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Abstract: We consider the problem of synthesizing dynamic controllers to guarantee monotonic
closed-loop step responses. Restricting our attention to controllers which yield positive closed-
loop systems, we derive synthesis conditions that are linear in the controller parameters. A
linear programming formulation that attempts to optimize the decay rate of the closed-loop
system while ensuring asymptotic stability and monotonic step response is developed. An
alternative approach which guarantees closed-loop stability and a near-monotonic response is
also introduced. Several illustrative examples demonstrate the effectiveness of the approach.
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1. INTRODUCTION

The condition that a transfer function should have a non-
negative impulse response appears in many transient per-
formance criteria for control systems. A common example
is the desire that a closed-loop step response should not
overshoot. Although this problem has been considered
several times in the past e.g., (Liu and Bauer, 2008, 2009;
Du et al., 2019), it has not yet been fully solved. Many
existing results are based on the following lemma: if H(z)
is analytic in |z| ≥ 1, then its impulse response {ht} is non-
negative if and only if the sequence of transfer functions

H0(z) = H(z)

Hk+1(z) = −z d
dz
Hk(z), k ≥ 0

(1)

does not have a positive real zero outside the unit disk
(Malik et al., 2009). Unfortunately, this result is difficult to
use for control synthesis, since the conditions lead to com-
plicated expressions in the transfer function coefficients. In
this note we show how simpler conditions on the transfer
function coefficients allow to solve the controller synthesis
problem using convex optimization.

Many approaches have been proposed for designing mono-
tonic controllers. For example, Malik et al. (2009) used
(1) and the Markov-Lukács theorem to develop a two-
parameter controller synthesis procedure for a particular
class of systems. Mohsenizadeh et al. (2012) built on the
work by Malik et al. (2009) and formulated a PID design
procedure for achieving monotoic step responses in terms
of polynomial matrix inequalities. Schmid and Ntogra-
matzidis (2010, 2012) investigated the state feedback de-
sign problem for systems in state space form with the aim
of avoiding overshoot and undershoot in step respones.
An LMI approach for monotonic state feedback design

? This research was sponsored in part by the Swedish Foundation for
Strategic Research and the Knut and Alice Wallenberg Foundation.

was proposed in Garone and Ntogramatzidis (2015). For
systems described by transfer functions, it was shown in
Darbha and Bhattacharyya (2002) that a combination of
cascade, pre-filter and feedback compensators exists that
results in a non-negative closed-loop impulse response if
and only if the plant does not have positive non-minimum
phase zeros. Corresponding results for continuous-time
systems were developed in Darbha (2003).

In this paper, we show that enforcing the closed-loop
transfer function to have a positive realization allows the
monotonic synthesis problem to be solved using linear
programming. In contrast to Malik et al. (2009) and Mohs-
enizadeh et al. (2012), who provide outer approximations
for the admissible controller parameter regions, our syn-
thesis method is based on a convex inner approxima-
tion, and thus guarantees that the desired characteris-
tics are achieved. Moreover, while the synthesis procedure
in Darbha (2003) may yield controllers of very high orders,
our method allows to fix the controller order a priori. To
deal with the fact that not all systems can be rendered
monotonic using cascade compensators, we also propose an
approach for designing controllers with a near-monotonic
closed-loop response. Several numerical examples illustrate
the effectiveness of our approach.

Notation The set of real numbers is denoted R. We let
1n ∈ Rn be the vector of all ones, 0n ∈ Rn be the vector
of all zeros and ei be the ith Euclidean basis vector. For
a vector a ∈ Rn, the inequality a ≥ 0n means that all
elements of a are non-negative. For a matrix M ∈ Rn×m,
[M ]ij denotes its element in row i and column j; If a ∈ Rn,

then its Toeplitz matrix T (a) ∈ R(n+m−1)×m satisfies
[T (a)]ij = ai−j if i− j ∈ [0, n− 1] and 0 otherwise.
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2. CONDITIONS FOR A NON-NEGATIVE IMPULSE
RESPONSE

Given a discrete-time SISO system with transfer function

H(z) =
B(z)

A(z)
=
b0z

n + b1z
n−1 + . . .+ bn−1z + bn

zn + a1zn−1 + . . .+ an−1z + an
(2)

we are interested in conditions on the coefficients b and
a which ensures that the impulse response {ht} is non-
negative. If the transfer function describes the input-
output relation of the closed-loop system, then the prob-
lem is equivalent to finding conditions under which the
closed-loop step response is monotonically increasing.

There is no simple way to express the condition that the
impulse response should be non-negative using the corre-
sponding transfer function coefficients. Generally speak-
ing, one would need to perform an inverse Z-transform of
the transfer function and then impose a sign restriction on
the resulting signal in the time domain.

The next theorem introduces an interesting class of trans-
fer functions whose impulse responses {ht} are ensured to
be non-negative, i.e. ht ≥ 0 for t ≥ 0.

Theorem 1. In (2) assume bk ≥ 0 for 0 ≤ k ≤ n and ak ≤ 0
for 1 ≤ k ≤ n. Then ht ≥ 0 holds for all t ≥ 0.

Proof. The transfer function (2) has the following con-
trollable canonical realization

xt+1 = Asxt +Bsut
yt = Csxt +Dsut

where

As =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1

 , Bs =


0
0
...
0
1

 (3)

Cs = [bn − anb0 · · · b1 − a1b0] , Ds = b0

Under the given assumptions, As, Bs, Cs and Ds are all
non-negative. Hence, its impulse response

ht =

{
CsA

t−1
s Bs, t ≥ 1

b0, t = 0
(4)

is also non-negative.

3. STABILITY

Next, we consider how the conditions for a non-negative
impulse response above can be extended to ensure asymp-
totic stability. It is well-known that the exact stability
region in the space of characteristic polynomial coefficients
a is not convex (Nurges, 2009; Ackermann, 1993). It is
therefore common to find outer and inner convex approx-
imations of this region, leading to necessary and sufficient
conditions of stability, respectively. A well-known inner
approximation is Cohn’s diamond (Ackermann, 2012)

n∑
k=1

|ak| < 1 (5)

which is simple but conservative. In our context how-
ever, under the restrictions already made on the signs
of characteristic polynomial coefficients a in Theorem 1,

Cohn’s criterion becomes both necessary and sufficient and
therefore adds no additional conservatism to our problem.
This is asserted in the following lemma.

Lemma 2. Consider the LTI system with transfer function
(2) and assume that ak ≤ 0 for all 1 ≤ k ≤ n. This system
is Schur stable if and only if (5) is met, i.e. 1+

∑n
k=1 ak > 0.

Proof. Sufficiency is well-established. For necessity, as-
sume that (5) does not hold and consider the characteristic
polynomial A(z) on the ray z ∈ [0,+∞). Since A is
continuous with A(1) ≤ 0 and limz→+∞A(z) > 0 it has
at least one real unstable root in the range [1,+∞).

4. MONOTONIC CONTROL SYNTHESIS

Based on the results presented so far, a design technique
is now provided which ensures a stable and monotonic
closed-loop step response. Consider the plant with transfer
function (2) with the cascade compensator

C(z) =
F (z)

G(z)
=
f0z

l + f1z
l−1 + . . .+ fl−1z + fl

g0zl + g1zl−1 + . . .+ gl−1z + gl
(6)

in a negative feedback loop giving rise to the following
closed-loop transfer function

Hcl(z) =
Bcl(z)

Acl(z)
=

B(z)F (z)

A(z)G(z) +B(z)F (z)
(7)

The following theorem derives conditions on the lth-order
compensator (6) which ensure that the closed-loop system
Hcl is stable and has a monotonic step response.

Theorem 3. Let a = [1 a1 · · · an]T and b = [b0 b1 · · · bn]T

be coefficient vectors of A(z) and B(z) in (2), and let
T (a) and T (b) be their corresponding Toeplitz matrices of
dimension (n+l+1)×(l+1). If f = [f0 f1 · · · fl]T ∈ Rl+1

and g = [g0 g1 · · · gl]T ∈ Rl+1 satisfy

T (b)f ≥ 0
e1

T (T (a)g + T (b)f) = 1
W (T (a)g + T (b)f) ≥ 0
1T (T (a)g + T (b)f) ≥ ε

(8)

where W = [0n+l −In+l] ∈ R(n+l)×(n+l+1) and ε > 0,
then the controller (6) ensures that the closed-loop system
(7) is Schur stable and has a monotonic step response.

Proof. It follows from (7) that the coefficients b̂k of Bcl(z)

are given by b̂k = (b ∗ f)k. Similarly, the coefficients âk
of Acl(z) are given by âk = (a ∗ g)k + (b ∗ f)k. These
relationships can be written by means of Toeplitz matrices:

b̂ = T (b)f

â = T (a)g + T (b)f
(9)

To ensure monotonicity using Theorem 1, we restrict b̂ to
be non-negative, âk to be non-positive for 1 ≤ k ≤ n+l and
fix â0 = 1 so that the closed loop system’s denominator
is monic. Finally, the stability conditions in Lemma 2,∑l+n

k=0 âk > 0, are expressed as
∑l+n

k=0 âk ≥ ε with ε > 0.

It is worth mentioning that the parameter space intro-
duced in Theorem 3 is convex, and that controller param-
eters, whenever they exist, can be found by solving a linear
programming feasibility problem. In what follows, we will
show that it is also possible to formulate linear and convex
programs that attempt to optimize the convergence rate
of the closed-loop system.
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4.1 Strictly proper closed-loop systems

We will first consider the case when the closed-loop system
is strictly proper. This is common in practice, since sam-
pling and computational delays effectively render the con-
troller’s view of the system strictly proper, even when the
physical plant has a direct feed-through. It also simplifies
our exposition and makes the conditions for non-negativity
of Cs in Theorem 1 both necessary and sufficient.

The decay rate of a positive linear system can be computed
by solving a geometric program (Feyzmahdavian et al.,
2014). However, this result is not straightforward to use for
controller synthesis. In this work, we will therefore explore
an alternative approach to formulate the design problem
as a linear or convex program. Specifically, we will rely on
the following bound on the maximum modulus ρ of the
roots of the monic closed-loop characteristic polynomial
Acl(z) = zn+l + â1z

n+l−1 + · · ·+ ân+l derived by Fujii and
Kubo (1993):

ρ ≤ cos(π/(n+ l + 1)) +

|â1|+
√√√√n+l∑

k=1

|âk|2

 /2 (10)

By norm equivalence, we also have the bound

ρ ≤ cos(π/(n+ l + 1)) + ρ̄/2 (11)

where

ρ̄ = 2|â1|+
n+l∑
k=2

|âk| (12)

Although the right-hand side of (10) is a convex function
of the coefficient vector â, we will first use the bound (12)
since it leads to conditions that can be verified using linear
programming. We propose the following corollary:

Corollary 4. Let ε > 0 and [f?, g?]T be the optimal
solution to the following linear program

minimize [0 −2 −1 · · · −1] (T (a)g + T (b)f)
subject to T (b)f ≥ 0

eT1 (T (a)g + T (b)f) = 1
W (T (a)g + T (b)f) ≥ 0
1T (T (a)g + T (b)f) ≥ ε

(13)

Then choosing the coefficients f and g in controller (6) as
f = f? and g = g? makes the closed-loop system (7) Schur
stable with a monotonic step response.

Proof. The objective function in (13) is the bound (12)
where â is expressed as in Theorem 3. The constraints
in the optimization problem (13) are the same as in
Theorem 3, which ensures a stable closed-loop system with
a monotonic step response.

Corollary 4 is only applicable when it is possible to find a
controller that satisfies the sufficient conditions for mono-
tonicity derived in Theorem 1. The next corollary provides
a formulation which works also when these conditions
cannot be met. Specifically, it attempts to compute a
stabilizing controller whose closed-loop transfer function
is as close as possible to the desired family of transfer
functions introduced in Theorem 1. As we will see later,
this forrmulation can be quite useful in practice.

Corollary 5. Let ε > 0, λ ∈ [0, 1] and [f?, g?, s?
b̂
, s?â]T be

the solution to the convex optimization problem

minimize λ(‖sb̂‖1 + ‖sâ‖1) + (1− λ)×(
|e2T (T (a)g + T (b)f)|+ ‖W (T (a)g + T (b)f)‖2

)
subject to


T (b)f + sb̂ ≥ 0
eT1 (T (a)g + T (b)f) = 1
W (T (a)g + T (b)f) + sâ ≥ 0
||T (a)g + T (b)f ||1 ≤ 2− ε

(14)
If s?

b̂
= s?â = 0, then choosing the coefficients f and g in

controller (6) as f = f∗ and g = g∗ makes the closed-loop
system (7) stable with a monotonic step response.

Proof. The proof follows from Theorem 3 with a few
changes. First, the conditions for monotonicity are relaxed
using slack-variables sb̂ and sâ. Second, the stability con-
dition is re-written based on Cohn’s diamond, since the
closed-loop characteristic polynomial is no longer guar-
anteed to satisfy the sign restrictions which leads to a
simplified stability condition (unless sâ = 0). The cost
function consists of a convex combination of the norms of
the slack vectors, ‖sb̂‖1 +‖sâ‖1, and the decay rate bound

from (10), |â1|+
√∑n+l

k=1 |âk|2, where â = T (a)g+T (b)f is

the closed-loop characteristic polynomial coefficients. The
former encourages a near-monotonic response while the
latter expression improves the decay rate.

If the optimal value of problem (14) is positive for λ = 1,
then there is no stabilizing controller of degree l that
makes the closed-loop system meet the conditions of The-
orem 3 with the same value of ε. Unlike the conditions for
monotonicity, the stability-related conditions are posed as
hard constraints in Corollary 5. Thus when λ = 1, the
formulation in Corollary 5 returns a stabilizing controller
which renders the closed-loop system as close to the family
of transfer functions introduced in Theorem 1 as possible.
Using smaller values of λ compromises the monotonicity
of the closed-loop in favor of a faster response. As shown
in Section 5, Corollary 5 is not only beneficial for infeasible
problems, but it is also useful for designing controllers
of lower order than what is possible with Corollary 4,
provided that one can accept a near-monotonic response.

Some additional remarks are in order. First, although
our requirement that the closed-loop denominator should
be monic implies that g0 = 1, f = 0 could still be
admissible. In Corollary 4, we can avoid this possibility
by adding the condition 1TT (b)f ≥ ε2 for some (small)
positive constant ε2. The same condition avoids trivial
solutions in Corollary 5, but may come at some degree of

conservatism since positivity of b̂ is not enforced. Although
we have never encountered unbounded solutions in our
experiments, we suggest to also include upper and lower
bounds on the coefficient vectors f and g. Finally, our
conditions guarantee that the closed-loop transfer function
is Schur, but they do not guarantee asymptic stability of
the controller itself. If one wishes to consider only stable
compensators, then one can simply add the condition

l∑
k=1

|gk| ≤ 1− ε3 (15)

for some positive constant ε3. The corresponding design
problems are still convex optimization problems.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4758



4.2 Closed-loop systems with direct feedthrough

If both the plant and the controller transfer functions
have direct feedthroughs, then so will the closed-loop
transfer function. While Corollary 4 and 5 still hold in this
case, one can argue that they are based on unnecessarily
conservative conditions for positivity of Cs in Theorem 3.

Indeed, if b̂0 = b0f0 ≥ 0 would be fixed, then we could

replace the requirement b̂ ≥ 0 with b̂− âb̂0 ≥ 0 and still get
linear conditions for positivity. However, it is difficult to fix
f0 without limiting the degrees of freedom in the design.
Since it is the only one parameter that breaks convexity,
it is feasible to make a one-parameter search over f0 and
evaluate the optimal performance for each f0 by solving a
convex problem. Since the condition that Â(z) be monic
implies that g0 = 1−b0f0, the controllers will be proper for
all values of f0 6= 1/b0, non-trivial for f0 6= 0 and Cohn’s
criterion for stability of the controller transfer function

l∑
k=1

|gk| ≤ |g0| − ε3 = |1− b0f0| − ε3

is convex for all fixed values of f0.

5. NUMERICAL EXAMPLES

In this section, we present several numerical examples
which demonstrate the effectiveness of Corollaries 4 and
5. The first two examples are feasible with regard to
Corollary 4, while Example 3 is not. There, we instead
use Corollary 5 to design a controller resulting in a closed-
loop behavior having most similar characteristics to the
desired traits. Finally, Example 4 is provided to indicate
how Corollary 5 can result in controllers with much lower
order than what is feasible using Corollary 4. Finally the
trade-off that exists in Corollary 5 between closed-loop
near-monotonic behavior and high decay rate is studied.

Example 1. Consider the second-order unstable system

H(z) =
−z2

z2 + 2z + 2
with an oscillatory impulse response. Corollary 4 with
l = 2 results in the following controller

C(z) =
9.68z2 + 17.37z + 17.37

8.68z2
(16)

which stabilizes the system and renders the closed-loop
step response monotonic as shown in Figure 1.

Example 2. Consider the LTI system

H(z) =
z2 − 0.4z + 1.25

(z − 1.7)(z2 + 0.4z + 0.29)

in Darbha and Bhattacharyya (2002), a more general three
degree of freedom controller was used to render the closed-
loop step response monotonic. However using Corollary
4 with l = 2, a simpler controller of lower order and
with a faster step response is found. Its closed-loop step
response is shown in Figure 2. For sake of comparison,
the step response of the closed-loop system under the
controller designed in Darbha and Bhattacharyya (2002)
is also plotted in the same figure. A static pre-filter was
used to equalize the steady state gains in this experiment.

Example 3. Consider the first-order LTI system

H(z) =
z − 2

2z − 2
.

According to the necessary conditions in Darbha and
Bhattacharyya (2002), it is impossible to stabilize this
system and ensure a monotonic step response. However
using Corollary 5 with λ = 1, we find a stabilizing
controller with a near-monotonic behavior. Increasing the
emphasis on the decay rate leads to a faster response, but
also a more pronounced undershoot. To avoid this effect,
we consider controllers of higher order. The closed-loop
step responses for controller orders l ∈ {2, 4, 6} are shown
in Figure 3. Here, to avoid tuning of λ for each value of l,
we have instead increased the value of ε to 0.75. Note that
a high value of ε serves as a proxy for ρ̄ since the stability
constraint is effectively imposing that

∑n+1
k=1 |âk| ≤ 1− ε.

Example 4. Consider the second-order LTI system

H(z) =
1

z2 − 0.25
.

This is a trivial problem with l = 0. However to also
ensure error-free tracking of a step input, we enforce an
integrator in the controller by virtually adding a plant
pole at unity. We then design a controller for the extended
system comprising the plant and the integrator dynamics
in series. This tracking problem turns out to be difficult
and was proven to be infeasible with PID controllers in
Mohsenizadeh et al. (2012). However using Corollary 4
with l = 14 finds a controller with the desired tracking
performance and a monotonic closed-loop step response;
see Figure 4. Now we consider the same problem with
Corollary 5 with l = 2 and λ = 1. Interestingly, the result-
ing closed-loop system does not satisfy the assumptions of
Theorem 1, but it still has a monotonic response as seen
in Figure 4. Both experiments used ε = 0.5.

Example 5. Consider the second-order LTI system

H(z) =
20z − 100

(10z − 8)(2z − 3)
.

According to (Darbha and Bhattacharyya, 2002), It is
impossible to stabilize this system and ensure a monotonic
step response. Like Example 3 however, we will use Corol-
lary 5 to find a second-order stabilizing controller with
a near-monotonic behavior. This time we investigate the
effect of λ in the controller design through the optimization
in Corollary 5. The results of simulating the closed-loop
step response using λ ∈ {0, 0.5, 1} are shown in Figure 5,
where the steady state gains are normalized for compari-
son. As can be deduced from Figure 5, choosing a smaller
value of λ in this example gives a faster response but with
greater undershoots and overshoots (as expected).

6. CONCLUSION

In this paper, we have developed a control design pro-
cedure which ensures asymptotic stability and monotonic
step response of the closed-loop system. The method con-
siders a convex subset of all stabilizing controllers of a
desired order, and uses linear programming to ensure that
the closed-loop impulse response is non-negative. However,
as discussed in Darbha and Bhattacharyya (2002), not
every closed-loop system can be rendered monotonic. In
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Fig. 1. Closed-loop step response in Example 1.
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Fig. 2. Step response of the closed-loop system in Example
2 with the controller designed using the method
from Darbha and Bhattacharyya (2002) in blue and
our design from Corollary 4 in red.
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Fig. 3. Step response of the closed-loop system in Example
3 using a controller design detailed in Corollary 5 for
different controller orders l.

addition, our synthesis conditions are only sufficient. To
deal with instances when Corollary 4 is infeasible, we have
also provided an alternative design methodology (Corol-
lary 5) which attempts to find a controller which makes the
closed-loop step response near-monotonic. The usefulness
of this technique was shown in the numerical examples.

REFERENCES

Ackermann, J. (1993). Robust control: Systems with
uncertain physical parameters. Springer Verlag.

Ackermann, J. (2012). Sampled-data control systems:
analysis and synthesis, robust system design. Springer
Science & Business Media.

Darbha, S. (2003). On the synthesis of controllers for
continuous time lti systems that achieve a non-negative

0 5 10 15 20 25
0

0.5

1

t

 

 

l=14

l=2

Fig. 4. Step responses of the system considered in Ex-
ample 4 in closed-loop using controllers designed by
Corollaries 4 and 5 with orders l = 14 and l = 2
respectively.

0 5 10 15 20 25 30

t

-2

-1

0

1

2

3

=1

=0.5

=0

Fig. 5. Step responses of the system in Example 5 in closed-
loop using controllers designed via Corollary 5 with
parameters λ = 0, λ = 0.5 and λ = 1.

impulse response. Automatica, 39(1), 159–165.
Darbha, S. and Bhattacharyya, S.P. (2002). Controller

synthesis for sign invariant impulse response. In Proceed-
ings of the 2002 American Control Conference (IEEE
Cat. No. CH37301), volume 2, 1055–1061.

Du, H., Hu, X., and Ma, C. (2019). A technique for de-
termining whether a linear system has a nondecreasing
step response. Circuits, Systems, and Signal Processing,
38(12), 5908–5919.

Feyzmahdavian, H.R., Charalambous, T., and Johansson,
M. (2014). Exponential stability of homogeneous pos-
itive systems of degree one with time-varying delays.
IEEE Transactions on Automatic Control, 59(6), 1594–
1599. doi:10.1109/TAC.2013.2292739.

Fujii, M. and Kubo, F. (1993). Buzano’s inequality and
bounds for roots of algebraic equations. Proceedings of
the American Mathematical Society, 117(2), 359–361.

Garone, E. and Ntogramatzidis, L. (2015). Linear matrix
inequalities for globally monotonic tracking control.
Automatica, 61, 173–177.

Liu, Y. and Bauer, P.H. (2009). On pole-zero patterns
of non-negative impulse response discrete-time systems
with complex poles and zeros. In 17th Mediterranean
Conference on Control and Automation, 1102–1107.

Liu, Y. and Bauer, P.H. (2008). Sufficient conditions
for non-negative impulse response of arbitrary-order
systems. In APCCAS 2008-2008 IEEE Asia Pacific
Conference on Circuits and Systems, 1410–1413. IEEE.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4760



Malik, W.A., Darbha, S., and Bhattacharyya, S. (2009).
On the transient control of linear time invariant systems.
In 2009 American Control Conference, 3142–3147.

Mohsenizadeh, N., Darbha, S., and Bhattacharyya, S.P.
(2012). Synthesis of digital pid controllers for discrete-
time systems with guaranteed non-overshooting tran-
sient response. In ASME 2011 Dynamic Systems and
Control Conference and Bath/ASME Symposium on
Fluid Power and Motion Control, 473–478.

Nurges, U. (2009). Reflection coefficients of polynomials
and stable polytopes. IEEE Transactions on Automatic
Control, 54(6), 1314–1318.

Schmid, R. and Ntogramatzidis, L. (2010). A unified
method for the design of nonovershooting linear mul-
tivariable state-feedback tracking controllers. Automat-
ica, 46(2), 312–321.

Schmid, R. and Ntogramatzidis, L. (2012). The design
of nonovershooting and nonundershooting multivariable
state feedback tracking controllers. Systems & Control
Letters, 61(6), 714–722.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4761


