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Abstract: DC/DC converters have gained popularity in a number of industrial applications
like electric vehicles or marine power systems, due to their high efficiency and power density
levels. Pulse width modulation (PWM) and resonant converters are two main types of the
DC/DC converters. Thereby, the resonant converters happen to be the preferred technology
in the design of modern marine power systems since these converters are more suitable for
the high and middle voltage DC applications. The resonant converters are, however, highly
nonlinear systems, which limits the use of linear control methods. In this study, we propose
a comprehensive analysis, modeling and control concept of a DC/DC resonant converter in
marine power systems. First, a mathematical model of the DC/DC resonant converter in the
so-called CLLC topology is derived based on the generalized state-space averaging method. The
model is used to design a dual-loop voltage control, which aims to regulate the voltage level
at the low-voltage DC bus of the resonant converter. The dual-loop voltage control consists of
the primal linear controller, which directly regulates the voltage and the reference generator,
which dynamically modifies the voltage reference of the primal controller. The major advantage
of the suggested control concept is the improved performance of the simple controller without
the need to substitute it as well as the possibility to realize, if required, a multi-rate control
concept. Simulation studies under different load conditions show that the suggested modeling
and control concept improves voltage control and the closed-loop system response.

Keywords: Marine power systems, Resonant converter, Generalized average model, Reference
generator, Model predictive control

1. INTRODUCTION

In order to meet the request for increased efficiency and
flexibility, the power systems today are subject to sig-
nificant infrastructural and operational changes. Some of
these changes include increased penetration of renewable
energy sources, installation of distributed storage systems,
distributed electricity generation or the change of the
communication and control architecture. When referring
to the power networks in the marine systems, there is
a notable interest to replace the existing AC grids with
DC networks. As reported in Hansen et al. (2011), the
onboard DC grids have series of advantages over AC grids
such as fuel savings up to 20 %, more flexible placement
of the electric components, improved overall dynamic re-
sponse and reduced maintenance of the existing engines
through more efficient operation. The major change in DC
dominated marine power systems is that the frequency
line transformers, which are required in AC grids, are
replaced by the DC/DC converters. These converters are
featured by high efficiency and power density and have
a key role as interfacing components between different
voltage levels. In particular, in the marine power systems,
the resonant converters appear as favored technical solu-
tion among the DC/DC converters (Agamy et al. (2017)).
Resonant converters come in different topologies and offer
a series of practical advantages over conventional non-

resonant topologies (like the dual active bridge). Some
of these advantages include soft-switching of all switches,
capability to operate at a very high switching frequencies,
high efficiency and reduced electromagnetic interference.

1.1 Main Contribution

In contrast to the practical advantages the resonant con-
verters offer and the popularity they gained, there are also
challenges related to their control. To achieve the voltage
control in the power converters, it is a common practice
to apply linear control methods, like proportional-integral
(PI) control, which assume a linear system representation.
These methods are suitable for the fast execution (the
sampling time of the converter controllers is in the range of
several kHz) and easy to tune by practitioners. The direct
application of the linear control methods is not possible in
case of the resonant converters, due to the highly nonlin-
ear nature of these power electronic components. For the
PWM converters, like the buck-boost DC/DC converter,
a simple, linear model is gained using the well-established
state-space averaging method in Erickson and Maksimovic
(2007). This method relies upon the assumption of small
current ripple, which enables to represent the state vari-
ables in the model by their averaged values over the
switching period, see Zhang et al. (2017). For the resonant
converters, which operate at much higher frequencies than

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 13239



PWM converters, this assumption is not valid. The mod-
eling of resonant converters is more challenging due to the
presence of two different system dynamics, i.e, dynamics of
the DC and AC states respectively. The slower changing,
DC states are related to the input and output capacitor of
the converter, while the fast changing AC states refer to
the currents and voltages of the so-called resonant network
(see Fig. 1). The increased number of state variables in
the mathematical model of the resonant converter simul-
taneously implies the need for an increased number of
measurements to design a control concept. Apart from the
modeling challenges, during controller design, we need to
consider that these converters do not operate at a single
switching frequency — thus, their performance is very
sensitive to the selection of this frequency. Therefore, the
analysis of the frequency range needs to be conducted first
and the control scheme should enable the change of the
switching frequency during simulation.

In this work, we consider a bidirectional DC/DC resonant
converter for the application in the marine power systems
and design a modeling and control concept to regulate
the output voltage. This converter serves as an interfacing
power electronic component between the high and the low
voltage DC bus of the ship power system. We assume a
number of DC loads to be connected in parallel to the low
voltage DC bus. The DC loads might be turned on and off,
changing thereby the total load power during operation.
The control problem is to assure that the desired value
of the output voltage is pertained and significant voltage
drops are avoided in spite of the switching between differ-
ent load levels. To stabilize the voltage and improve the
dynamic response of the converter in closed loop, we design
a model-based control concept.

First, we derive a mathematical model of the DC/DC con-
verter in the so called CLLC topology (Jung et al. (2013),
Zahid et al. (2015), Zou et al. (2019)), which is suitable
for the controller design. Thereby, we apply the general-
ized state-space averaging method (Sanders et al. (1991)),
which relies on the expansion of the periodic functions
into Fourier series. To the best authors’ knowledge, using
this methodology, a control-oriented state-space model for
the CLLC topology has not been suggested yet. Such
approach facilitates the representation of the AC system
dynamics, which are not negligible at the high switching
frequencies of the CLLC converter. In the second step,
we propose a control concept for the voltage control at
the low voltage bus. The control concept assumes that
a standard PI controller is applied to directly control
the voltage at the low-voltage bus of the converter by
adjusting the frequency. This frequency serves as an input
to the frequency modulator which drives the converter
internal half-bridges (H-bridges). Instead of replacing the
PI controller with the more advanced one, like a model
predictive controller (Maciejowski (2002), Bordons and
Montero (2015), Kouro et al. (2015)), we pursue a more
practical approach and design a double loop concept with
an add-on scheme in the outer loop, which supports the
primal controller in the inner loop. Such control concept
design might be particularly useful in the power converter
field, where the sampling frequencies are high and sim-
ple primal control approaches are preferred for hardware
implementation. The resonant converter in our application

can have a switching frequency of up to 20 kHz. As such, it
is significant to reduce the complexity of the primal control
algorithm and assure its fast execution. Furthermore, in
some cases, the controller is already embedded, cannot
be modified and we need to come up with a solution to
improve the performance without replacing the existing
controller. The main task of the add-on scheme, which
exploits the idea of reference governors in Kolmanovsky
et al. (2014), is to adapt the voltage reference of the
PI controller by solving an unconstrained optimal control
problem at each sampling time. The reference generator
leverages the mathematical model of the CLLC resonant
converter to form a closed-loop system model, to predict
the time evolution of the closed-loop system and to use this
prediction in the definition of the optimal control problem.
The generated reference signal corresponds to an artificial
reference which should ensure that the actual voltage refer-
ence value is reached (under certain performance criteria)
for a broad range of load conditions. The adoption of the
CLLC state-space model (with Fourier coefficients as AC
states) for model-based reference generation has not yet
been considered in previous works.

The paper is structured as follows. In Section 2 we in-
troduce the CLLC topology, its properties and derive the
characteristic curve for the frequency response amplitude.
Section 3 derives the open-loop model of the CLLC con-
verter. The control concept including the derivation of the
closed-loop model and the reference generator design is
presented in Section 4. In Section 5 simulation results are
presented and discussed. Finally, Section 6 concludes and
provides an outlook for future work.

2. BIDIRECTIONAL DC/DC RESONANT
CONVERTER

2.1 Converter Topology

Fig. 1 shows the circuit topology of the bidirectional
resonant converter applied in the middle voltage - low
voltage (MV-LV) grid of the considered vessel system. The
converter consists of two H-bridges and a resonant network
which includes a high-frequency transformer. Thereby the
primary bridge comprises the switches Si1−Si4, while the
switches of the secondary bridge include the components
So1 − So4. Power switches of the primary bridge convert
the power from DC to AC, while the secondary bridge
has a rectifying role, converting the power from the AC
back to the DC. The transformer Tr enables galvanic
isolation between the primary and the secondary side. In
our application, the transformer’s turns ratio is defined
as 1:1. Other components of the resonant network include
resonant inductances LS1 and LS2, transformer magnetiz-
ing inductance Lm and the resonant capacitors CS1 and
CS2. Since the resonant network is designed such that
LS1 = LS2 and CS1 = CS2, it has a symmetric structure
and the resulting converter is denoted as DC/DC converter
in symmetric CLLC topology. With vp and vs, we denote
the voltage at the input and output of the resonant net-
work, respectively (with vs being phase-shifted against vp).

2.2 Equivalent Circuit Representation

When the load conditions change, the switching frequency
fs of the resonant converter might have to be adjusted in
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Fig. 1. Bidirectional full-bridge CLLC resonant converter.
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Fig. 2. Equivalent circuit of the CLLC converter.

order to maintain the requested voltage at the converter’s
output. We aim to keep the output voltage at 1 kV even
when the load is changing from minimum to maximum
power. To analyze the frequency range at which the CLLC
converter should operate when the load is changing, we
consider the equivalent circuit of the CLLC converter
given in Fig 2. In the converter analysis, the equivalent
circuit representation enables us to derive the transfer
function for the resonant network by approximating the
switching network of the primary and the secondary bridge
using circuit elements, which describe their impact on the
resonant intermediate network. In the equivalent circuit
representation, the primary bridge can be modeled as
an AC voltage source, while the secondary bridge can
be modeled using an effective resistor of the value R0,e.
For more insight into these approximations, the interested
reader is referred to Erickson and Maksimovic (2007).

2.3 Input-Output Gain Characteristic

The equivalent circuit representation facilitates to derive
the input-output gain characteristic of the resonant net-
work (i.e., from vp to vs) as a function of the switching
frequency ωs = 2πfs. As a first step, we define the follow-
ing impedances:

Z1(jωs) = jωsLS1 +
1

jωsCS1
, Z2(jωs) = jωsLm, (1)

Z3(jωs) = jωsLS2 +
1

jωsCS2
, Z4(jωs) = R0,e (2)

With the impedances (1)-(2), the forward frequency re-
sponse of the resonant network, that is,

Hr(jωs) =
Vs(jωs)

Vp(jωs)
(3)

can be derived by transferring the impedances Z3 and Z4

from the secondary to the primary side of the transformer
and by applying Kirchoff’s 1st and 2nd law on the resulting
resonant network circuit. This way, by expanding (3), the
resulting frequency response can be summarized as:

Hr(jωs) =
Z2 Z4

Z1 Z2 + Z1 Z3 + Z1 Z4 + Z2 Z3 + Z2 Z4
(4)

where, for notational convenience, the dependence on jωs

has been omitted. For the further analysis, it is common
practice to express the frequency response (4) in terms
of the characteristic parameters of the resonant converter.
These are the first resonant frequency fr1, the normalized
frequency fn, that is,

fr1 =
1

2π
√
LC

, fn =
fs
fr1

, (5)

the second resonant frequency

fr2 =
1

2π
√

(L+ Lm)C
, (6)

the quality factor (providing an indication on the load size)

Q =
Zr

R0,e
, (7)

with the converter impedance Zr being defined as

Zr =
L

C
(8)

and the inductance ratio

k =
L

Lm
. (9)

Due to symmetric structure of the resonant network, it
holds L = LS1 = LS2 and C = CS1 = CS2. By exploiting
(5)-(9) to substitute parameters in (4), we come up with
a representation of Hr(jωs) that solely depends on fn, k
and Q. That said, we define the numerator N(fn) and
denominator D(fn, k,Q) of Hr(jωs), i.e.,

N(fn) = j f3n (10)

D(fn, k,Q) = Qk + fn k − 2Qf4n −Qf4n k (11)

+ j Q f2n + j f3n k + j f3n + j 2Qf2n k

Eventually the resulting frequency response is given by

Hr(fn, k,Q) =
N(fn)

D(fn, k,Q)
. (12)

The DC/DC voltage gain characteristic follows from the
amplitude of the frequency response (12):

|Hr(fn, k,Q)| = f3n√
(DRe(fn, k,Q))2 + (DIm(fn, k,Q))2

(13)

with DRe(fn, k,Q) = k (Q+ fn)−Qf4n (2 + k),

DIm(fn, k,Q) = Qf2n (2 k + 1) + f3n (1 + k).

The gain characteristics in Fig. 3 shows how the gain
curve scales for different load values. By analyzing this
characteristic we can determine the frequency range in
which the converter should be operated for the given load
variations such that the voltage at the output can be
regulated to the desired value. Three frequency regions
can be recognized from the gain curves: Region 1 –
the frequency region with frequencies below the second
resonant frequency, i.e., f < fr2, Region 2 – between the
first and the second resonant frequency, i.e., fr2 ≤ f ≤ fr1
and Region 3 – the one with frequencies above the first
resonant frequency, i.e., f > fr1. The converter is not
operated in Region 1 because the switches in the primary
side suffer from significant losses.

To come up with the frequency region for our application,
we recall that the designed converter should meet the
voltage gain requirements in both directions of the energy
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Fig. 3. Gain characteristic of the CLLC converter as a
function of the load and the normalized frequency

flow. The high voltage DC bus connected to the converter’s
input has a level of Vin = 5.9 kV, while the low voltage
bus connected to the converter’s output should remain at
Vo = 1kV for any load. Considering the powering mode,
the gain of the converter should be equal to Vo/Vin = 0.169
which is represented by the dashed black line in Fig.
3. The minimum and maximum permitted load of the
CLLC converter correspond to Pmin = 500 kW and
Pmax = 2.5 MW, i.e, to the resistance values of R0 = 2 Ω
and R0 = 0.4 Ω respectively. The gain of the converter is
equal to the unity gain at the first resonant frequency fr1.
We already mentioned that the converter is never operated
in Region 1. In Region 2 the converter gain is lower than
the unity gain, however the gain we seek cannot be reached
for all load values. For this reason, Region 2 cannot be
selected neither. For frequencies higher than fr1 the gain
characteristic is monotonically decreasing and the gain of
the converter is always less then one for any load in the
considered range. The gain of 0.169 is achieved when the
switching frequency is selected to be greater than fr1. For
a given load value the switching frequency is gained in the
intersection of the horizontal gain line Vo/Vin = 0.169 and
the gain characteristic for the corresponding load.

3. MODELING OF BIDIRECTIONAL DC/DC
RESONANT CONVERTER

To model switched power converters, a range of meth-
ods has been applied including the state-space averaging
methods, sample-data procedure, generalized state-space
averaging method (see Mueller and Kimball (2018b)). The
conventional state-space averaging method (Erickson and
Maksimovic (2007)) requires an assumption of negligible
current ripple. In this case, the state variables can be
represented through its average component, i.e., only DC
terms of Fourier series are sufficient to describe the dynam-
ics of state variables. The assumption of a small ripple
is not satisfied in case of resonant converters since the
transformer current exhibits a pure AC nature.

3.1 Generalized State-Space Averaging

To derive a mathematical model of CLLC resonant con-
verter, which can be used for control purposes, we apply

a generalized state-space averaging method. The method
has previously been used to derive a model of a dual active
bridge (Qin and Kimball (2012), Mueller and Kimball
(2018b), Mueller and Kimball (2018a)), but so far no appli-
cations for the CLLC topology have been suggested. The
generalized averaging technique relies on the expansion of
the periodic functions in the Fourier series and on using
more terms of this series than only a DC term. In this
way, a more accurate model is gained, but the order of the
model increases.

In the generalized averaged approach, the state x(t) is
expanded in a Fourier series:

x(t) =

k=∞∑
k=−∞

〈x〉k(t) ej k ωs t (14)

where ωs = 2π fs and the complex number 〈x〉k is the kth

coefficient in the Fourier series which equals:

〈x〉k(t) =
1

T

∫ t

t−T
x(t) e−j k ωs t dt

=
1

T

∫ t

t−T
x(t) cos(k ωs t) dt (15)

− j 1

T

∫ t

t−T
x(t) sin(k ωs t) dt

In the following, a first harmonic approximation is used
such that apart from the term k = 0 we include the terms
k = ±1 to represent the state variables, while all other
terms in the Fourier series are neglected. Every state of
the system is thus approximated as follows:

x(t) = 〈x〉0(t) + 〈x〉1(t) ej ωs t + 〈x〉−1(t) e−j ωs t

= 〈x〉0 + 2 〈x〉1R cos(ωs t)− 2 〈x〉1I sin(ωs t) (16)

where x1R and x1I are the real and imaginary components
of the first Fourier coefficient, respectively.

3.2 Open-Loop CLLC Model

To derive the nonlinear state-space model, let s1(d, τ)
and s2(d, τ) denote the switching functions of the primary
and the secondary bridge for the switching period T . The
voltage at the output of the primary bridge vp is then
defined by:

vp(τ) = s1(d, τ) vin(τ) (17)

while the voltage at the input of the secondary bridge
equals:

vs(τ) = s2(d, τ) vo(τ) (18)

where τ is the time within the switching period and d is
the phase shift of the converter defined as a fraction of π,
i.e., d = Φ/π ∈ [0, 1] with Φ being the phase shift angle.
The form of the switching functions s1 and s2 depends
on the modulation strategy applied. For the single-phase
shift modulation strategy (Mueller and Kimball (2018a)),
considered in this work, the signals s1 and s2 are defined
as:

s1 =

{
1, 0 ≤ τ ≤ T

2

−1, T
2 ≤ τ ≤ T

(19)

s2 =

{
1, d T

2 ≤ τ ≤
d T
2 + T

2

−1, 0 ≤ τ ≤ T
2 or d T

2 + T
2 ≤ τ ≤ T

(20)

We refer to the equivalent circuit representation given in
Fig. 2 and introduce the following simplification. First,
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we assume that the magnetizing inductance of the trans-
former Lm can be neglected. Second, the inductance LS2

and the capacitor CS2 on the transformer secondary side
are referred to the primary side such that equivalent in-
ductance Leq and capacitance Ceq can be determined as a
series connection of corresponding components, i.e.:

Leq = LS1 + LS2 = 2L, Ceq =
CS1 CS2

CS1 + CS2
=
C

2
(21)

This representation simplifies the structure of the resonant
network. By considering simplified circuit representations
and by leveraging the definitions for vp and vs in (17)-(18)
the following state space equations for the CLLC resonant
converter are gained:

v̇C1
= − 1

C1R1
vC1
− 1

C1
s1 it +

1

C1R1
vin (22)

i̇t = − 1

Leq
s1 vC1

− 1

Leq
vCeq

− 1

Leq
s2 vo (23)

v̇Ceq = − 1

Ceq
it (24)

v̇0 =
1

C2
s2 it −

1

C2R0
vo (25)

In this state-space representation, the input capacitor volt-
age vC1

, the output capacitor voltage vC2
, the transformer

current it and the voltage across the equivalent capaci-
tance vCeq

are identified as system states. Due to parallel
connection, the output capacitor voltage equals the load
voltage such that in the following we use v0 = vc2 .

We can now apply the generalized state-space averaging
method on equations (22)-(25). As it follows from (16),
every state of the CLLC converter model is a function of
the DC average (zero-th Fourier coefficient), of the real and
imaginary part of the 1st coefficient in the Fourier series.
Therefore, each of these components represents an internal
state in the full-order state-space model. The complete
state vector can now be summarized as:

xOL =
[
v̄C1

, īt, v̄Ceq
, v̄o

]T
(26)

with the subvectors

v̄C1
= [ 〈vC1

〉0, 〈vC1
〉1R, 〈vC1

〉1I ],

īt = [ 〈it〉0, 〈it〉1R, 〈it〉1I ],

v̄Ceq
= [〈vCeq

〉0, 〈vCeq
〉1R, 〈vCeq

〉1I ],

v̄o = [ 〈vo〉0, 〈vo〉1R, 〈vo〉1I ].

Simulative analysis of the full order model shows a poten-
tial for model reduction. The states in the model can be
classified into DC states and AC states. The capacitors at
the input and the output of the converter are such that
the voltages across these elements can be represented by
their average components. In a similar way, the internal
states related to the resonant network, i.e., current it and
voltage vCeq

have the pure AC nature with the average
component equal to zero. For this reason, the state vector
is reduced to:

xOL =
[
v̄C1 , īt, v̄Ceq , v̄o

]T
(27)

with the subvectors

v̄C1 = 〈vC1〉0, īt = [〈it〉1R, 〈it〉1I ],

v̄o = 〈vo〉0, v̄Ceq
= [〈vCeq

〉1R, 〈vCeq
〉1I ].

Applying the fundamental properties of the Fourier coeffi-
cients, as in Sanders et al. (1991), on the state vector (27),
the generalized state-space averaging model is:

˙〈vC1〉0 = − 1

C1R1
〈vC1〉0 +

4

C1 π
〈it〉1I +

1

C1R1
vin (28)

˙〈it〉1R = − 1

Leq
〈vCeq

〉1R +
2 sin(dπ)

Leq π
〈v0〉0 + ωs 〈it〉1I

(29)

˙〈it〉1I = − 2

Leq π
〈vC1
〉0 −

1

Leq
〈vCeq

〉1I +
2 cos(dπ)

Leq π
〈v0〉0

− ωs 〈it〉1R (30)

˙〈vCeq
〉
1R

=
1

Ceq
〈it〉1R + ωs 〈vCeq

〉1I (31)

˙〈vCeq
〉
1I

=
1

Ceq
〈it〉1I − ωs 〈vCeq

〉1R (32)

˙〈v0〉0 = − 1

R0 C2
〈v0〉0 −

4 sin(dπ)

π C2
〈it〉1R

− 4 cos(dπ)

C2 π
〈it〉1I (33)

The trigonometric terms in (28)-(33) follow from the appli-
cation of the rules in Sanders et al. (1991) to the switching
functions s1(t) and s2(t). For the Fourier coefficients of
these signals it holds, see Qin and Kimball (2012):

〈s1〉0 = 〈s2〉0 = 0 (34)

〈s1〉1R = 0, 〈s1〉1I = − 2

π
(35)

〈s2〉1R =
−2 sin(dπ)

π
, 〈s2〉1I =

−2 cos(dπ)

π
(36)

The state-space model (28)-(33) is a nonlinear model and
therefore not appropriate for the voltage reference gen-
erator design which relies on the linear system represen-
tation. Thus, we linearize the model around the steady-
state operating point. Lets assume that x̃OL = x̃OL −X0,
ũOL = uOL − U0 and ỹOL = yOL − Y0 denote small
signal perturbations for the state, control input and out-
put variables around the steady-state vectors X0, U0 and
Y0, respectively. As control input, we use the switching
frequency of the converter in radians, i.e., uOL = ωs. The
output voltage is selected as the controlled output, i.e.,
yOL = vo. After linearization around the steady-state, we
gain the following open-loop model of the CLLC converter:

˙̃xOL = AOL x̃OL +BOL ũOL (37)

ỹOL = COL x̃OL +DOL ũOL (38)

with the system matrix AOL, the input matrix BOL, the
output matrix COL and the feed-through matrix DOL:

AOL =



− 1
C1 R1

0 4
C1 π

0 0 0

0 0 Ωs − 1
Leq

0
2 sin(Dπ)
Leq π

− 2
Leq π

−Ωs 0 0 − 1
Leq

2 cos(Dπ)
Leq π

0 1
Ceq

0 0 Ωs 0

0 0 1
Ceq

−Ωs 0 0

0 − 4 sin(Dπ)
C2 π

− 4 cos(Dπ)
C2 π

0 0 − 1
C2 R0

 ,

BOL =


0

It,1I
−It,1R
VCeq,1I

−VCeq,1R

0

 , COL =
[
0 0 0 0 0 1

]
, DOL = 0

(39)

where D, Ωs, It,1R, It,1I , VCeq,1R and VCeq,1I are the
respective steady-state values. Since the matrix AOL is
a function of the switching frequency in radians ωs and
the load R0, the model of the CLLC converter resides to
a group of parameter-varying models.
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4. CONVERTER CONTROLLER DESIGN

With the open-loop model of the CLLC resonant con-
verter, we propose the dual loop control concept, as shown
in Fig. 4, to regulate the voltage at the low voltage bus of
the DC/DC converter. The main idea is to improve the
response of the closed loop system when the load power
is changing and assure that the output voltage remains at
1 kV for all load conditions. The dual loop control concept
leverages a simple, linear algorithm as a primal controller.
This controller adjusts the switching frequency fs, depend-
ing on the value of the control error, while the phase shift
d is a function of fs and the current load. In the outer
loop, a voltage reference generator adjusts the artificial
voltage reference vAref of the primal controller to track the
actual reference vo,ref . To estimate the AC states, related
to it and vCeq

, we propose to utilize a harmonics estimator
(not being subject of this paper) which relies on harmonic
regression.

Phase

shift

comp.
Current load

Voltage

ref.

gen.

PI(z) Freq.

modul.

CLLC

converter

Harmonic

est.

vo,ref fs vo

〈it〉1R,k, 〈it〉1I,k
〈vCeq 〉1R,k, 〈vCeq 〉1I,k it, vCeq

d

vA
ref

Fig. 4. Control architecture with reference generator and
low level PI controller.

4.1 Closed-Loop CLLC Model

To design a voltage reference generator, a closed-loop
system model must be known. The output voltage of the
CLLC converter is controlled using the PI controller in the
following digital realization:

u(k) = KP e(k) + γ(k) (40)

γ(k + 1) = γ(k) +KI Ts e(k) (41)

where e(k) = vAref (k)−vo(k) denotes the control error, vAref
the artificial reference value of the output voltage vo, Ts is
the controller sampling time, whileKP > 0 andKI > 0 are
the parameters of the PI controller. The integral term (41)
has been discretized using forward-Euler discretization.

To form the closed-loop system model, the continuous
state-space representation of the CLLC converter is dis-
cretized first assuming zero-order hold discretization such
that we gain:

x̃OL(k + 1) = AOL,d x̃OL(k) +BOL,d ũOL(k) (42)

ỹOL(k) = COL,d x̃OL(k) (43)

where AOL,d, BOL,d and COL,d are the discretized coun-
terparts of the corresponding matrices in (39).

By inserting the control law (40)-(41) of the PI controller
in the discretized system model (42)-(43) and augmenting
the state vector with the additional state γ, representing
the integrator state of the PI controller, we form a discrete-
time state-space model of the closed-loop system:

[
x̃OL(k + 1)
γ̃(k + 1)

]
︸ ︷︷ ︸

xCL(k+1)

= ACL,d

[
x̃OL(k)
γ̃(k)

]
︸ ︷︷ ︸

xCL(k)

+BCL,d ṽ
A
ref (k)︸ ︷︷ ︸
uCL(k)

(44)

yCL(k) = CCL,d xCL(k) (45)

with

xCL =

[
x̃OL

γ̃

]
, yCL = ỹOL, uCL(k) = ṽAref (46)

ACL,d =

[
AOL,d −KP BOL,d [01×5 1] BOL,d

[01×5 1] 1

]
(47)

BCL,d =

[
KP BOL,d

TsKI

]
, CCL,d = [COL,d 0] (48)

where γ̃ = γ − γ0 and ṽAref = vAref − vo,ref are the
corresponding small-signal perturbations with respect to
the operating point γ0 and vo,ref . This way, in the closed
loop model, the deviation ṽAref from fixed reference vo,ref
(that is, 1 kV) is the new control input.

Remark 1. The operating point (X0, U0, Y0) of the closed-
loop model refers to its steady state for vo,ref = 1 kV.

4.2 Reference Generation

Adopting the discrete-time state-space model of the
closed-loop resonant converter, we can now design a
scheme for the voltage reference generation. This scheme
is based on the model predictive control concept in which
the state-space model is utilized to predict the evolution
of the closed-loop system dynamics over the time horizon
of Np time steps. The predictions are leveraged to define
a finite-time optimal control problem which is solved at
every time step. The number of time steps is selected, such
that the prediction horizon equals at least the settling time
τset of the closed-loop system, i.e., τset = Np Ts, where
Ts denotes the sampling time of the reference generator.
The formulation allows to run the reference generator at
a different, lower frequency than the PI controller. In this
way, a possibility is opened to further reduce the compu-
tational effort. To determine the voltage reference for the
PI controller, the algorithm minimizes a quadratic cost
function subject to the equality constraints that represent
the closed-loop system dynamics, i.e.:

min
uCL,(·|k)

Np∑
i=1

Q
∥∥(yCL,(k+i|k) − yref )

∥∥2
2

+

Nu−1∑
i=0

R
∥∥uCL,k+i|k

∥∥2
2

(49)

s.t. xCL,k|k = x̂CL,k, (44), (45)

In (49), the index k + i | k denotes the prediction of the
system output at time step k+ i starting from time step k,
yref is the actual voltage reference that the system should
maintain at the low voltage side (in our case 1000 V). The
parameter Q > 0 represents the weighing of the output
deviation at time step k + i, while R > 0 penalizes the
magnitude of the control input. Upon solving the quadratic
problem (49) at time k, the optimal sequence u?CL,(·|k) =

[u?CL,k|k, . . . , u
?
CL,k+Nu−1|k]T of voltage reference changes

over the prediction horizon is gained. Only the first ele-
ment is added to the steady-state value of vo,ref = 1000 V
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and applied as a reference for the PI controller in the
inner loop, i.e., vAref,k = vo,ref + u?CL,k|k. By substituting

the constraints into the cost, Problem (49) can be solved
fast and the involved matrices even be pre-computed.

In the formulation of the optimization problem (49), the
initial condition of the algorithm appears as an equality
constraint. At each sampling time, i.e., at each run, the ref-
erence generator is initialized at the current state, xCL,k|k.
Consequently, the system states at time step k have to be
either measured or estimated. The voltage at the input
capacitance C1 and the output capacitance C2 (the DC
states) are directly measured and thus 〈vC1〉0, 〈v0〉0 are
known at time k. The real and imaginary components
of the current it and the voltage vCeq (the AC states),
though, have to be estimated as indicated at the beginning
of the section. As measurements for the estimation, we
assume that the current over the primary side inductance
LS1 and the voltage across the primary side capacitor
CS1 are available and perform the harmonic regression to
determine 〈it〉1R, 〈it〉1I , 〈vCeq 〉1R and 〈vCeq 〉1I at time k.

5. SIMULATION RESULTS

5.1 Simulation Setup

The parameters of the considered CLLC resonant con-
verter are listed in Table 1.

Table 1. Parameters of the CLLC converter.

Parameter Value

Input voltage Vin 5900 V
Inductance LS1, LS2 40µH
Inductance Lp 150µH
Capacitance CS1, CS2 7.6µF
Capacitance C1, C2 100µF
Input resistance R1 1 mΩ

The maximum load equals Pmax = 2.5 MW (R0 = 0.4 Ω),
while the minimum load is Pmin = 500 kW (R0 = 2 Ω). To
demonstrate the performance of the control concept, we
consider the load changing sequence in Fig 5. The loads
are denoted in terms of their resistance: 0.4 Ω corresponds
to the largest load, 1 Ω to the medium load and 2 Ω stands
for the smallest load. In our context the CLLC converter
is a frequency modulated device. The frequency for the
frequency modulation is set by the PI controller. The
duty cycle for the frequency modulation is set to 50%.
The phase shift d is changing depending on the load and
the switching frequency. In our approach, it is determined
according to calculus presented in Jung et al. (2013).
For the PI controller and the voltage reference generator,
the sampling frequencies are chosen to be equal. These
sampling frequencies change based on the load conditions.
For the largest load, the sampling frequency is 11 kHz,
for the medium load 14.2 kHz, and for the maximum
load 20.5 kHz. Since the discretized version of the PI
controller is applied, with the change of the sampling
frequency of the controller, the integral gain is changed
as well (see (41)). This way, we realize a gain-scheduling
PI controller, i.e., when the load changes, the parameters
of the PI controller are adjusted accordingly and a more
reasonable comparison with the dual-loop control concept
can be made. The parameters of the reference generator
are selected as follows: Np = 10, Nu = 10, Q = 5, R = 1.

5.2 Simulation Results

To evaluate the simulation results, we use the following
performance criteria (see Table 2): (i) min./max. LVDC
voltage and the related overshoot/undershoot, (ii) root
mean square error (RMSE) and (iii) the settling time
for a 4% tolerance band around 1 kV. We particularly
observe the output voltage at time steps when the load
level is changing and compare the system response of
standard with the dual-loop controller, designed in this
contribution. When the load changes from the maximum
to minimum or medium load, we obtain performance
metrics which are almost equal for both control concepts
(white columns in Table 2). Conversely, when changing
from the minimum or medium to the maximum load (gray
columns in Table 2), the dual loop concept outperforms
the standalone PI controller noticeably.
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Fig. 5. Load sequence and the voltage at the LVDC bus.

To further analyze these benefits, we have selected two of
these time intervals in Fig. 6 (A: min. to max. load; B: min.
to medium load). Besides the output voltage, we illustrate
the switching frequency, set by the PI controller, along
with the phase shift. For time interval A, the dual loop
control scheme is able to reduce the voltage overshoot by
12.7% from 1185.7 V to 1035.1 V, the RMSE by 34.3% and
the settling time by 51.1%. The initial undershoot, when
switching the load, cannot be avoided as it can not be
anticipated by the reference generator. Further, we note
that the dual loop controller counteracts the predicted
over-/undershoot in voltage by adjusting the reference for
the PI controller (green solid line) in the opposite direc-
tion. Time interval B enforces this observation, showing
a 9.3% reduced overshoot, a 27.6% smaller RMSE and
a 53.8% reduced settling time. Similar improvement can
be recognized for the other corresponding time intervals.
In conclusion, we note that the dual loop control concept
outperforms the gain-scheduling PI controller and enable
to dynamically adapt to excessive load changes.

6. CONCLUSION

We have proposed a modeling and voltage control concept
for a DC/DC resonant converter, applied in marine power
systems. Leveraging a generalized state-space averaging
method, we have presented a control-oriented model of
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Table 2. Overview of performance measures during respective load change intervals.

Load Change [Ω] 0.4 → 2.0 2.0 → 0.4 0.4 → 2.0 2.0 → 0.4 0.4 → 1.0 1.0 → 0.4 0.4 → 1.0 1.0 → 0.4
Time interval [s] 0.02–0.04 0.04–0.06 0.06–0.08 0.08–0.1 0.10–0.12 0.12–0.14 0.14–0.16 0.16–0.18

Ref. gen. + PI
Vmin [V] 953 812.1 952.4 805.7 947.7 855.3 960.5 846.1
Vmax [V] 1057 1035.1 1053.7 1031.3 1078.3 1023.7 1079.8 1022.2
RMSE [V] 14.6517 41.863 16.366 37.294 18.846 30,240 18.527 31.374
Settling Time [s] (4%) 0.00021 0.00065 0.00012 0.00064 0.00030 0.00060 0.00020 0.00070

PI
Vmin [V] 950.9 811.9 941.5 794.7 932.9 837.8 929.5 845.5
Vmax [V] 1048.1 1185.7 1034.3 1175.1 1071.3 1129.2 1071.5 1134.0
RMSE [V] 14.276 63.747 18.378 53.047 17.256 41.786 17.264 39.762
Settling Time [s] (4%) 0.00025 0.00133 0.00042 0.00122 0.00040 0.00130 0.00050 0.00100
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Fig. 6. Controlled output (voltage), voltage reference from
ref. generator, control input (switching frequency)
and the feedforward term (phase shift).

the resonant converter in the CLLC topology. A linearized
version of the model is used to design a dual loop control
scheme to regulate the voltage at the low voltage DC side.
The dual loop scheme relies on a primal PI controller,
which is complemented by a voltage reference generator.
A simulation study demonstrates its ability to improve the
dynamic system response and to stabilize the voltage when
the load is changing. As part of future work, we will ex-
amine how the controlled CLLC converter performs (under
disturbances elsewhere in the system) when connected to
the remaining vessel power system which involves further
power converters and local controllers.
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