to the
aforementioned, in this paper we impose a much weaker
assumption. Specifically, we assume that only the relative
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sign between the underlying drifts of the two stock prices
is known. We then put forward a new architecture that
cross-couples two SLS controllers to take advantage of this
relative-sign information.
In comparison to existing SLS literature, our new control
architecture includes an extra degree of freedom: a cross-
coupling feedback parameter γ, which forces interactions
between the two SLS controllers. In addition to the in-
troduction of this novel trading architecture, the main
theoretical contributions in this paper are results related to
the expected value of the trading gain-loss function. First,
we provide a closed-form expression for the expected value
of the trading gain-loss function. Subsequently, we prove
that for a range of γ, satisfaction of the RPE property
is guaranteed with respect to a large class of stochastic
processes for the stock prices. We also establish a recursive
formula to calculate the variance of the gain-loss function.
Under strengthened assumptions that additional informa-
tion about the stock prices is known over and above the
relative sign between the mean returns, we demonstrate
via a numerical simulation example that there can be
performance benefits due to the use of cross-coupling. In
our example, using an assumed price model with known
means and variances of the stock-price returns, an opti-
mized cross-coupled architecture achieves lower risk than
two similarly optimized independent SLS controllers. The
methodology used in the numerical example can be easily
adapted to evaluate performance benefits when the price
model assumed is not precise. For example, when the drifts
and volatilities of the price processes are characterized
with bounds instead of precise values, minimax optimiza-
tion of the controller design is still possible.
Additionally, in our numerical example, we consider the ac-
count leverage resulting from the use of the cross-coupled
controller. For the specific case of Geometric Brownian
Motion prices, along most sample paths, trading with the
optimal cross-coupled controller results in lower account
leverage than that obtained with optimal independent
SLS controllers. For scenarios with a limit on the trading
account leverage, we see that a “saturated” implementation
of our cross-coupled controller still results in trading gains
with a positive sample mean.

2. Two-Stock Trading Scenario
In this section, we describe our two-stock trading setup,
including the assumptions which are in force.

Stock Price Dynamics:We consider two stocks with
stochastically varying prices S1(k) and S2(k) having as-
sociated returns

ρ1(k)
.
=
S1(k + 1)− S1(k)

S1(k)
; ρ2(k)

.
=
S2(k + 1)− S2(k)

S2(k)

at stages k = 0, 1, . . . , N − 1, with the assumption that
the return vectors [ρ1(k) ρ2(k)]T are independent
and identically distributed. The mean values of the re-
turns µ1

.
= E[ρ1(k)] and µ2

.
= E[ρ2(k)] are unknown to

the trader. Only the relative sign between the two means,
namely sign(µ1µ2), is assumed to be known. For instance,
if the two stocks are from the same sector, it is often
the case that they tend to move in the same direction;
i.e., sign(µ1µ2) = 1, over the medium to long term; e.g.,

see [20]. Similarly, when assets in a portfolio are negatively
correlated; e.g., see [21], we assume sign(µ1µ2) = −1.

Idealized Market Assumptions: In the theory to fol-
low, consistent with existing SLS literature, an idealized
market is assumed. That is, transaction costs such as
brokerage, commissions, taxes, or fees levied by the stock
exchange, are not incurred. In addition, we assume perfect
liquidity so that there is no gap between the bid and
ask prices, and the trader can buy or sell any number
of shares, including fractions, at the market price. These
assumptions are similar to those made in the context of
“frictionless markets” in finance literature; e.g., see [22].

Leverage and Interest: In practice, the broker usually
imposes limits on the trading account leverage. For our
theoretical analysis, however, we assume that leverage
limits are not in play. That is, the trader has sufficient
account resources to hold any desired position in the
stocks. In Section 8, when we provide a numerical example,
we study the practical implications of a leverage constraint
and suggest further research on this issue in Section 9. We
also assume that the margin interest and the risk-free rates
of return are zero; we defer consideration of nonzero rates
to future research.

3. Two Independent SLS Controllers
To provide context for the analysis and main results to
follow, we first elaborate on the obvious way that existing
single-stock SLS theory might be applied to the two-stock
case. As discussed in Section 1, one can simply design
two decoupled SLS controllers: one for the first stock and
another for the second. Proceeding in this manner, the net
investment levels I1(k) and I2(k) in the stocks at stage k
are obtained as sums

I1(k) = I
1L

(k) + I
1S

(k); I2(k) = I
2L

(k) + I
2S

(k),

where I
iL

(k) and I
iS

(k) for i = 1, 2, are the nominally long
and short positions in the i-th stock, each obtained using a
linear feedback controller. That is, with initial investment
levels I01 > 0 and I02 > 0 and feedback parametersK1 > 0
and K2 > 0, the long and short investment functions are
given respectively as
IiL(k) = I0i +KigiL

(k); IiS(k) = −I0i −KigiS
(k),

for i = 1, 2, where the cumulative gain-loss functions re-
sulting from individual long and short positions in each
stock are obtained using the gain-loss update equations

g
iL

(k + 1) = g
iL

(k) + I
iL

(k)ρi(k);

g
iS

(k + 1) = g
iS

(k) + I
iS

(k)ρi(k)

for i = 1, 2, with g
1L

(0) = g
1S

(0) = g
2L

(0) = g
2S

(0) = 0. In
the sequel, we refer to the above as the 2-SLS controller.
Now, the overall trading gain-loss function g(k) for this
setup is given by

g(k)
.
= g

1L
(k) + g

1S
(k) + g

2L
(k) + g

2S
(k).

Applying existing results as in [6] to each of the two stocks
individually, we arrive at

E [g(N)] =

2∑
i=1

I0i
Ki

[
(1 +Kiµi)

N + (1−Kiµi)
N − 2

]
,

which is positive for N > 1, and µ1, µ2 not both zero.
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4. Cross-Coupling and State Equations
In this section, we describe the main technical novelty of
this paper: a new architecture for trading which involves
cross-coupling between two single-stock SLS controllers.
This is achieved by augmenting each of the four linear
investment functions of Section 3 with a coupling term
having feedback gain −1 < γ < 1 to obtain

IiL(k) = I0i +KigiL
(k)− γKjgjS

(k);

IiS(k) = −I0i −KigiS
(k) + γKjgjL

(k).

for i, j ∈ {1, 2}; i 6= j. We refer to this as the Cross-
Coupled SLS (CC-SLS) controller. When γ = 0, we recover
the decoupled 2-SLS controller and the corresponding
results stated in Section 3.
To provide some insight into the operation of the CC-SLS
controller, we consider the case when the drifts µ1 and µ2

as well as γ are positive. For this case, we expect g
1L

(k)
and g

2L
(k) to both be positive, with g

1S
(k) and g

2S
(k) both

negative. This leads to I1L(k) and I2L(k) being greater
than would be the case if γ = 0; i.e., greater than the long-
investment levels in the 2-SLS counterpart. Another case
which can be similarly analyzed is encountered when the
first stock follows a sample path with a positive trend,
but the second stock does not, so that g2S(k) is positive;
resulting in a smaller I1L(k) than would be the case
without coupling. More generally, the CC-SLS controller
invests more aggressively or less aggressively than its 2-
SLS counterpart, depending on the extent to which the
stock behaviors are consistent with their drifts.

Gain-Loss Update Equations: Substituting the formu-
lae for the relevant CC-SLS investment functions into each
of the four gain-loss update equations in Section 3, we
obtain the closed-loop equations
g
iL

(k + 1) = (1 +Kiρi(k))g
iL

(k)− γKjρi(k)g
jS

(k) + I
0i
ρi(k);

g
iS

(k + 1) = (1−Kiρi(k))g
iS

(k) + γKjρi(k)g
jL

(k)− I
0i
ρi(k)

for i, j ∈ {1, 2}; i 6= j, with overall trading gain-loss func-
tion g(k) = g

1L
(k) + g

1S
(k) + g

2L
(k) + g

2S
(k).

State-Space Representation:We work with a state-
space representation of the CC-SLS controller to derive our
main results on robust positivity of E [g(N)]. With state

x(k)
.
= [g1L

(k) g
2S

(k) g
1S

(k) g
2L

(k)]
T

and c .= [1 1 1 1]T , the output of interest is
g(k) = cTx(k).

Then, the gain-loss update equations become
x(k + 1) = A(k)x(k) + b(k)u(k);

y(k)
.
= cTx(k)

where

A(k) =

1 +K1ρ1(k) −γK2ρ1(k) 0 0
γK1ρ2(k) 1−K2ρ2(k) 0 0

0 0 1−K1ρ1(k) γK2ρ1(k)
0 0 −γK1ρ2(k) 1 +K2ρ2(k)

 ,
b(k) = [I01ρ1(k) −I

02
ρ2(k) −I

01
ρ1(k) I

02
ρ2(k)]

T
,

and constant input u(k) ≡ 1. Since x(0) = 0, the standard
solution for g(N) is

g(N) = y(N) = cT
N−1∑
k=0

Φ(N, k + 1)b(k)u(k),

where the state transition matrix Φ(k, k0) from stage k0
to k ≥ k0 is given by

Φ(k, k0)
.
=

{
A(k − 1) · · ·A(k0 + 1) ·A(k0) for k > k0;

I4×4 for k = k0.

Taking expectations, we obtain

E [g(N)] = cT
N−1∑
k=0

ĀN−1−k b̄,

where

Ā
.
= E [A(k)] =

1 +K1µ1 −γK2µ1 0 0
γK1µ2 1−K2µ2 0 0

0 0 1−K1µ1 γK2µ1

0 0 −γK1µ2 1 +K2µ2


and

b̄
.
= E [b(k)] = [I01µ1 −I02µ2 −I01µ1 I02µ2]

T
.

5. Main Results
In this section, we provide two theorems related to the
expected value E [g(N)] of the overall gain-loss func-
tion at stage N . The first theorem gives us the formula
for E [g(N)]. Following this, the second theorem gives
us conditions under which E [g(N)] > 0. For simplicity of
the proofs, we assume that both µ1 and µ2 are nonzero.
However, by separately considering the case when one of
these two drifts vanish, it is easy to see that E [g(N)] > 0 in
this situation, except for the break-even case when both µ1

and µ2 are zero.
To obtain a formula for E [g(N)], we use the following
notation. For K1 > 0, K2 > 0, and 0 < |γ| < 1, we define

θ
.
=
√

(K1µ1 +K2µ2)2 − 4γ2K1K2µ1µ2,

α1
.
= (θ −K1µ1 +K2µ2)/2,

α2
.
= (θ +K1µ1 −K2µ2)/2,

β1
.
= (K1µ1 +K2µ2 + θ),

β2
.
= (K1µ1 +K2µ2 − θ),

and the function
φ

N
(x)

.
= (1 + x)N + (1− x)N − 2,

which is positive for all x 6= 0 and N > 1.

Expected Value Theorem: Suppose two stocks with
stochastically varying prices S1(k) and S2(k) with mean
returns µ1 and µ2 are traded using the Cross-Coupled SLS
controller with K1 > 0, K2 > 0, and coupling coefficient
satisfying 0 < |γ| < 1. Then, for µ1 and µ2 nonzero, the
expected value of the gain-loss function is given by

E [g(N)] =
1

2θ

[
2γµ1µ2(I01K1 + I02K2) + I02µ2β1 + I01µ1β2

α1
· φ

N
(α1)

+
2γµ1µ2(I

01
K1 + I

02
K2) + I

02
µ2β2 + I

01
µ1β1

α2
· φ

N
(α2)

]
.

Proof:For µ1, µ2 6= 0 and coupling coefficient 0 < |γ| < 1,
we diagonalize the block-diagonal matrix Ā defined in
Section 4 to obtain
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Ā = PΛP−1,

where

P
.
=


β2

2γK1µ2

β1
2γK1µ2

0 0

1 1 0 0

0 0
β1

2γK1µ2

β2
2γK1µ2

0 0 1 1


is composed of the eigenvectors of Ā as its columns, and

Λ
.
= diag (1− α1, 1 + α2, 1− α2, 1 + α1)

is the diagonal matrix with the corresponding eigenvalues
of Ā. Note that the standing assumptions assure that α1

and α2 are nonzero.
Rewriting the expression for E [g(N)] in terms of P and Λ,
we obtain

E [g(N)] = cT
N−1∑
k=0

ĀN−1−k b̄

= cT
N−1∑
i=0

(
PΛN−1−iP−1

)
b̄

= cTPΛ
S
P−1b̄,

where the diagonal matrix Λ
S
is given by

Λ
S

.
= diag

(
(1− α1)N − 1

−α1
,

(1 + α2)N − 1

α2
,

(1− α2)N − 1

−α2
,

(1 + α1)N − 1

α1

)
.

Since E [g(N)] is a scalar, we write
E [g(N)] = cTPΛ

S
P−1b̄ = tr

(
cTPΛ

S
P−1b̄

)
,

where tr(·) is the trace operator, and its cyclic prop-
erty [23] gives us

E [g(N)] = tr(cTPΛ
S
P−1b̄)

= tr(PΛ
S
P−1b̄cT )

= tr(Λ
S
P−1b̄cTP )

=
∑
i

(Λ
S
)ii(P

−1b̄cTP )ii,

where (Λ
S
)ii and (P−1b̄cTP )ii denote the diagonal entries

of the respective matrices. For Λ
S
as given above, we need

only find the values of (P−1b̄cTP )ii, which we collect in
the vector

D
.
=


(P−1b̄cTP )11
(P−1b̄cTP )22
(P−1b̄cTP )33
(P−1b̄cTP )44

 .
Further simplification using β1β2 = 4γ2K1K2µ1µ2 yields

D =
1

2θ

−I02µ2(β1 + 2γK2µ1)− I
01
µ1(β2 + 2γK1µ2)

I
02
µ2(β2 + 2γK2µ1) + I

01
µ1(β1 + 2γK1µ2)

−I
02
µ2(β2 + 2γK2µ1)− I

01
µ1(β1 + 2γK1µ2)

I
02
µ2(β1 + 2γK2µ1) + I

01
µ1(β2 + 2γK1µ2)

 .
Then the summation above for E [g(N)] simplifies to the
claimed closed-form expression. 2

Remarks:We observe that the expected value of the gain-
loss function is of the form

E [g(N)] = C1 · φN
(α1) + C2 · φN

(α2),

where C1 and C2 are independent of N . This is similar
in form to the result given for two independent SLS

controllers in Section 3, that is,

E [g(N)]
∣∣∣
2-SLS

=
I01
K1

φN (K1µ1) +
I02
K2

φN (K2µ2).

In the theorem to follow, we use the closed-form expression
for E [g(N)] to prove that if sign(γ) = sign(µ1µ2), the RPE
property of the CC-SLS controller is guaranteed.

Robust Positive Expectation Theorem: Suppose two
stocks with stochastically varying prices S1(k) and S2(k)
with nonzero mean returns µ1 and µ2 are traded using
the Cross-Coupled SLS controller with coupling coefficient
satisfying 0 < |γ| < 1 and sign(γ) = sign(µ1µ2). Then, for
any N > 1, robust satisfaction of the condition

E [g(N)] > 0

is guaranteed.

Proof: Beginning with the formula obtained for E [g(N)]
and rearranging, it suffices to show that the following three
inequalities hold:

φ
N

(α1) · (I
02
µ2β1 + I

01
µ1β2)

α1
> 0;

φ
N

(α2) · (I
02
µ2β2 + I

01
µ1β1)

α2
> 0;

2γµ1µ2(I01K1 + I02K2)

(
φ

N
(α1)

α1
+
φ

N
(α2)

α2

)
≥ 0.

For arbitrary admissible pair µ1 6= 0 and µ2 6= 0, we verify
the satisfaction of the first two inequalities above for the
cases enumerated in Table 1. In each row of the table, we
consider a possible combination of the signs of µ1 and µ2.
Each combination determines the range of possible values θ
can take, which in turn dictates the signs of α1, α2, β1
and β2. Using these in conjunction with the positivity
of φN (αi) for N > 1 establishes the first two inequalities.
To prove the third inequality holds, given that

sign(µ1µ2) = sign(γ),

we readily see that 2γµ1µ2(I
01
K1 + I

02
K2) > 0. Thus, to

complete the proof, it suffices to show that
φ

N
(α1)

α1
+
φ

N
(α2)

α2
≥ 0.

To this end, we consider the following two cases:
Case 1: If sign(µ1) = sign(µ2), we see from Table 1
that α1 > 0 and α2 > 0. Combined with the fact that the
function φN (x) > 0 for all x 6= 0, it follows that φN (α1) > 0
and φN (α2) > 0. Hence,

φ
N

(α1)

α1
+
φ

N
(α2)

α2
> 0.

Case 2: If sign(µ1) = −sign(µ2), we see from Table 1
that sign(α1) = −sign(α2). Without loss of generality, as-
suming µ1 > 0 > µ2, we obtain α2 > 0 > α1 with |α2| ≥ |α1|
and we use this condition to arrive at

φ
N

(α1)

α1
+
φ

N
(α2)

α2
=
|α1|φN

(α2)− |α2|φN
(α1)

|α1α2|
.

Since N > 1, it is easily shown that
|α1|φN

(α2) > |α2|φN
(α1).

This completes the proof of the theorem. 2
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Scenario Bounds on θ α1 α2 β1 β2
µ1 > 0;µ2 > 0 |K1µ1 −K2µ2| < θ < K1µ1 +K2µ2 α1 > 0 α2 > 0 β1 > 0 β2 > 0

µ1 < 0;µ2 < 0 |K1µ1 −K2µ2| < θ < |K1µ1 +K2µ2| α1 > 0 α2 > 0 β1 < 0 β2 < 0

µ1 > 0;µ2 < 0 |K1µ1 +K2µ2| < θ < K1µ1 −K2µ2 α1 < 0 α2 > 0 β1 > 0 β2 < 0

µ1 < 0;µ2 > 0 |K1µ1 +K2µ2| < θ < K2µ2 −K1µ1 α1 > 0 α2 < 0 β1 > 0 β2 < 0

Table 1. Satisfaction of the First Two Inequalities for All Combinations of Signs of µ1 and µ2

6. Variance of the Gain-Loss Function
Assuming that the mean vector

µ
.
= [µ1 µ2]T

.
= E [ρ1(k) ρ2(k)]

T
,

and covariance matrix

σ
.
=

[
σ2
1 σ12

σ12 σ2
2

]
.
= cov([ρ1(k) ρ2(k)]T )

of the returns of the two stocks are known, we now derive
a recursion to calculate var(g(N)). Recalling the state-
update equation from Section 4, we first rewrite the state
matrix as

A(k) = A0ρ0(k) +A1ρ1(k) +A2ρ2(k)

where ρ0(k) ≡ 1, A0 is the identity matrix I,

A1
.
=

K1 −γK2 0 0
0 0 0 0
0 0 −K1 γK2

0 0 0 0

 , A2
.
=

 0 0 0 0
γK1 −K2 0 0

0 0 0 0
0 0 −γK1 K2

 ,
and we rewrite b(k) as

b(k) = b0ρ0(k) + b1ρ1(k) + b2ρ2(k),

where
b0

.
= [0 0 0 0]T ; b1

.
= [I

01
0 − I

01
0]T ; b2

.
= [0 − I

02
0 I

02
]T .

With this notation, the state update equation becomes
x(k + 1) = (A0ρ0(k) +A1ρ1(k) +A2ρ2(k))x(k)

+(b0ρ0(k) + b1ρ1(k) + b2ρ2(k)),

with initial value x(0) = 0. It follows that
E[x(k + 1)] = ĀE[x(k)] + b̄.

To calculate the variance of the gain-loss function, we first
define ρ(k)

.
= [ρ0(k) ρ1(k) ρ2(k)]T , and subsequently

R(µ, σ)
.
= E

[
ρ(k)ρ(k)T

]
=

 1 µ1 µ2

µ1 σ2
1 + µ2

1 σ12 + µ1µ2

µ2 σ12 + µ1µ2 σ2
2 + µ2

2

 .
We now obtain the recursion
E[x(k + 1)xT (k + 1)] = E[(A(k)x(k) + b(k))(A(k)x(k) + b(k))T ],

Substituting the various quantities into the recursion
above for E[x(k)xT (k)] and denoting the (i, j)-th element
of the matrix R(µ, σ) as Ri,j(µ, σ), it follows that

E[x(k + 1)xT (k + 1)] =

2∑
i=0

2∑
j=0

Ri+1,j+1(µ, σ)
[
AiE[x(k)xT (k)]AT

j

+AiE[x(k)]bTj + biE[xT (k)]AT
j + bib

T
j

]
.

Starting with initial value E
[
x(0)xT (0)

]
= 0, we use the

above recursion for 0 ≤ k ≤ N − 1 to obtain E[x(N)xT (N)].
Recalling that the gain-loss function g(N) = cTx(N)
for c = [1 1 1 1]T , we now calculate
E [g(N)] = cTE [x(N)] ; E

[
g2(N)

]
= cTE

[
x(N)x(N)T

]
c,

and subsequently,
var(g(N)) = E

[
g2(N)

]
− E2[g(N)].

From this, we calculate the standard deviation of g(N),
which is used in the numerical example in Section 8.

7. Risk Mitigation via Cross-Coupling
To augment the analysis of the CC-SLS controller in Sec-
tion 4, we now analyze a trading scenario where a cross-
coupling can result in lower trading risk when compared
to two independent SLS controllers. This analysis is per-
formed under the strengthened assumption that the mean
returns and covariances of the two stock prices are known.
Then in the spirit of modern portfolio theory, for the clas-
sical case when the controller parameters I01 , I02 ,K1,K2

and γ are optimized with respect to these assumed price
models, we compare the mean and standard deviation
of g(N) obtained by the CC-SLS controller against the
ones obtained by the 2-SLS controller. We demonstrate
how, for a given target return, the CC-SLS controller
architecture can lead to lower trading risk than that of the
2-SLS controller. Namely, the standard deviation of g(N)
resulting from the use of the CC-SLS is lower than that
obtained using 2-SLS.
Associated with the two controllers described in Sections 3
and 4, whenever convenient, we emphasize the dependence
of various quantities on the controller parameter vector

d
.
= (I

01
, I

02
,K1,K2, γ)

by including it as an argument in mathematical functions
of interest; e.g., we write g(d, k) instead of g(k) for the
gain-loss function at stage k. Thus, given initial trading
account value V0, the account value V (k) at stage k is
given by

V (d, k) = V0 + g(d, k)

and depends on d. Without loss of generality, we as-
sume V0 = 1 so that the cumulative return

V (d,N)− V0
V0

is equal to g(d,N), and the risk-return pair is(
std(g(d,N)),E [g(d,N)]

)
.

8. Numerical Example
To illustrate the ideas in Section 7, we work with an
assumed stochastic model of the stock-price processes
with independent returns having respective mean val-
ues µ1 = 0.023374 and µ2 = 0.031014, and known vari-
ances σ2

1 = 8.3333× 10−3 and σ2
2 = 16.333× 10−3. Then,

for both the CC-SLS and the 2-SLS controllers, we con-
sider 5000 candidate parameter vectors d selected by using
the uniform distribution to generate points

I
01
, I

02
∈ (0, 3]; K1,K2 ∈ (0, 3]; γ ∈ [0, 0.99],
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noting that γ = 1 is inadmissible in the RPE Theorem. For
each vector d selected above for the CC-SLS controller,
we force γ = 0 to get a corresponding 2-SLS parameter
vector. Then for each d, and N = 30, we calculate the risk-
return pair (std(g(d,N)),E [g(d,N)]) for each of the two
controllers. In Figure 1, for the CC-SLS controller, each
such pair is denoted with a blue dot and for the 2-SLS
controller, a green dot is used.
For each of the two architectures, for a given target

0 2 4 6 8 10

0

0.5
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1.5

2

2.5

3

3.5
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4.5

5

CC-SLS

2-SLS

Fig. 1. Expected Value vs. Standard Deviation of g(d,N)

return G, we seek a parameter vector d that solves
min
d

std(g(d,N)) subject to E [g(d,N)] ≥ G.

In terms of Figure 1, this means that the CC-SLS optimum
parameter vector corresponds to the leftmost blue dot
along the line with E [g(d,N)] ≈ G. Similarly for 2-SLS,
the optimum parameter vector corresponds to the leftmost
green dot along the same line. From the figure, we see that
for target returnG, the optimal CC-SLS controller appears
to guarantee a lower level of the risk std(g(d,N)) versus
that obtained for the optimal 2-SLS controller.
To make the above more concrete, for G = 2, using the
search sets for the controller parameters above, an optimal
2-SLS controller parameter vector is found to be

d∗2sls = (3, 3, 0.713, 0.381)

and results in
(std(g(d∗2sls, N)),E [g(d∗2sls, N)]) ≈ (2.399, 2.00).

Similarly, an optimal CC-SLS parameter vector is found
to be

d∗ccsls = (3, 2.58, 0.339, 0.234, 0.990),

and results in
(std(g(d∗ccsls, N)),E [g(d∗ccsls, N)]) ≈ (2.225, 2.00).

Consistent with the discussion above, this CC-SLS con-
troller leads to lower risk than its 2-SLS counterpart.

Account Leverage Considerations:As stated in Sec-
tion 2, the broker typically imposes limits on the account
leverage to ensure that investment levels are commen-
surate with the account value. Thus, to supplement the
foregoing risk-return analysis, we study the leverage used
by the two optimal controllers above. Given that one or

both stocks may be sold short with the corresponding net
investments Ii(k) < 0, consistent with practice, we work
with leverage ratio

L(k)
.
=
|I1(k)|+ |I2(k)|

V (k)
,

and study Lmax
.
= max

0≤k≤N−1
L(k) using one million sam-

ple paths. For simulating these paths, however, we need
to know the joint distribution of the returns, not just
their means and covariances. To this end, we assume that
the prices are obtained from two independent Geomet-
ric Brownian Motion models which are consistent with
the (µi, σ

2
i ) used for the two controller optimization tasks

above. Since the total returns Si(k + 1)/Si(k) are log-
normally distributed, we generate these prices using the
update equations

S1(k + 1) = S1(k) · exp (0.019142 + 0.08903w1(k)) ;

S2(k + 1) = S2(k) · exp (0.022918 + 0.12349w2(k)) ,

where w1(k) ∼ N (0, 1) and w2(k) ∼ N (0, 1). Without loss
of generality, we assume that the initial prices in the
above update equations are S1(0) = S2(0) = 1. Subse-
quently, for N = 30, we estimate that for the CC-SLS
controller, Lmax ≤ 3.44 about 95% of the time, and that for
the 2-SLS controller, using that same 95% figure of merit,
we estimate Lmax ≤ 6.94. Furthermore, out of the one mil-
lion sample paths, the optimal CC-SLS controller results in
a bankruptcy, characterized by account value V (k) ≤ 0, in
only 715 sample paths as compared to 15, 006 bankruptcies
for the 2-SLS controller. For such sample paths, we record
the maximum leverage to be Lmax =∞. To summarize,
the optimal CC-SLS controller not only leads to lower risk
than its optimal 2-SLS controller, but it also results in a
much lower account leverage almost all the time and leads
to a lower probability of account bankruptcy.

Saturated 2-SLS and CC-SLS Controllers:Noting
that the account leverage for both controllers can far
exceed the limits imposed by stock brokers, to illustrate
how one might conform with common practice, we revisit
our simulation with the added constraint L(k) ≤ 2, and
“saturate” the investments of the 2-SLS and the CC-
SLS controllers whenever this inequality is violated. More
precisely, we take

I
iL

(k) =

{
I
iL

(k) when L(k) ≤ 2;

I
iL

(k) · 2/L(k) otherwise,
and

I
iS

(k) =

{
I
iS

(k) when L(k) ≤ 2;

I
iS

(k) · 2/L(k) otherwise.

Although such a scheme ensures that L(k) ≤ 2 for all k,
the theoretical guarantee of robust positive expectation
is no longer available. Nonetheless, from the one million
sample paths of the GBM prices described above, we statis-
tically estimate E [g(N)] ≈ 1.86 and std(g(N)) ≈ 2.15, and
encounter no bankruptcies using the saturated CC-SLS
controller. In comparison, for the saturated 2-SLS con-
troller, we estimate E [g(N)] ≈ 1.74, with std(g(N)) = 2.27
and face account bankruptcy in 12 sample paths. Thus, for
this more practical scenario, the saturated CC-SLS and 2-
SLS controllers yield positive average trading gains while
conforming to the leverage constraints imposed on them.
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9. Conclusion
In this paper, we introduced the notion of cross-coupled
SLS controllers for trading two stocks. We derived a closed-
form expression for the expected trading gain-loss function
resulting from this new architecture and, based on this
formula, our new Robust Positive Expectation Theorem
provides conditions under which positivity of the expected
gain-loss function is guaranteed. We also provided simula-
tions which suggest, under strengthened hypotheses, that
our new CC-SLS architecture enables controller designs
that achieve lower trading risk than two independent SLS
controllers for the same target expected gain. Finally, in
our numerical simulations, we found that the cross-coupled
SLS controller results in lower trading account leverage
than two decoupled SLS controllers. Similarly, we showed
that using “saturated” implementations of both controller
designs which guarantee compliance with a leverage limit
imposed by the broker, the mean-variance performance
of the cross-coupled SLS controller is better than that
obtained with two decoupled SLS controllers.
Three directions for future research immediately present
themselves: The first involves the introduction of cross-
coupling into different variants of the SLS controller found
in the literature; e.g., in [5], an SLS controller with delays
is considered. A second direction involves extending the
theory presented in this paper to trading scenarios involv-
ing more than two stocks. Finally, the third possible direc-
tion for future research is motivated by the fact that the
practitioner invariably faces leverage restrictions. Hence,
it would be of interest to see if the CC-SLS controller still
leads to a guarantee of robust positive expectation when a
saturation scheme, along the lines studied in the previous
section, is used. Results given in [2] for a standalone SLS
controller provide motivation for further work.
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