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Abstract: Situations in which immediate self-interest and long-term collective interest conflict
often require some form of influence to prevent them from leading to undesirable or unsustainable
outcomes. Next to sanctioning, social influence and social structure, it is possible that strategic
solutions can exist for these social dilemmas. However, the existence of strategies that enable a
player to exert control in the long-run outcomes can be difficult to show and different situations
allow for different levels of strategic influence. Here, we investigate the effect of threshold
nonlinearities on the possibilities of exerting unilateral control in finitely repeated n-player public
goods games and snowdrift games. These models can describe situations in which a collective
effort is necessary in order for a benefit to be created. We identify conditions in terms of a
cooperator threshold for the existence of generous, extortionate and equalizing zero-determinant
(ZD) strategies. Our results show that, for both games, the thresholds prevent equalizing ZD
strategies from existing. In the snowdrift game, introducing a cooperator threshold has no effect
on the region of feasible extortionate ZD strategies. For extortionate strategies in the public
goods game, the threshold only restricts the region of enforceable strategies for small values
of the public goods multiplier. Generous ZD strategies exist for both games, but introducing a
cooperator threshold forces the slope more towards the value of a fair strategy, where the player
has approximately the same payoff as the average payoff of his opponents.
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1. INTRODUCTION

Social dilemmas arise when immediate self-interests con-
flict with long-term collective interests [Van Lange et al.
(2013)]. In these situations, selfish and myopic decisions
can easily lead to undesirable collective outcomes; a sit-
uation that is most effectively described by the tragedy
of the commons [Hardin (1968)]. Social dilemmas ex-
ist in all sorts and sizes, ranging from global ecological
concerns such as over-fishing and climate change to the
social dilemma of autonomous vehicles [Bonnefon et al.
(2016)]. Fortunately, not all social dilemmas collapse into
unsustainable or undesirable outcomes. Many examples
can be found in which a scenario like the tragedy of the
commons is averted through complex mechanisms that
affect economic, social and evolutionary decision-making
processes. Research aimed at identifying these means of
solving social dilemmas dates back decades [Hardin (1971);
Ostrom (1990); Hamilton (1964)], but remains relevant
today [Hauser et al. (2014); Rand and Nowak (2013); Hilbe
et al. (2018); Bonnefon et al. (2016)] and has identified a
variety of solutions. A review discussing control of evolu-
tionary games can be found in [Riehl et al. (2018)].

However, many of these solutions are built upon restrict-
ing assumptions regarding the employed decision-making
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strategies. Folk theorems, for instance, rely on rationality
principles that can be violated when individuals make ir-
rational decisions due to mistakes, fairness or spite. Other
solutions, like network reciprocity [Nowak (2006)], through
which cooperation can be sustained via a social network
structure, do not immediately rely on the way decisions
are made, but their effectiveness in solving social dilemmas
can be affected significantly.

In reality, one often does not know the precise decision-
making trade-offs of individuals and what type of strate-
gies they employ. This motivates the development of so-
lutions to social dilemmas that are robust with respect to
variation in behaviours. Recently, strategic solutions were
identified in which a player, or a small group of players,
can unilaterally exert influence in the long-run outcome
of social dilemmas [Press and Dyson (2012); Hilbe et al.
(2014)]. Like the solution mechanisms that came before,
these strategic solutions, known as zero-determinant (ZD)
strategies, also have their downsides. For one, they are de-
fined over an infinite horizon of repeated interactions, that
has to be addressed using discounting methods [Ichinose
and Masuda (2018); Hilbe et al. (2015); Govaert and Cao
(2019)]. Secondly, their existence can be challenging to
show, and can be lost when there is no strict hierarchy
in behaviour, like in Rock-Paper-Scissors games [Stewart
et al. (2016)]. The identification of classes of games that
allow this form of strategic influence, just like the identifi-
cation of potential games [Monderer and Shapley (1996)],
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thus becomes an important problem. After existence has
been shown, it is often not immediately clear how varied of
an influence can be exerted. In general, this depends on the
structure of the social dilemma, and thus different settings
(e.g. public goods games, volunteers dilemma, snowdrift
games etc.) give rise to different possibilities for exerting
control. But even within a particular game, the level of
control is affected by parameter values such as the benefit-
to-cost ratio and group sizes.

In this paper, we study n-player repeated social dilemmas
with a finite number of expected interactions. To provide
a clearer specification of the types of social dilemmas that
allow for the exertion of unilateral control, we introduce
threshold nonlinearities, and explore their influence on
the existence of generous, extortionate and equalizer ZD
strategies. Thresholds in the payoffs of social dilemmas
are common in the literature [Santos and Pacheco (2011);
Pacheco et al. (2008); Souza et al. (2009); Liang et al.
(2015); Hauser et al. (2014)] and are motivated by situa-
tions in which a collective effort is required to generate a
benefit. One can for instance think of obstacles that can
only be removed by a mutual effort, or simply of an in-
vestment that requires a minimum of collective investment
to become profitable. The first scenario can be modelled
by a threshold snowdrift game [Santos et al. (2012)], and
the second by a threshold public goods game [Santos and
Pacheco (2011)]. Using the characterisation of enforceable
payoff relations in [Govaert and Cao (2019)], we investigate
the often nonlinear relations between a variable threshold
requirement, group-size and benefit-to-cost ratio on the
level of strategic influence a player can exert.

This paper is organised as follows. In Section 2, we in-
troduce ZD strategies and present the assumptions made
throughout the paper. In Section 3, we explore the exis-
tence of generous, extortionate and equalizing ZD strate-
gies in the finitely repeated n-player linear public goods
game. In Section 4, we do the same, but then for the finitely
repeated n-player snowdrift game.

2. ZERO-DETERMINANT STRATEGIES AND
CONTROL IN SOCIAL DILEMMAS

We consider symmetric social dilemmas in which players
can cooperate (C) or defect (D). The payoffs for the coop-
erators and defectors are given by az and bz, respectively,
where z denotes the number of cooperators among the
co-players. For a social dilemma, we make the following
natural assumptions [Hilbe et al. (2014)].

Assumption 1. (Social dilemma assumptions). The payoffs
satisfy:

(i) For all 0 ≤ z < n− 1, az+1 ≥ az and bz+1 ≥ bz;
(ii) For all 0 ≤ z < n− 1, bz+1 > az;
(iii) an−1 > b0.

Note that the above assumption implies that (i) each
player prefers the other players to cooperate, irrespective
of the player’s own strategy; (ii) in any mixed group,
defectors receive a strictly higher payoff; (iii) collective
cooperation is favoured over collective defection.
In a repeated game, these single-round payoffs are aver-
aged and discounted over the course of play. To denote the

average discounted payoff compactly we introduce some
notation. Define

gi := (an−1, . . . , a0, bn−1, . . . , b0) ∈ R2n

as the vector containing all possible payoffs of player i in a

given round of play. Similarly, let g−iC,z := zaz+(n−z−1)bz+1

n−1

and g−iD,z := zaz−1+(n−z−1)bz
n−1 denote the average payoff of

i’s co-players given player i’s outcome {C, z} and {D, z},
respectively. Now define

g−i :=
(
g−iC,n−1, . . . , g

−i
C,0, g

−i
D,n−1, . . . , g

−i
D,0

)
∈ R2n.

When future payoffs are discounted using an exponential
discrete-time discounting function with a common and
fixed discount factor 0 < δ < 1, the long-run expected
payoff of player i reads as [Fudenberg and Jean (1991)]

πi = (1− δ)
∞∑
t=0

δtgi · v(t), (1)

where v(t) ∈ [0, 1]2n is the vector of outcome probabilities
at time t. ZD strategies are memory-one strategies, which
implies that they only take into account the outcome of the
previous round [Press and Dyson (2012)]. Let px,z denote
player i’s conditional probability to cooperate, given that
in the previous round, i played x ∈ {C,D} and z co-players
cooperated. Let us define

p := (pC,n−1, . . . , pC,0, pD,n−1, . . . , pD,0).

Let prep := (1n,0n), and let p0 ∈ [0, 1] be player i’s initial
probability to cooperate. In [Govaert and Cao (2019)] it
was shown that a ZD strategy of the form

δp = prep + φ
[
sgi − g−i + (1− s)l1

]
− (1− δ)p01, (2)

under the conditions that φ > 0, can enforce a linear
relation in the average discounted payoffs, i.e.,

π−i = sπi + (1− s)l. (3)

Here, π−i = 1
n−1

∑n
j 6=i π

j . Table 1 summarizes the most
studied linear payoff relations, and their respective strate-
gies.

Table 1. The four ZD strategies and their
enforced linear payoff relation.

ZD-Strategy Parameter values Enforced payoff relation

Fair s = 1 π−i = πi

Generous l = an−1, 0 < s < 1 π−i ≥ πi

Extortionate l = b0, 0 < s < 1 π−i ≤ πi

Equalizer s = 0 π−i = l

The baseline payoff l has to satisfy [Govaert and Cao
(2019)]

l ≥ max
0≤z≤n−1

{
bz − z

n−1
bz−az−1

1−s

}
,

l ≤ min
0≤z≤n−1

{
az + n−z−1

n−1
bz+1−az

1−s

}
,

(4)

with at least one strict inequality in (4). Moreover, for
a finitely repeated n-player game, it is required that the
slope of the linear payoff relation s satisfies

− 1
n−1 <s < 1,

implying that there do not exist fair ZD strategies, for
which s = 1, in repeated n-player social dilemmas with a
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Fig. 1. Regions of strategy-existence in an 8-player linear public goods game with a cooperator threshold m, for: generous
strategies (left); extortionate strategies (right).

finite number of expected rounds.

Using the above, we are now ready to formulate the
main goal of this paper, which is to identify conditions
in terms of the cooperator threshold m for the existence
of generous, extortionate and equalizing ZD strategies.

3. n-PLAYER THRESHOLD PUBLIC GOODS GAMES

In this section, we explore the existence of generous, extor-
tionate and equalizing strategies in the finitely repeated n-
player threshold public goods game (PGG). The n players
either cooperate and invest c > 0 into a public pot, or
defect and invest nothing. If the total number of cooper-
ators is greater than or equal to the threshold m, where
1 < m < n, the total sum of investments is multiplied
by public goods multiplier 1 < r < n and evenly divided
among all players. If the total number of cooperators is
lower than m, nobody receives any benefit. The payoffs of
cooperators and defectors are thus given by

az =

{
rc(z+1)

n − c if z ≥ m− 1,

−c if z < m− 1,

bz =

{
rcz
n if z ≥ m,

0 if z < m,

(5)

respectively. By plugging the payoff functions (5) into
(4), we are able to derive the conditions under which
generous, extortionate and equalizing ZD strategies exist.
The results are presented in Theorem 1.

Theorem 1. Consider a public goods game with 1 < r < n,
and payoffs (5). Then the following hold:

(i) If a ZD strategy is generous, i.e. if l = an−1 = rc− c,
and 0 < s < 1, then every slope

s ≥ 1− n−m+ 1

r(n− 1)

can be enforced;
(ii) If a ZD strategy is extortionate, i.e. if l = b0 = 0, and

0 < s < 1, then every slope

s ≥ max

{
m− 2

n− 1
+ ε, 1− n

r(n− 1)

}
can be enforced, where ε > 0 is an infinitesimally
small number;

(iii) There do not exist equalizing ZD strategies, i.e. there
do not exist ZD strategies with s = 0.

The proof of Theorem 1 can be found in Appendix A.
Theorem 1 shows the influence of the cooperator threshold
m on the existence of ZD strategies. Observe that the range
of enforceable slopes decreases for generous strategies as
m increases. For extortionate strategies on the other hand,
the region of enforceable slopes only depends on m if
r < n

n−m+1 . For r ≥ n
n−m+1 , the region of enforceable

slopes is independent of m. Figure 1 depicts the regions of
strategy-existence for a n-player public goods game, with
n = 8, for generous and extortionate strategies.

4. n-PLAYER SNOWDRIFT GAMES

In the n-player snowdrift game (SDG), n players get stuck
in a snowdrift. In order to carry on, the snowdrift needs
to be cleared. Each player has the choice to cooperate,
and start shovelling, or defect, and do nothing. The cost
of clearing the snowdrift, c, is shared by all cooperators.
If the snowdrift is cleared, everyone obtains a benefit b,
where b > c > 0.
In contrast with the traditional snowdrift game, the
amount of snow is so vast that there need to be at least
m cooperators in order to clear it, where 1 < m < n. The
payoffs of cooperators and defectors are thus given by

az =

{
b− c

z+1 if z ≥ m− 1,

− c
z+1 if z < m− 1,

bz =

{
b if z ≥ m,
0 if z < m,

(6)

respectively. By plugging the payoff functions (6) into (4),
we are able to derive the regions of existence for generous,
extortionate and equalizing strategies. The results are
presented in Theorem 2.
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Fig. 2. Regions of strategy-existence in an 8-player snowdrift game with a cooperator thresholdm, for: generous strategies
(left); extortionate strategies (right).

Theorem 2. Consider a snowdrift game with b > c > 0,
and payoffs (6). Then the following hold:

(i) If a ZD strategy is generous, i.e. if l = an−1 = b− c
n ,

and 0 < s < 1, then every slope

s ≥ 1− cn(n−m+ 1)

(n− 1)
(
(bn− c)(m− 1) + cn

)
can be enforced;

(ii) If a ZD strategy is extortionate, i.e. if l = b0 = 0, and
0 < s < 1, then every slope

s ≥ 1− c

b(n− 1)

can be enforced;
(iii) There do not exist equalizing ZD strategies, i.e. there

do not exist ZD strategies with s = 0.

The proof of Theorem 2 can be found in Appendix B.
Theorem 2 shows the influence of the threshold m on the
existence of ZD strategies. Figure 2 depicts the regions
of strategy-existence for a n-player snowdrift game, with
n = 8, for generous and extortionate strategies.
Remarkably, for extortionate strategies, the region of en-
forceable slopes does not depend on the cooperator thresh-
old m. For generous strategies, however, the value of m
matters a lot. It can be observed from Figure 2 (left) that
the higher the value of m is, the higher the value of the
slope s has to be, which approaches 1 for higher values of
m.

5. CONCLUDING REMARKS

We have studied repeated n-player public goods games
and snowdrift games with a finite number of expected
rounds, where we introduced a cooperator threshold m.
We discovered that equalizing ZD strategies do not exist
for these games when a cooperator threshold is imposed.
We showed that in the snowdrift game, introducing a
cooperator threshold has no effect on the region of feasible
extortionate ZD strategies. For extortionate strategies in
the public goods game, the threshold restricts the region
of enforceable strategies only for small values of public

goods multiplier r. We observed that the threshold has
a significant impact on the existence of generous ZD
strategies. In particular, generous ZD strategies exist for
both games, but a higher cooperator threshold forces the
slope more towards the value of an approximately fair
strategy, where the player’s payoff is approximately equal
to the average payoff of its opponents.
For future research, it would be interesting to explore
the effect of the cooperator threshold on the minimum
discount factor (δ) that enables enforcing extortionate and
generous payoff relations, shown in Table 1.
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Appendix A. ANALYSIS OF n-PLAYER LINEAR
PUBLIC GOODS GAMES

Consider a n-player public goods game with 1 < r < n,
and 1 < m < n. Plugging the payoffs (5) into (4), easily
gives us the following results. For z < m− 1, we obtain

0 ≤ l ≤ min
{
−c+ (n−m+1)c

(n−1)(1−s) , rc− c
}
. (A.1)

For z = m− 1, we find

0 ≤ l ≤ min
{

rcm
n − c+ (n−m)c

(n−1)(1−s) , rc− c
}
. (A.2)

For z ≥ m, we have

l ≥ max
{

rc(n−1)
n − c

1−s , 0
}
,

l ≤ min
{

rc(m+1)
n − c+ (n−m−1)c

(n−1)(1−s) , rc− c
}
.

(A.3)

By using (A.1), (A.2), and (A.3), we can prove Theorem
1.

A.1 Proof of Theorem 1 (i)

For a generous ZD strategy, we have parameter values
l = an−1 = rc− c, and 0 < s < 1.
For z < m− 1, (A.1) gives

0 ≤ rc− c ≤ min
{
−c+ (n−m+1)c

(n−1)(1−s) , rc− c
}
.

In order for generous strategies to exist, we must have

−c+ (n−m+1)c
(n−1)(1−s) ≥ rc− c,

or equivalently s ≥ 1− n−m+1
r(n−1) . For z = m−1, (A.2) yields

0 ≤ rc− c ≤ min
{

rcm
n − c+ (n−m)c

(n−1)(1−s) , rc− c
}
.

In order for generous strategies to exist, we must have
rcm
n − c+ (n−m)c

(n−1)(1−s) ≥ rc− c,
or equivalently

s ≥ 1− n
r(n−1) .

For z ≥ m, (A.3) gives

rc− c ≥ max
{

rc(n−1)
n − c

1−s , 0
}
, (A.4)

rc− c ≤ min
{

rc(m+1)
n − c+ (n−m−1)c

(n−1)(1−s) , rc− c
}
.

In order for generous strategies to exist, we must have
rc(m+1)

n − c+ (n−m−1)c
(n−1)(1−s) ≥ rc− c,

or equivalently s ≥ 1− n
r(n−1) . Note that if s ≥ 1− n

r(n−1) ,

then rc(n−1)
n − c

1−s ≤ 0, and (A.4) becomes rc− c ≥ 0.

Since 1 − n−m+1
r(n−1) > 1 − n

r(n−1) , it follows that generous

strategies exist for

s ≥ 1− n−m+1
r(n−1) .

A.2 Proof of Theorem 1 (ii)

For an extortionate ZD strategy, we have parameter values
l = b0 = 0, and 0 < s < 1. For z < m− 1, (A.1) gives

0 ≤ 0 ≤ min
{
−c+ (n−m+1)c

(n−1)(1−s) , rc− c
}
.

In order for extortionate strategies to exist, we must have

−c+ (n−m+1)c
(n−1)(1−s) ≥ 0,

or equivalently s ≥ m−2
n−1 . Note that the fact that at least

one of the l-inequalities in (4) needs to be strict implies
that s > m−2

n−1 .

For z = m− 1, (A.2) gives

0 ≤ 0 ≤ min
{

rcm
n − c+ (n−m)c

(n−1)(1−s) , rc− c
}
.

Note that s > − 1
n−1 implies that

rcm
n − c+ (n−m)c

(n−1)(1−s) > 0,

so the lower bound does not exceed the upper bound.

For z ≥ m, (A.3) gives

0 ≥ max
{

rc(n−1)
n − c

1−s , 0
}
,

0 ≤ min
{

rc(m+1)
n − c+ (n−m−1)c

(n−1)(1−s) , rc− c
}
.
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In order for extortionate strategies to exist, we must have
rc(n−1)

n − c
1−s ≤ 0,

or equivalently s ≥ 1− n
r(n−1) .

For s ≥ 1− n
r(n−1) , we have

rc(m+1)
n − c+ (n−m−1)c

(n−1)(1−s) ≥ rc− c > 0,

which shows that the lower-bound does not exceed the
upper-bound. Thus, extortionate strategies exist for

s ≥ max
{

m−2
n−1 + ε, 1− n

r(n−1)

}
,

with ε > 0 an infinitesimally small number.

A.3 Proof of Theorem 1 (iii)

For an equalizing ZD strategy, we have parameter value
s = 0. For z < m− 1, (A.1) gives

0 ≤ l ≤ min
{
−c+ (n−m+1)c

n−1 , rc− c
}
.

In order for the lower bound to not exceed the upper
bound, we must have

−c+ (n−m+1)c
n−1 ≥ 0,

which implies m ≤ 2. Since m > 1, it follows that m = 2,
for which the upper bound is equal to 0. However, since
at least one of the l-inequalities in 0 ≤ l ≤ 0 needs to be
strict, there do not exist equalizing strategies.

Appendix B. ANALYSIS OF n-PLAYER SNOWDRIFT
GAMES

Consider a n-player snowdrift game with b > c > 0, and
1 < m < n. Plugging the payoffs (6) into (4) yields the
following results. For z < m− 1, we find

0 ≤ l ≤ min
{

c
m−1

(
n−m+1

(n−1)(1−s) − 1
)
, b− c

n

}
. (B.1)

For z = m− 1, we obtain

0 ≤ l ≤ min
{
b− c

m + (n−m)c
m(n−1)(1−s) , b−

c
n

}
= b− c

n ,

where we used s > − 1
n−1 . So

0 ≤ l ≤ b− c
n . (B.2)

For z ≥ m, we have

max
{
b− c

(n−1)(1−s) , 0
}
≤ l ≤ b− c

n . (B.3)

By using (B.1), (B.2), and (B.3), we can prove Theorem
2.

B.1 Proof of Theorem 2 (i)

For a generous ZD strategy, we have parameter values
l = an−1 = b − c

n , and 0 < s < 1. For z < m − 1, (B.1)
gives

0 ≤ b− c
n ≤ min

{
c

m−1

(
n−m+1

(n−1)(1−s) − 1
)
, b− c

n

}
.

In order for generous strategies to exist, we must have

c
m−1

(
n−m+1

(n−1)(1−s) − 1
)
≥ b− c

n ,

or equivalently s ≥ 1− cn(n−m+1)

(n−1)
(
(bn−c)(m−1)+cn

) .

For z = m− 1, (B.2) gives

0 ≤ b− c
n ≤ b−

c
n ,

which is always satisfied.
For z ≥ m, (B.3) gives

max
{
b− c

(n−1)(1−s) , 0
}
≤ b− c

n ≤ b−
c
n .

If s > − 1
n−1 , then b − c

(n−1)(1−s) < b − c
n , so the lower

bound does not exceed the upper bound. Thus, generous
strategies exist for

s ≥ 1− cn(n−m+1)

(n−1)
(
(bn−c)(m−1)+cn

) .
B.2 Proof of Theorem 2 (ii)

For an extortionate ZD strategy, we have parameter values
l = b0 = 0, and 0 < s < 1. For z < m− 1, (B.1) gives

0 ≤ 0 ≤ min
{

c
m−1

(
n−m+1

(n−1)(1−s) − 1
)
, b− c

n

}
.

In order for extortionate strategies to exist, we must have

c
m−1

(
n−m+1

(n−1)(1−s) − 1
)
≥ 0,

or equivalently s ≥ m−2
n−1 . Note that the fact that at least

one of the l-inequalities in (4) needs to be strict implies
that s > m−2

n−1 .

For z = m− 1, (B.2) yields

0 ≤ 0 ≤ b− c
n .

Since b > c > 0, we have b − c
n > 0, so the lower bound

does not exceed the upper bound.

For z ≥ m, (B.3) gives

max
{
b− c

(n−1)(1−s) , 0
}
≤ 0 ≤ b− c

n .

In order for extortionate strategies to exist, we must have

b− c
(n−1)(1−s) ≤ 0,

or equivalently s ≥ 1− c
b(n−1) . Since b− c

n > 0, the lower

bound does not exceed the upper bound for s ≥ 1− c
b(n−1) .

Note that b > c > 0 implies that − c
b > −1. Hence,

1− c
b(n−1) > 1− 1

n−1 = n−2
n−1 >

m−2
n−1 .

Thus, extortionate strategies exist if and only if

s ≥ 1− c
b(n−1) .

B.3 Proof of Theorem 2 (iii)

For an equalizing ZD strategy, we have parameter value
s = 0. For z < m− 1, (B.2) gives

0 ≤ l ≤ min
{

c
m−1

(
n−m+1
n−1 − 1

)
, b− c

n

}
.

In order for the lower bound to not exceed the upper
bound, we must have

c
m−1

(
n−m+1
n−1 − 1

)
≥ 0,

which implies m ≤ 2. Since m > 1, it follows that m = 2,
for which the upper bound is equal to 0. However, since
at least one of the l-inequalities in 0 ≤ l ≤ 0 needs to be
strict, there do not exist equalizing strategies.
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