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Abstract: This paper proposes an extremum-seeking control design that achieves finite-time
stability of the optimum an unknown measured cost function. The finite-time extremum-seeking
control technique is shown to achieve finite-time practical stability of the optimum of the
unknown cost function. The main characteristic of the proposed extremum seeking control
approach is that the target averaged system considered achieves finite-time stability of the
unknown optimum. A simulation study is presented to demonstrate the effectiveness of the
approach.
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1. INTRODUCTION

ESC is a feedback control mechanism designed to drive
an unknown nonlinear dynamical system to the optimum
of a measured variable of interest (Tan et al., 2010). The
basic ESC properties were first outlined in the works of
Krstic and Wang (2000) and Tan et al. (2006). Based on
this initial theoretical work, a vast and growing literature
has been evolving to complement, generalize and improve
the basic schemes. Finite-time stability in control systems
is a desirable property in many applications where the
timing of control tasks is critical. Several studies have been
recently conducted in the design and analysis of finite-
time control systems. The general stability conditions were
first developed in (Bhat and Bernstein, 2000). The finite-
time stabilization of a class of controllable systems was
considered in (Hong, 2002). The output feedback finite-
time stabilization of nonlinear systems was considered
in Hong et al. (2001) for the local case. A perspective
of global finite-time stabilization was provided in (Hong
et al., 2000). Robust finite-time stabilization was treated
in (Hong and Jiang, 2006). The concept of finite-time input
to state stability (FTISS) was presented in (Hong et al.,
2010). This study provides a complete characterization of
finite-time nonlinear systems subject to external inputs.
The finite-stability property is usually associated with
dynamical control systems that are either non-Lipschitz
or discontinuous. In most existing work, finite-time stable
systems are closely related to classes of nonlinear systems
with continuous right hand side (Bhat and Bernstein,
2000). In a similar fashion, it can be shown that finite-
time stabilization can be achieved using continuous feed-
back controllers (Hong, 2002). Recent developments in
the area of gradient descents with finite-time convergence
were recently proposed in (Garg and Panagou, 2018b) and
(Garg and Panagou, 2018a) where a comprehensive sta-
bility analysis was provided to address the non-Lipschitz
nature of finite-time systems.

In this manuscript, we propose an ESC design technique
that can achieve finite-time stability in the practical sense.
Given a measured cost function with an unknown mathe-
matical formulation, the objective of this study is to design
an extremum seeking control that brings the system to
a neighbourhood of the unknown optimum value of the
input in finite-time. The finite-time can be prescribed by
choosing the tuning parameters of the control system.

The paper is structured as follows. The problem formula-
tion is given in Section 2. In Section 3, a target averaged
finite-time ESC system is proposed. The proposed ESC is
presented in Section 3.3. A simulation study is given in
Section 4 followed by brief conclusions in Section 5.

2. PROBLEM FORMULATION

In this study, we consider a class of unknown nonlinear
systems described by the following dynamical system:

ẋ = u (1a)

y = h(x) (1b)

where x ∈ R are the state variables, u ∈ R is the input
variable, and y ∈ R is the output variable. It is assumed
that the function h : R→ R is sufficiently smooth.

The function h, is assumed to be unknown. The function
h(x) has an unknown minimizer x∗ with an optimal value
y∗ = h(x∗).

We make the following assumptions concerning the mea-
sured cost function, h(x).

Assumption 1. The function h(x) is such that its gradient
vanishes only at the minimizer x∗, that is:

∂h

∂x

∣∣∣∣
x=x∗

= 0.

The Hessian at the minimizer is assumed to be positive and
nonzero. In particular, there exists a positive constant αh
such that
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∂2h(x)

∂x∂xT
≥ αhI

for all x ∈ X ⊂ R.

The objective of this study is to develop an ESC design
technique that guarantees finite-time convergence to the
unknown minimizer, x∗, of the measured function y =
h(x).

3. FINITE TIME EXTREMUM SEEKING
CONTROLLER DESIGN AND ANALYSIS

3.1 Finite-time Stability

In the following, we will establish that this equilibrium is
finite-time stable. We first provide a formal definition of
finite-time stability (as stated in Hong et al. (2010)) that
will be used throughout the manuscript.

Consider the system:

Ẋ = F (X) (2)

where X ∈ Rn and F : Rn → Rn is continuous with
respect to X.

The continuity of the right hand side of (2) guarantees
existence of at least one solution, which is possibly non-
unique. We denote by X (t, t0, X0) the set of all solutions
with initial conditions X(t0) = X0 for t ≥ t0. The set of all
solutions of system (2) at time t is denoted by X(t). It is
assumed that the equilibrium X0 = 0 is a unique solution
of the system in forward time.

Definition 2. The equilibrium X = 0 of (9) is said to be
finite-time locally stable if it is Lyapunov stable and such
that there exists a settling-time function

T (X0) = inf

{
T̄ ≥ t0

∣∣∣∣ lim
t→T̄

X(t) = 0 ; X(t) ≡ 0, ∀t ≥ T̄
}

in a neighbourhood U of X = 0. It is globally finite-time
stable if U = Rn.

A continuous function α : R≥0 → R≥0 is a called a class
K function if it is strictly increasing and α(0) = 0. It is a
class K∞ function if it is class K and lims→∞ α(s) =∞.

A continuous function φ : R≥0 → R≥0 is a generalized
class K function if φ(0) = 0 and{

φ(s1) > φ(s2) ifφ(s1) > 0, s1 > s2

φ(s1) = φ(s2) ifφ(s1) = 0, s1 > s2.
(3)

A continuous function β : R≥0 × R≥0 → R≥0 is a
generalized KL function if, for each fixed t ≥ 0, the
function β(s, t) is a generalized K function and each fixed
s ≥ 0, the function β(s, t) is such that limt→T β(s, t) = 0
for T ≤ ∞.

Definition 3. System (2) is finite-time stable if there exists
a generalized KL function β : R≥0×R≥0 → R≥0 such that
every solution X(t) satisfies:

‖X(t)‖ ≤ β(‖X(0)‖, t) (4)

with β(r, t) ≡ 0 when t ≥ T̄ (r) with T̄ (r) continuous with
respect to r and T̄ (0) = 0.

Definition 4. Let V (X) be a continuous function. It is
called a finite-time Lyapunov function if there exists class

K∞ functions φ1 and φ2 and a class K function φ3 such
that:

D+V (X(t)) = lim sup
s→0+

V (X(t+ s))− V (X(t))

s

≤ −φ3(‖X‖)
where, in addition, φ3 satisfies:

c1V (X)α ≤ φ3(‖X‖) ≤ c2V (X)a

for some positive constants c1 and c2.

If we now consider the system:

Ẋ = F (X, v(t)) (5)

where X ∈ Rn. The function v : R≥0 → Rm is measur-
able and locally essentially bounded and the vector value
function F : Rn × Rm → Rn is continuous in X and v(t).

Definition 5. System (5) is finite-time input to state stable
(FTISS) if there exists a generalized KL function β :
R≥0 ×R≥0 → R≥0 and a class K function α : R≥0 → R≥0

such that every solution X(t) satisfies:

‖X(t)‖ ≤ β(‖X(0)‖, t) + α(‖v(t)‖∞) (6)

with β(r, t) ≡ 0 when t ≥ T̄ (r) with T̄ (r) continuous with
respect to r and T̄ (0) = 0.

Definition 6. Let V (X) be a continuous function. It is
called an FTISS Lyapunov function if there exists class
K∞ functions φ1 and φ2 and class K functions φ3 and φ4

such that:

‖X(t)‖ ≥ φ4(‖v(t)‖)⇒ D+V (X(t)) ≤ −φ3(‖X‖)
where, in addition, φ3 satisfies:

c1V (X)α ≤ φ3(‖X‖) ≤ c2V (X)α

for 0 < α < 1 and some positive constants c1 and c2.

Theorem 1. (Hong et al., 2010) System (5) is FTISS if
admits an FTISS Lyapunov function.

Finally, we consider the interconnection of two FTISS
systems:

Ẋ1 =F1(X1, X2)

Ẋ2 =F2(X2, X1)
(7)

where X1 ∈ Rn1 and X2 ∈ Rn2 with F1 : Rn1×Rn2 → Rn1

and F2 : Rn2 × Rn1 → Rn2 are continuous in X1 and X2

with a unique equilibrium at X1 = 0 and X2 = 0. The
equilibrium is the unique solution to (7) forward in time.

Theorem 2. Suppose (7) are FTISS, with X2 as an input
for the X1 subsystem and with X1, the input of the X2

subsystem. Suppose that the solutions of each system
satisfy:

‖X1(t)‖ ≤ β1(‖X1(0)‖, t) + α1(‖X2(t)‖∞)

‖X2(t)‖ ≤ β2(‖X2(0)‖, t) + α2(‖X1(t)‖∞)

where β1 and β2 are generalized KL functions and α1 and
α2 are class K functions. If there exists class K∞ functions
ρ1 and ρ2 that satisfy:

(Id+ ρ2) ◦ α2 ◦ (Id+ ρ1) ◦ α1(s) ≤ s, s ≥ 0

then X1 = 0, X2 = 0 is a finite-time stable equilibrium of
system (7).

3.2 Proposed target average system

In the design of ESC, one seeks an average system that
can be achieved using a judicious choice of dither signals.
We consider the following system:
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ẋ =− γ(ξ)ξ

ξ̇ =−Kγ(ξ −∇h(x))(ξ −∇h(x))
(8)

where K is a controller gain to be assigned. As in Garg
and Panagou (2018b), the function γ(ξ) is given by:

γ(z) =
c1
‖z‖α1

+
c2
‖z‖α2

where σ is a small positive constant, α1 =
q1 − 2

q1 − 1
and

α2 =
q2 − 2

q2 − 1
for q1 ∈ (2,∞) and q2 ∈ (1, 2).

The function X1(x, ξ) = γ(ξ)ξ is not locally Lipschitz
continuous at ξ = 0 but it is continuous everywhere.
Similarly, the function X2(x, ξ) = γ(ξ−∇h(x))(ξ−∇h(x))
is also not locally Lipschitz continuous for ∀x and ∀ξ such
that ξ = ∇h(x) but it is continuous at this point. It is
locally Lipschitz everywhere else.

We define the state-space transformation z = ξ − ∇h(x)
and rewrite the dynamics as:

dz

dt
= −Kγ(z)z +∇2h(x)γ(z +∇h(x)))(z +∇h(x)))

d∇h
dt

= − γ(z +∇h(x))∇2h(x)(z +∇h(x))).

(9)

This system is such that it has a unique equilibrium at the
point z = 0 and ∇h(x) = 0⇒ x = x∗. It is also continuous
everywhere and locally Lipschitz continuous away from the
equilibrium.

Next we proceed to the stability analysis of system (8).

Theorem 3. Consider the nonlinear system (8). Let As-
sumption 1 be satisfied. Then the optimum x∗ is a finite-
time stable equilibrium of the system.

Proof: We first consider the function V1 =
1

2
z2. Its

derivative along the trajectories of the system yields:

V̇1 =−Kγ(z)z2 + γ(z +∇h(x))∇2h(x)(z +∇h(x))z.

The function φ(z,∇h(x)) = γ(z + ∇h(x))(z + ∇h(x)) is
continuous. It is such that:

|φ(z,∇h(x))| ≤ c1|z +∇h(x)|
|z +∇h(x)|α1

+ c2
|z +∇h(x)|
|z +∇h(x)|α2

≤c1|z +∇h(x)|1−α1 + c2|z +∇h(x)|1−α2 .

By the triangle inequality, one obtains:

|φ(z,∇h(x))| ≤ c1|z|1−α1 + c1|∇h(x)|1−α1

+ c2|z|1−α2 + c2|∇h(x)|1−α2

or,

|φ(z,∇h(x))| ≤ c1
|z|
|z|α1

+ c1
|∇h(x)|
|∇h(x)|α1

+ c2
|z|
|z|α2

+ c2
|∇h(x)|
|∇h(x)|α2

.

By definition, the last inequality can be written as:

|φ(z,∇h(x))| ≤ γ(z)|z|+ γ(∇h(x))|∇h(x)|.
Upon substitution, it follows that V̇1 fulfills the following
inequality:

V̇1 ≤− (K −∇2h(x))γ(z)z2 + γ(∇h(x))|∇h(x)||z|
≤ − (K −∇2h(x))(|z|2−α1 + |z|2−α2)

+ (|∇h(x)|1−α1 + |∇h(x)|1−α2)|z|
Next, we choose K such that (K −∇2h(x)) ≥ α:

V̇1 ≤− α(|z|2−α1 + |z|2−α2)

+ (|∇h(x)|1−α1 + |∇h(x)|1−α2)|z|
Let c ∈ (0, 1), we can rearrange the last inequality as:

V̇1 ≤− (1− c)α(|z|2−α1 + |z|2−α2)

αc|z|
(
|z|1−α1 + |z|1−α2

− 1

cα
(|∇h(x)|1−α1 + |∇h(x)|1−α2)

)
Therefore, one obtains:

V̇1 ≤− (1− c)α(c1|z|2−α1 + c2|z|2−α2), if|z| ≥ 1

cα
|∇h(x)|.

Using the definition of V1, we finally get:

V̇1 ≤− (1− c)α
(
c1V

1−α1
2

1 + c2V
1−α2

2
1

)
if |z| ≥ 1

cα
|∇h(x)|.

Following Definition 6, it follows that V1 is an FTISS
Lyapunov function and therefore the z dynamics are
FTISS with input ∇h(x).

For the gradient dynamics ∇h(x), we consider the Lya-
punov function V2 = 1

2 (∇h(x))2. Its rate of change is given
by:

V̇2 = −∇2h(x)γ(z +∇h(x))(z +∇h(x))∇h(x).

As above, we write:

V̇2 = −∇2h(x)

(
c1

z +∇h(x)

|z +∇h(x)|α1

+ c2
z +∇h(x)

|z +∇h(x)|α2

)
∇h(x).

or,

V̇2 = −∇2h(x)

(
c1
z∇h(x) +∇h(x)2

|z +∇h(x)|α1

+ c2
z∇h(x) +∇h(x)2

|z +∇h(x)|α2

)
.

We consider this equation evaluated on the set Ωh =
{(x, z) | |∇h(x)| ≥ |z| }. We first write the following in-
equality:

V̇2 ≤− c1∇2h(x)
|∇h(x)|2 − |z||∇h(x)|
|z +∇h(x)|α1

− c2∇2h(x)
|∇h(x)|2 − |z||∇h(x)|
|z +∇h(x)|α2

.

We readily see that V̇2 ≤ 0 on Ωh. Moreover, the second
term on the right hand side is negative on Ωh. Using the
triangle inequality on |z +∇h(x)|, we get that:

|z +∇h(x)| ≤ |z|+ |∇h(x)|
As a result, we can write the inequality as:

V̇2 ≤− c1∇2h(x)
|∇h(x)|2 − |z||∇h(x)|
|z|α1 + |∇h(x)|α1

We introduce the parameter c ∈ (0, 1) and rewrite the last
inequality as:
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V̇2 ≤− c1∇2h(x)
(1− c)∇h(x)2 + |∇h(x)|(c|∇h(x)| − |z|)

|z|α1 + |∇h(x)|α1

On the set Ωh, one can write that

|z|α1 + |∇h(x)|α1 ≤ 2|∇h(x)|α1 .

It is easy to see that V̇2 is negative definite for |∇h(x)| ≥
1

c
|z|. Defining the set, Ωch =

{
(x, z)

∣∣ |∇h(x)| ≥ 1
c |z|

}
.

Since c ∈ (0, 1) is follows that Ωh ⊂ Ωch. It then follows
that:

V̇2 ≤ −c1∇2h(x)
(1− c)|∇h(x)|2

2|∇h(x)|α1

for all (x, z) such that |∇h(x)| ≥ 1

c
|z|. Using the definition

of V2, we can write, as above:

V̇2 ≤− (1− c)
(
c1V

1−α1
2

2

)
, ifV2 ≥

1

c2
V1.

As a result, we conclude that the gradient dynamics are
FTISS with z as an input.

From the previous development, it follows that V1 satisfies
the following:

V̇1 ≤− (1− c)α
(
c1V

1−α1
2

1 + c2V
1−α2

2
1

)
, ifV1 ≥

1

c2α2
V2.

As a result, we can view the finite-time systems as the
interconnection of two FTISS nonlinear systems. We can
apply the small gain theorem from Hong et al. (2010) to
conclude that the system has a finite-time stable equilib-
rium at the optimum z = 0, ∇h(x) = 0 for any α = K −
∇2h(x) > 1. Thus it follows that if the Hessian ∇2h(x)
is globally bounded then there exists a K such that the
system is globally FT stable. Otherwise, for any (arbi-
trary) compact set in the state space on which the Hessian
is bounded, there exists a K such that the optimum is
a semi-global finite-time stable equilibrium of the closed-
loop system. This completes the proof.

3.3 Proposed Finite-time ESC

The proposed finite-time ESC approach is given by:

dx

dt
= − γ(ξ)ξ

dξ

dt
= − γ(ξ − δ)K(ξ − δ).

(10)

where δ =
2

a
h(x + a sin(ωt)) sin(ωt). The right hand side

of this time-varying nonlinear system is continuous with
respect to x and t. As a result, we guarantee the existence
of at least one Carathéodory solution which may not be
unique.

A formal average of this system is given by:

dx

dt

a

= − γ(ξa)ξa

dξ

dt

a

= − K

T

∫ T

0

(
c1(ξa − δ(xa, t))
|ξa − δ(xa, t)|α1

+
c2(ξa − δ(xa, t))
|ξa − δ(xa, t)|α2

)
dt.

(11)

The term ξ − δ(x, t) can be expanded in the following
manner:

ξ − δ(x, t) =
1

a

(
aξ − 2h(x) sin(ωt)− 2∇h(x) sin2(ωt)a

− a2R(t, x, a, ω)

)
where R(t, x, a, ω) is a function of higher order derivatives
of h(x), higher powers of the sinusoidal signals and the
amplitude. This can be rewritten as:

ξ − δ(x, t) =
1

a

(
− 2h(x) sin(ωt)−∇h(x) sin(2ωt)a

+ (ξ −∇h(x))a− a2R(t, x, a, ω)

)
Let us assume that the amplitude is picked small enough
such that the last term is negligible:

ξ − δ(x, t) ≈1

a

(
− 2h(x) sin(ωt)−∇h(x) sin(2ωt)a

+ (ξ −∇h(x))a

)
As a result, we obtain:

1

T

∫ T

0

(ξ − δ(x, t))dt ≈(ξ −∇h(x)).

In addition, it is also easy to compute that:

1

T

∫ T

0

|ξ − δ(x, t)|dt ≈|ξ −∇h(x)|.

Since there are no analytical expressions of the right hand
side of (11), we cannot provide a suitable closed form
expression for the resulting averaged system. In this study,
we propose to consider the stability of the averaged system
(11) directly. In the following, it is shown that the averaged
system meets stability conditions of the target averaged
system presented in the previous section.

We consider the same change of coordinates to za = ξa −
∇h(xa) and ∇h(xa) and write the average dynamics as
follows:

d∇h(xa)

dt
= −∇2h(xa)γ(za +∇h(xa)(za +∇h(xa))

dza

dt
= − K

T

∫ T

0

(
c1(ξa − δ(xa, t))
|ξa − δ(xa, t)|α1

+
c2(ξa − δ(xa, t))
|ξa − δ(xa, t)|α2

)
dt

+∇2h(xa)γ(za +∇h(xa))(za +∇h(xa))
(12)

Then we pose the Lyapunov function candidates, V a1 =
1
2 |z

a|2 and V a2 = 1
2 |∇h(xa)|2. The time derivative of V a1 is

given by:

V̇ a1 =za
(
− K

T

∫ T

0

(
c1(ξa − δ(xa, t))
|ξa − δ(xa, t)|α1

+
c2(ξa − δ(xa, t))
|ξa − δ(xa, t)|α2

)
dt

)
+ za∇2h(xa)

×
(
Kγ(za +∇h(xa))(za +∇h(xa))

)
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We can then bring the variable za inside the integral term:

V̇ a1 =−K
(

1

T

∫ T

0

za
(
c1(ξa − δ(xa, t))
|ξa − δ(xa, t)|α1

+
c2(ξa − δ(xa, t))
|ξa − δ(xa, t)|α2

)
dt

)
+ za∇2h(xa)

×
(
Kγ(za +∇h(xa))(za +∇h(xa))

)
(13)

The first term in the right hand side is clearly negative.
However, we must confirm that the averaged system pos-
sesses the FTISS property demonstrated for the target
system in the previous section.

Let us denote θ(t) = ξa − δ(xa, t). We consider the first
term in (13):

Φ1 =
1

T
za
∫ T

0

(
c1θ(t)

|θ(t)|α1

)
dt,

then

Φ1 =

(
1

T

∫ T

0

θ(t)dt

)(
1

T

∫ T

0

c1θ(t)

|θ(t)|α1
dt

)
.

Next we rewrite the following expression:

Φ′1 = Φ1

∣∣∣∣ ∫ T

0

θ(t)dt

∣∣∣∣α1

By Jensen’s inequality, it follows that for any 0 < α < 1
(or α < 0), one can write:∣∣∣∣ ∫ T

0

θ(t)dt

∣∣∣∣α ≥ ∫ T

0

|θ(t)|αdt.
.

As result, we obtain:

Φ′1 ≥ Φ1

∫ T

0

|θ(t)|α1dt

= c1

(
1

T

∫ T

0

θ(t)dt

)
1

T

∫ T

0

θ(t)

∫ T
0
|θ(t)|α1dt

|θ(t)|α1
dt

(14)

It is straightforward to show that the following inequality
holds:

|θ(t)|
|θ(t)|α1

∫ T

0

|θ(t)|α1dt ≥ |θ(t)|.

One can then rewrite (14) to obtain:

c1

(
1

T

∫ T

0

θ(t)dt

)
1

T

∫ T

0

[
θ(t)

|θ(t)|
|θ(t)|
|θ(t)|α1

∫ T

0

|θ(t)|α1dt

]
dt

= c1

(
1

T

∫ T

0

θ(t)dt

)
1

T

∫ T

0

ρ1(t)θ(t)dt

where ρ(t) ≥ 1 ∀t ≥ 0.

We arrive at the following result:

Φ′1 ≥
(

1

T

∫ T

0

θ(t)dt

)2

which yields:

Φ1 ≥

(
1
T

∫ T
0
θ(t)dt

)2

∣∣∣∣ 1
T

∫ T
0
θ(t)dt

∣∣∣∣α1
=

c1|za|2

Tα1 |za|α1
.

The second term in (13) can be handled using a similar
approach. As a result with obtain:

V̇ a1 ≤−K
(
c1

|za|2

Tα1 |za|α1
+ c2

Tα2 |za|2

|za|α2

)
+ za∇2h(xa)

×
(
Kγ(za +∇h(xa))(za +∇h(xa))

) (15)

As before, we consider the candidate Lyapunov function
V a2 = 1

2∇h(xa)2. Its time derivative is given by:

V̇ a2 = −∇2h(xa)γ(za +∇h(xa))

× (za +∇h(xa))∇h(xa).

Repeating as in the previous section, we can use V a1 and
V a2 to demonstrate that the averaged system is FT stable
for any K > K∗.

Having established that the averaged system achieves
the performance of the proposed target system, we must
prove that the trajectories of the ESC system approach
the trajectories of the averaged system. Since the right
hand side of the dynamics are not Lipschitz, but only
continuous, the application of standard averaging results
that rely on Lipschitz properties is not suitable.

Many suitable averaging results have been proposed in
the classical literature. In this study, we consider the
classical Krasnosel’skii-Krein theorem Krasnosel’skii and
Krein (1955) (generalized by Plotnikova for differential
inclusions Plotnikova (2005)) to demonstrate the closeness
of solution of the nominal system and the averaged system
over a compact set D ⊂ R2 as a→ 0.

The theorem can be stated as follows.

Theorem 4. Consider the nonlinear system Ẋ = f(t,X, ε)
where

(1) the map f(t,X, ε) is continuous in t and x on R≥0 ×
Rn,

(2) there exists a positive constant L > 0 and a compact
set D ⊂ Rn such that ‖f(t,X, ε)‖ ≤ L for t ∈ R≥0,
x ∈ D and ε ∈ [0, ε∗],

(3) the averaged system

Ẋa = lim
T→∞

1

T

∫ T

0

X(t,Xa, 0)dt

exists with solutions defined on the set D.

Then, for any ε ≤ ε∗, there exists constants δ and T such
that:

‖X(t)−Xa‖ ≤ δ
for t ∈ [0, T ].

For the analysis of the proposed finite-time ESC, the
Krasnosel’skii-Krein theorem can be applied as follows.

Consider the state, X = [x−x∗, ξ]T , and the corresponding
averaged variables Xa = [xa − x∗, ξa]T . Consider the
system’s dynamics:

dx̃

dt
= − γ(ξ)ξ

dξ

dt
= − γ(ξ − δ(x̃+ x∗, t))K(ξ − δ(x̃+ x∗, t)).

(16)

and the corresponding average:
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dx̃

dt

a

= − γ(ξa)ξa

dξ

dt

a

= − K

T

∫ T

0

(
c1(ξa − δ(x̃a + x∗, t))

|ξa − δ(x̃a + x∗, t)|α1

+
c2(ξa − δ(x̃a + x∗, t))

|ξa − δ(x̃a + x∗, t)|α2

)
dt.

(17)

By the analysis provided above, the averaged system has
a finite-time stable equilibrium at the origin X = 0.
Furthermore, the solutions of (17) exists and they can be
contained in a compact set D ∈ R2. Consider the nonlinear
system (16). By the smoothness of the cost function h(x)
and the periodicity of the dither signal, it follows that
the right hand side of the system can be bounded on a
compact D ∈ R2 uniformly in t. The continuity and the
boundedness of the right hand side of (16) over a compact
set D over which the solutions of the averaged system
exists enables the application of the Krasnosel’skii-Krein
theorem to guarantee that for any a ∈ (0, a∗) there exists
a T and a δ such that:

‖X(t)−Xa(t)‖ ≤ δ, for t ∈ [0, T ].

Using the finite-time stability property of the averaged
system (in particular, the corresponding generalized K∞
function) and the averaging result for small amplitude sig-
nals, one can apply the approach in the proof of Theorem 1
in Teel et al. (2003) to show that there exists a generalized
class K∞ function, βX and a constant, cX , such that:

‖X(t)‖ ≤ βX(‖X(t0)‖, t) + cX

for X(t0) ∈ D.

4. SIMULATION STUDY

We consider the minimization of the cost function: y =
1 + 50(x − 1)2. The finite extremum seeking controller
is implemented with tuning parameters are: a = 0.1,
q1 = 3, q2 = 1.5, c1 = 1, c2 = 1, k = 1, K = 250 and
ω = 300. The initial conditions are given by: x(0) = 0 and
ξ(0) = 0.01. The simulation results are shown in Figure 1.
The results demonstrate that the ESC brings the system
to the unknown optimum y∗ = 1 in finite-time.

Fig. 1. Performance of the Finite-time ESC. The graph
shows the decision variable x and its average xa , the
auxiliary variable ξ and the cost function y.

5. CONCLUSION

In this study, we proposed an ESC design that achieves
finite-time convergence to the unknown optimum. In the
analysis of the proposed ESC, it shown that the resulting
averaged system has a finite-time stable equilibrium at the
unknown optimum of the measured cost function. Using
classical averaging results for dynamical systems with
continuous right hand sides, it is shown that the optimum
is practically asymptotically stable equilibrium of the ESC
system. In future work, we will consider the development
of Newton seeking techniques for multivariable problems.
We will also consider the class of static maps subject to
actuator limitations such as saturation and quantization.
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