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Abstract: This paper proposes a novel nonlinear model predictive control approach for
permanent magnet synchronous machines (PMSM). The optimization problem is formulated
as a field oriented economic model predictive control (FO-EMPC) problem and therefore a
target selector is not necessary. A dq-model of the PMSM with spherical voltage and current
constraints is taken into account. A terminal set and a terminal penalty are introduced to
mitigate stability and convergence issues with a short prediction horizon. The performance of
the proposed control scheme is demonstrated in a simulation study on a personal computer and
in a hardware-in-the-loop simulation, which show that the transition time is reduced by more
than one order of magnitude with respect to state-of-the-art approaches, especially when the
voltage constraint becomes active.
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1. INTRODUCTION

Electrification is one of the major trends in the automotive
sector. Therefore, electric drives play an increasingly im-
portant role within this industry. Due to their favourable
properties such as compact size and good efficiency, three-
phase permanent magnet synchronous machines (PMSM)
are widely used in various applications such as electric
or hybrid powertrains, but also electric power steering
and other actuators. High-performance torque control of
PMSMs is essential for these applications. Torque control
usually consists of two distinct parts: The first part is the
calculation of dq-current references from the torque refer-
ence. The second part is the feedback-control of currents.
Standard electric drives do not contain a torque sensor,
therefore the first part is carried out in open-loop, relying
on offline optimization, which ensures that the desired
torque is produced with minimum phase current amplitude
(Schröder, 2015). For the second part, the state-of-the-
art solution is classical field oriented control (CFOC),
which has been developed in the early 1970s and has
since then become standard in control of electric drives
(Schröder, 2015). It ensures high control performance with
moderate computational effort and it has a well-founded
theory. However, the handling of voltage constraints is not
straightforward and mainly based on heuristics, (Quang
and Dittrich, 2008).

? This research was supported by the German Federal Ministry for
Economic Affairs and Energy (BMWi) via eco4wind (0324125B) and
DyConPV (0324166B), and by DFG via Research Unit FOR 2401.

Model predictive control (MPC) is an optimization based
approach in which constraints are inherently considered
and handled explicitly. MPC has become popular since
1970 in the chemical process industry as a higher level
control concept with underlying linear controllers, e.g.
PID controllers. Recent advances in embedded computer
technology and in the field of real-time optimization,
(Kouzoupis et al., 2018), (Findeisen et al., 2018) and
(Diehl et al., 2005), have reduced the computation time
of MPC algorithms such that their application to control
electric machines has become feasible, see (Englert and
Graichen, 2018), (Riar et al., 2015) and (Zanelli et al.,
2019). Two fundamentally different MPC approaches have
been investigated for the current control of electric ma-
chines: MPC with a finite control set, see (Riar et al.,
2015) and with a continuous control set, see (Englert
and Graichen, 2018) and (Kisner and Konigorski, 2018).
MPC with a continuous control set is typically based on
a field oriented approach (FO-MPC) and the optimiza-
tion problem can be formulated as a nonlinear program
(NLP), which is typically solved with derivative based
algorithms such as a sequential quadratic programming
(SQP) scheme, see (Findeisen et al., 2018), (Graber, 2018)
and (Diehl et al., 2005).

In this paper, a field oriented economic model predictive
control (FO-EMPC) is proposed in which both parts of
torque control mentioned above are integrated in a single
one. The control problem is not split into a target selector
and a phase current controller, but the torque control
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Fig. 1. The rotating hexagon voltage constraint with
angular velocity ω and the approximating inner circle
in the dq-coordinate system. The blue corners are not
covered by the inner circle.

problem is solved directly. This approach allows for a
compact and flexible formulation by explicitly considering
the torque equation in the optimization problem. A direct
MPC approach with continuous control set is chosen which
is solved in simulation on a personal computer using the
software package CasADi (Andersson et al., 2018) with an
interior point method. For the hardware in the loop (HIL)
simulation a sequential convex quadratic programming
(SCQP) is used, which is included in the software package
acados (Verschueren et al., 2019).

The paper is organized as follows. In Section 2 the model
of the electric machine, the constraints and a state-of-the-
art CFOC are presented. Section 3 introduces the new
FO-EMPC design and shows this approach to mitigate
stability and convergence issues which occur when using a
short prediction horizon. In Section 4, simulation results
are presented and the control performance of FO-EMPC
is compared with CFOC. Finally, a hardware-in-the-loop
(HIL) simulation on dSPACE using the software package
acados is discussed. A brief summary and outlook is given
in Section 5.

2. MODEL AND CONSTRAINTS

This section presents the dynamical model of a PMSM and
the constraints that have to be taken into account by the
controller.

2.1 Electrical subsystem

The most common mathematical description of a PMSM
is based on an ordinary differential equation (ODE) with
the parameters ϕ(t) and ω(t), where ϕ(t) is the electrical
rotor angle and ω(t) describes the electrical rotor speed.
This formulation is named abc-model, due to the common
notation of the line currents il(t), with l ∈ {a, b, c}, and
respectively the line voltages ul(t), with l ∈ {a, b, c}, with
respect to ground. The ODE is nonlinear with respect
to the parameter ϕ(t), but linear in the line currents,
line voltages and speed. The nonlinear description can be
transformed with a diffeomorphism into an affine linear
ODE without parameter ϕ. The diffeomorphism T (ϕ(t)) :
R3 → R2 is named dq-transformation. This method is well
known, (Schröder, 2015; Quang and Dittrich, 2008), and

Fig. 2. The red ellipses show the region of feasible steady
states depending on the speed. The iso-torque lines on
two different levels are depicted in blue. The current
constraint is represented by the black dotted circle.

is considered throughout the paper. With this transforma-
tion, the following model of the PMSM is obtained:

ẋ = A(ω)x + Bu + f(ω), with (1)

A =

 −
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Ld
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0
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 0
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 ,
and with the associated nonlinear torque equation

τ(x) =
3

2
Np((Ld − Lp)xdxq + ψpmxq). (2)

Here x = (xd xq)
>

is the state vector (current vector),

u = (ud uq)
>

is the input vector (voltage vector). The
parameter ψpm is the permanent magnet flux linkage,Np is
the number of pole pairs, Ld and Lq are the dq-inductances
and R the resistance. The motor parameters are shown
in Table 1. Nonlinear effects such as magnetic saturation
and iron losses are neglected. The back electromotive force
(BEMF) is defined as:

Ldẋd +Rxd = ud + Lqωxq︸ ︷︷ ︸
ud,BEMF

, (3a)

Lqẋq +Rxq = uq − (Ldxd + ψpm)ω︸ ︷︷ ︸
uq,BEMF

. (3b)

The BEMF, which depends on the states x and the speed
ω, acts against the control voltage u.

2.2 Constraints

Typical constraints in PMSM control are the current
and voltage constraints and can be formulated as box
constraints in the abc-system. Hence, through the dq-
transformation, the box constraints are transformed into
a hexagonal constraints, which depends on the angle ϕ(t)
and rotates with the electrical rotor speed ω. Figure 1
shows the resulting voltage constraints in dq-coordinates.
In this paper the hexagon is approximated by an inner
circle and the associated set is defined as:

U :=

{
(ud, uq) : u2d + u2q ≤

1

3
U2
max

}
. (4)

Likewise, the set for the current is defined as

X :=
{

(xd, xq) : x2d + x2q ≤ X2
max

}
. (5)
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Fig. 3. Two different trajectories from starting point x0 to
the endpoint xe are pictured as black solid lines. The
dotted ellipses around the intermediate states (black
crosses) show the regions which are reachable in one
time step. The blue arrows indicate the behaviour of
the autonomous system caused by the BEMF and the
ohmic voltage drop.

Due to the voltage constraint, the set of steady states is
restricted, too. In fact, due to Equations (1) and (4), the
feasible steady states are bounded by an ellipse, which
depends on the speed ω:

(B−1(Ax + f))T (B−1(Ax + f)) ≤ 1

3
U2
max. (6)

The presented properties of the PMSM are summarized in
Figure 2. Regardless of the current constraint, the interior
of the red ellipses shows the reachable steady states at
various speed values ω. The iso-torque lines (2) on different
levels τ(x) are depicted in blue. It is shown that the set of
all achievable steady states are decreasing with increasing
speed and, consequently, a lower torque is reachable. The
current constraint (5) is represented as a black dotted
circle around the origin.

2.3 System analysis

This section analyses the system with main focus on transi-
tion time. The considered dq-model has a two dimensional
control input u ∈ R2, which generally allows to influence
transition time and the direction of the trajectory (loosely
speaking the eigenvalues and the eigenvectors of the au-
tonomous system) (Konigorski, 2011). The relationship
between transition time and direction is shown below. The
autonomous system u = 0 is not a conservative field, i.e.

∇× ẋ
∣∣
u=0
6= 0. (7)

Therefore, with the controlled constrained system, with
u ∈ U , the transition time from starting point x0 to the
endpoint xe depends on the chosen trajectory and, in turn,
the control sequence u(t).

In Figure 3, two different trajectories are shown. Trajec-
tory A goes through the interior of the ellipse and reaches
the endpoint at time TA. Trajectory B goes along the
boundaries of the ellipse and takes TB with TB > TA.
The dotted ellipses around the intermediate states (black
crosses) show each a region, which is reachable in one
time step Ts. Hence on trajectory B, only a small advance
per time unit in direction to xe is possible. The result is
caused by the BEMF, which is introduced in Section 2.1.
The blue arrows in Figure 3 indicate the behaviour of the

Table 1. Parameters of the PMSM

Parameter Value Unit

R 18.15 · 10−3 Ω

Ld 107 · 10−6 H

Lq 150 · 10−6 H

ψpm 13.8 · 10−3 Vs

Np 5 -

Umax 48 V

Xmax 155 A

ωmax 4000 s−1

Fig. 4. FOC with an overlaying field weakening controller
in blue. The first lookup table (LUT) includes the
MTPA function. The second LUT describes the allo-
cation from current in d-direction and desired torque
to the current in q-direction.

autonomous system caused by the BEMF and the Ohmic
voltage drop.

2.4 Current reference calculation

In state-of-the-art PMSM control the current references
are calculated offline. The optimal set points xref,l, l ∈
{d, q} with minimized copper losses for the unconstrained
system are given by the maximum torque per ampere
(MTPA) function, (see (Schröder, 2015)), which is calcu-
lated offline. In case of an active voltage constraint (4) an
overlaying field weakening controller reduces the current
reference in the d-direction such that the current reference
xref,d is moved into the set of reachable steady states (red
ellipse in Figure 2). The current reference in the q-direction
xref,q is calculated from Equation (2) with desired torque
τDes and d-axis current xd replaced by their reference
values. This concept is inspired by (Schröder, 2015) and
depicted in Figure 4. The field weakening controller is dis-
played in blue. For the sake of clarity, current constraints
are not considered.

2.5 Classical FOC

This section presents a classical FOC with two PI-
controllers for xd and xq, respectively. The PI-controller
feedback policy is described in the following Equation,

uPI,l = kP,lel(t) + kI,l

∫ t

0

el(t)dt, l ∈ {d, q}, (8)

with the voltage uPI,l, l ∈ {d, q} as output and error
el(t) = (xref,l−xl), l ∈ {d, q} as input. The electrical rotor
speed ω is treated as a time varying parameter. For brevity,
anti-wind up is not described here. Feedback decoupling is
used to compensate the coupling between xd and xq in (1):
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Fig. 5. Classical MPC in comparison to an economic MPC
(see (Tran et al., 2014)).

ud = uPI,d − Lqωxq︸ ︷︷ ︸
decoupling of xq

, (9a)

uq = uPI,q + ω(Ldxd + ψpm).︸ ︷︷ ︸
decoupling of xd and the constant part

(9b)

This results in two decoupled first order ODEs for xd and
xq with controller voltage uPI,d and uPI,q as input.

ẋl = − R
Ll
xl + uPI,l, l ∈ {d, q}. (10)

Note that, in case of a parameter mismatch, the system
is not fully decoupled, which has negative impacts on
the performance and stability cannot be easily guaranteed
(Schröder, 2015; Quang and Dittrich, 2008).

3. PROPOSED MPC DESIGN

In this section, first, standard concepts on classical model
predictive control and economic model predictive control
are briefly reviewed and then a novel field oriented eco-
nomic model predictive control (FO-EMPC) formulation
is presented. Especially in the field of MPC for electric
motors, two main approaches are reported in the liter-
ature. In the first approach a finite control set is used,
i.e. the controller output can only have a finite number of
values, namely the eight inverter states (Riar et al., 2015).
The second approach uses a continuous control set. In this
case, the controller outputs are the line voltages, which are
generated by pulse width modulation (PWM). Hence, the
control is u ∈ U with U ⊂ Rnu , where nu is the dimension
of the control inputs. Throughout the paper, a continuous
control set based on the presented dq-coordinates is used.

3.1 Comparison between Classical Model Predictive Control
and Economic Model Predictive Control

In the current practice, classical MPC with least squares
cost is widely used. Desired set points xset and uset

are determined by a target selector using steady state
economic optimization. These set points are included in
the optimal control problem (OCP) and the cost function
is zero at the desired set point and positive elsewhere.
The cost function in the FO-EMPC does not consider
a set point and is not necessarily zero at the steady
state. Therefore, a target selector or a precomputed lookup

Fig. 6. Stage cost l(xk, sk) (11a) with terminal constraints
(11g) in black and 5 Nm iso torque line in blue.

table is not necessary anymore. Figure 5 depicts classical
MPC in comparison to economic MPC. Figure 6 gives an
overview and depicts the related cost functions.

3.2 FO-EMPC approach for PMSMs

The proposed FO-EMPC is based on a discrete time
formulation, which are presented in Section 2. The stage
cost is l(xk, sk) = x>k Qxk + wsk and respective for
the terminal costs lN (xN , sN ). Where sk is the L1-slack
variable at stage k and w is the weight of the slack variable.
The L1-penalty sk enforces the desired torque τDes and due
to the cost term x>k Qxk the desired torque is enforced at
minimum phase currents.
The resulting optimal control problem (OCP) reads:

minimize
U,X,s

βl(xN , sN ) +

N−1∑
k=1

l(xk, sk) (11a)

subject to

xk+1 = Adxk + Bduk + fd, k = 0, ..., N−1, (11b)

0 = x0 − x(0), (11c)

−sk ≤ τDes − τ(xk) ≤ sk, k = 1, ..., N, (11d)

u>k uk ≤
1

3
U2
max, k = 0, ..., N−1, (11e)

x>k xk ≤ X2
max, k = 1, ..., N, (11f)

(B−1(AxN + f))>(B−1(AxN + f)) ≤ 1

3
U2
max. (11g)

Here, s =
[
s>0 ... s>N

]>
represents the slack variable

sequence. The electrical rotor speed ω is regarded as
a parameter. The torque τ(xk) is not measured and is
calculated according to Equation (2). In Equation (11a)
the controls uk are not weighted, which leads to a high
bandwidth and a fast control performance. In case of too
high noise amplification, the bandwidth can be reduced
by weighting the controller gradients ∆uk = uk+1 −
uk. The matrices Ad, Bd and the vector fd in (11b)
define a discrete time representation of the dq-system
(1). The ODE is discretized with Heun’s method and
rewritten in an explicit matrix equation, which depends
on ω. Consequently, the discrete time description of the
dq-system is given by:
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Table 2. MPC parameter for CasADi and
acados

.
Parameter Value (CasADi) Value (acados) Unit

Q

[
1 0
0 1

] [
10−3 0

0 10−3

]
A−2

w 109 103 Nm−1

β 100 1 -

Umax 48 48 V

τDes 5 5 Nm

ω 4000 4000 s−1

THorizon 250 · 10−6 500 · 10−6 s

Ts 125 · 10−6 250 · 10−6 s

N 2 1 -

xk+1 = Ad(ω)xk + Bd(ω)uk + fd(ω), (12)

with Ad(ω) = I + Ts

(
I +

Ts
2
A(ω)

)
A(ω),

Bd(ω) = Ts

(
I +

Ts
2
A(ω)

)
B,

fd(ω) = Ts

(
I +

Ts
2
A(ω)

)
f(ω).

Note that in (11d) the torque difference τDes − τ(x) is
penalized with an L1-penalty |τDes − τ(x)| instead of a
quadratic term (τDes − τ(x))2. The gradient of (τDes −
τ(x))2 is small around τDes, which would result in a
significant torque offset. Theoretically, there is also a
torque offset with the L1-penalty. However, with a proper
choice of the weights it is negligibly small in real situations.
The term x>Qx, which is part of the objective function, is
quite different from an FO-MPC formulation, e.g. (Englert
and Graichen, 2018) and (Kisner and Konigorski, 2018),
due to the omitted set points, see Figure 5. Furthermore,
the OCP is nonconvex due to the non-linearity introduced
by τ(x). Only a short prediction horizon can be used
due to limited computation power available in embedded
systems. However, a short horizon can cause convergence
and stability problems. These issues can be mitigated
with an appropriate terminal weight β in Equation (11a)
and a terminal set based on the time continuous system
description (11g). This approach is in the spirit of (Fagiano
and Teel, 2012) and, in particular the terminal set is equal
to the set of reachable steady states as shown in Equation
(6). The objective function and terminal set is illustrated
in Figure 6. The parameters are given in Table 2. The
iso-torque line for τDes = 5 Nm is displayed in blue, the
boarder of the terminal set is represented in black.

4. SIMULATION

The performance of the proposed FO-EMPC is illustrated
and a comparison between the FO-EMPC and the CFOC
is shown in this section. Table 2 lists the optimization
parameters, which are tailored to the specific numerical
algorithms used in the paper. The software package CasADi
is used with IPOPT, (Wächter and Biegler, 2006), as a
nonlinear program solver with an exact Hessian matrix
for simulation on a personal computer (Intel XEON E3-
1505M v5). On dSPACE, the software package acados
with HPIPM is used, (Frison, 2017) in combination with
an SCQP scheme.

Fig. 7. The trajectories in the dq-space for three different
formulation a)− c). a): In red the optimization prob-
lem according to (11). b): In blue without terminal set
(11g) and c): in black with β = 1, horizon N = 200
and without terminal set. In cyan the 0 Nm and in
green the 5 Nm iso-torque line. The boundaries of the
set of steady states at ω = 4000 s−1 are displayed in
black.

4.1 Result of the proposed FO-EMPC formulation

In this section, a comparison between three different
formulations a)− c) is shown. Figure 7 shows the dq-plane
with the terminal set (11g) in the interior of the black solid
ellipse. The 0 Nm and 5 Nm iso-torque lines are displayed
in cyan and green. The associated torque time series is
displayed in Figure 8. In this test case, the electrical rotor
speed is constant at ω = 4000 s−1 and the desired torque
rises from 0 Nm to 5 Nm. a): The red solid line shows
the trajectory according to optimization problem (11) with
terminal cost weight β = 100. The trajectory reaches the
desired torque level and the terminal set and, at the same
time, the terminal penalty leads to convergence of the
states to a steady state. b): The blue trajectory is obtained
with the same optimization problem as before, without
terminal set (11g). In this case, the trajectory does not
reach the desired torque and the state does not converge
to a steady state. c): According to problem (11a), with a
horizon N = 200, β = 1 and without terminal set, the
black solid line shows the resulting trajectory. Due to the
long horizon, the states converge to a steady state, but the
computation effort is much higher than with the proposed
optimal control formulation. Furthermore, it is shown with
a long horizon in case c) only a slightly shorter transition
time is obtained in comparison to case a).

4.2 Comparison CFOC with FO-EMPC

In this section, a comparison between FO-EMPC and FOC
is presented. In the simulation study, the desired torque is
5 Nm at a constant speed ω = 4000 s−1. In Figure 9, the
red solid line shows the torque step response of the FO-
EMPC and the blue solid line of FOC. The desired torque
rises from 0 Nm to 5 Nm and is depicted in green. As shown
in Figure 10, the current trajectory of the FOC close to
the boundary of the set of reachable steady states (black
ellipse) and therefore the FOC needs to overcome a higher
BEMF. The optimized trajectory of the FO-EMPC goes
through the interior of the black ellipse, where the BEMF
has a lower impact, as discussed in detail in Section 2.3.
Regardless of the different trajectories, the same steady
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Fig. 8. The time series for three different formulations
a)−c). a): In red the optimization problem according
to (11) with respect to Table 2. b): In blue without
terminal set (11g) and c): in black with β = 1, horizon
N = 200 and without terminal set. The desired torque
is displayed with a green dotted line.

Fig. 9. The time series of the step response from 0 Nm to 5
Nm. MPC response in red and FOC response in blue.
The desired torque is displayed with a green dotted
line.

Fig. 10. Left: The trajectory of the step response in the dq-
plane from 0 Nm (solid cyan line) to 5 Nm (solid green
line). The trajectory of the FO-EMPC is displayed in
red and in blue from the FOC. The desired torque is
displayed as green dotted line. Right: The associated
voltage sequence in the dq-coordinate system from the
FO-EMPC in red and the FOC in blue. The circular
voltage constraint is shown in black (4).

state is reached with both approaches. On the right side
of Figure 10, the voltage trajectories obtained with FO-
EMPC and FOC are depicted. Neither the FO-EMPC nor
the FOC violate the voltage constraints.

Fig. 11. Left: Step response in the dq-plane from 0
Nm (solid cyan line) to 5 Nm (solid green line) on
dSPACE. The trajectory obtained with the proposed
FO-EMPC is displayed in red and the desired torque
as green dotted line. Right: In red the associated
voltage sequence in the dq-coordinate system from
the proposed FO-EMPC on dSPACE. The circular
voltage constraint (4) is shown in black.

4.3 Hardware-in-the-loop (HIL) simulation

In this section, a HIL simulation of the proposed FO-
EMPC is presented. The FO-EMPC is deployed on the
rapid prototyping system dSPACE. In order to meet the
challenging sampling time, typically required to control an
electrical motor, the high performance software package
acados (Verschueren et al., 2019) with the solver HPIPM
is used which targets MPC applications as this one. A
sequential convex quadratic programming scheme (SCQP)
is used (Verschueren et al., 2016) in order to exploit
convexity of the quadratic constraints (11e) and (11g)
obtain a better Hessian approximation. Furthermore, in
order to reduce the computational effort, a real-time
iteration (RTI) scheme, (see (Diehl et al., 2005)), is used
based on quadratic subproblems. Due to the fact that the
RTI exploits solutions to QPs that locally approximate
(11), only linear constraints can be satisfied exactly. On
the contrary, nonlinear constraints, such as (11e), are only
satisfied “in the limit”, as the system state converges to
a steady state. As the sampling time is chosen relatively
high a multiple shooting method with an implicit Runge
Kutta first order method (IRK1) is used, due to the
larger stability region in comparison to explicit methods.
In Figure 11, the closed-loop behaviour obtained with a
desired torque step from 0 Nm to 5 Nm together with the
associated control sequence are shown. On the left side,
the resulting current trajectory is shown. The trajectory
is similar to the simulated trajectory in CasADi from
Section 4.2, but closer to the boundaries (black ellipse)
than the simulated one with CasADi. The steady state at
the end is different, too, which results in a small torque
offset (see Figure 12). The different behaviour between
acados and CasADi is caused by the already mentioned
methods in order to reduce the computation time. On the
right side of Figure 11 the associated control trajectory is
depicted. The circular voltage constraints (black solid line)
are not satisfied in every time step, due to the inexactness
introduced by the RTI scheme. In Figure 12 a comparison
is given between FOC from Section 4.2 and the real-time
implementation of FO-EMPC. The computation time on
dSPACE DS1007 is shown in Figure 13, which is between
137 and 225 µs and hence less than the required sample
time Ts = 250 µs displayed as red solid line in Figure 13.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9219



Fig. 12. Step response from 0 Nm to 5 Nm on dSPACE.
The FO-EMPC response is figured in red. The desired
torque is displayed as green dotted line. The blue solid
line is the torque response of the FOC from Section
4.2.

Fig. 13. The computation times on dSPACE associated
with Figure 11 and 12. The red solid line shows the
nominal sample time Ts = 250 µs.

In the HIL simulation the current constraints (11f) are
neglected, because the current constraint is always inactive
at speed ω = 4000 s−1.

5. CONCLUSIONS AND OUTLOOK

This paper presents an economic model predictive torque
control which uses the set of steady states as terminal set
in order to drastically reduce the prediction horizon and
hence improve the computation times. It is shown that
the performance is significantly better in comparison to
classical FOC, leading to a settling time 25 times shorter
than FOC. The proposed approach allows a compact and
flexible formulation without precomputed set points. Fur-
ther research will target the combination of the proposed
approach with a high gain observer to reach offset free
control and the consideration of current-dependency of the
inductance in the FO-EMPC. Furthermore, the FO-EMPC
will be tested with the the rapid prototyping system
dSPACE using the software package acados (Verschueren
et al., 2019) on test bench in order to analyse its behaviour
on real experiments.
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