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Abstract: This paper considers the distributed solution of Mixed-Integer Linear Programming
(MILP) problems, a class of problems which is of interest, e.g., in optimization-based control
of networked systems involving hybrid dynamics. For a larger number of subsystems, the
high combinatorial complexity arising from the integer variables usually prohibits the use of
centralized solution schemes, and thus requires distributed computational approaches. The
proposed approach is inspired by results based on the Shapley-Folkman-Starr theorem, but
it relaxes some conservative assumptions in order to enhance the computational efficiency.
Numerical experiments for different MILP problems confirm the advantage of the proposed
method with respect to computation times.
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1. INTRODUCTION

In optimization-based control of networked systems, the
system size often implies the use of distributed computa-
tional approaches. If, in addition, the problem formulation
involves logic conditions, the problem class of distributed
mixed-integer programming (MIP) arises naturally. Logic
conditions may, e.g., stem from hybrid dynamics (possibly
the assignment of different dynamics to different regions
of the state space, see Groß and Stursberg (2013), or
from the modeling of resource constraints involving inte-
ger variables, see Liu and Stursberg (2019a). Since MIP
problems belong to the complexity class NP-hard, already
the solution of optimal control problems for single hybrid
systems require dedicated encoding schemes, see e.g. Liu
and Stursberg (2018, 2019b). For control problems of net-
worked systems comprising several interacting or coupled
subsystems, this is even more true. Instead of central-
ized solutions for the complete network, the distributed
solution with appropriate means to exchange information
between the subproblems is a reasonable choice.

To motivate the optimization problem under study in this
paper, imagine the following control problem: Let for a
set of ns subsystems the dynamics of any subsystem be
specified as discrete-time piecewise affine system, where
the assignment of the affine dynamics to polytopic regions
can be achieved by mixed-integer formulations, as e.g.
described in Bemporad and Morari (1999). Assume further
that coupling constraints among the subsystems have
been formulated for some continuous or integer variables
formulating, e.g., that the system state of only a certain
number of subsystems may be contained in a polytopic
region at any time. If, in addition, the local cost functions
of all subsystems are formulated in linear form, the global
problem (containing all subproblems) can be written as
MILP task according to:

min
x1,··· ,xns

∑

i∈N

cTi xi (1)

s.t.:
∑

i∈N

Aixi ≤ b (2)

xi ∈ Xi ⊂ R
ri × Z

zi , ∀i ∈ N. (3)

In here, the vector xi contains all mixed-integer variables
assigned to the subsystem with index i ∈ N = {1, . . . , ns},
i.e., it contains the continuous states and inputs as well
as discrete states and inputs (and possible auxiliary vari-
ables) over the complete set of considered discrete points of
time. Furthermore, ri and zi are the number of continuous
and discrete components of xi, while ci ∈ R

ri+zi , Ai ∈
R

m×(ri+zi) and b ∈ R
m×1 denote matrices of appropriate

dimension. The mixed-integer polyhedral set:

Xi = {xi ∈ R
ri × Z

zi |Dixi ≤ di}, (4)

in (3) denotes local constraints of subsystem i, e.g.,
the equations and inequalities obtained by encoding the
local hybrid dynamics. In contrast, the constraints (2)
model the coupling among the subsystems – it is worth
emphasizing these constraints can represent coupling of
states, of inputs, or a mixture of both; The number m of
these coupling constraints will play an important role in

the further description. This uses J :=
∑
i∈N

cTi xi to refer

to the costs of problem (1), as well as x∗ = [x∗
1; · · · ;x

∗
ns
]

to denote the optimal solution of (1), and J(x∗) for the
optimal cost.

Strategies for solving the problem (1) in distributed form
have been considered in several publications before, see e.g.
Vujanic et al. (2014); Falsone et al. (2019); Camisa et al.
(2018); Vujanic et al. (2016) and Camisa and Notarstefano
(2019). Most of this work, which is briefly summarized
in the following, is based on the Shapley-Folkman-Starr
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theorem, see Aubin and Ekeland (1976). The key aspect
of this theorem is that the vector sum of a large number of
non-convex sets tends to be convex, since any vector in its
convex hull can be closely approximated by a vector in the
non-convex set. As a consequence, the duality gap between
the non-convex problem (1) and its dual problem turns out
to be relatively small and can often be shown to diminish
when the number of subsystems increases (see Chapter
5.7.1 in Bertsekas (2009) for more details). Thus when the
mixed-integer set Xi in (1) is replaced by a real-valued
set Conv(Xi), denoting the convex hull of all points in
Xi, then, the MILP problem (1) can be cast into a Linear
Programming (LP) problem:

min
x1,··· ,xns

∑

i∈N

cTi xi (5)

s.t.:
∑

i∈N

Aixi ≤ b

xi ∈ Conv(Xi), xi ∈ R
ri+zi , ∀i ∈ N,

by dropping the integrality constraint of all variables
in xi, i.e., xi ∈ R

ri+zi . It must be emphasized that
Conv(Xi) does not coincide with the set R(Xi) = {xi ∈
R

ri+zi |Dixi ≤ di}, which is obtained by relaxing the inte-
grality constraints to intervals in Xi – in fact, the former
is always tighter, see Geoffrion (1974). Furthermore, it
is well known that, if the LP problem (5) has a unique
optimal solution, then it must be attained in a vertex of
the feasible set. By using x̄∗ = [x̄∗

1, · · · , x̄
∗
ns
] to denote the

unique optimal solution of (5), the following relation is
proposed according to the Shapley-Folkman-Starr theorem
in Vujanic et al. (2014):

Theorem 1. In x̄∗, a partitioningN = N1∪N2, |N1| ≥ ns−
m − 1, of the subsystems can be determined, such that
the local solution x̄∗

i in x̄∗ is attained at the vertex of
Conv(Xi) for all i ∈ N1.

Furthermore, as all vertices of Conv(Xi) are also located
in the mixed-integer set Xi, the local solution x̄∗

i is also
in Xi, ∀i ∈ N1, although subject to a real-valued set in
(5). In case that a large number of subsystems is involved
in (1), but only a few coupling constraints (2) need to
be considered, i.e., ns ≫ m, Theorem 1 implies that the
majority of the subsystems can already determine their
local feasible solutions of MILP problem (1) through the
solution of the LP problem (5).

Thus, the authors in Vujanic et al. (2014) introduced
a method to obtain local feasibility of the remaining
|N2| subsystems, while maintaining the satisfaction of the
coupling constraints (2). Meanwhile, due to the convexity
of problem (5), the dual decomposition of (5) (by dualizing
the coupling constraints (2) with a multiplier λ ∈ R

1×m)
has also been used to realize a distributed computation of
(5) involving the sub-gradient method, see Anstreicher and
Wolsey (2009). However, this method faces the following
drawbacks, limiting its application:

(1) the condition Aixi ≥ 0, ∀xi ∈ Xi, ∀i ∈ N is
required in (1), in order to guarantee the success of
the computation for the |N2| subsystems;

(2) the convergence rate towards x̄∗
i by employing the

sub-gradient method is extremely slow (mainly due
to the vanishing step size in each iteration).

Facing these drawbacks, a new relation between (1) and
(5) was established in Vujanic et al. (2016):

Theorem 2. If (5) and its dual problem (obtained by
dualizing the coupling constraints (2)) have a unique
optimal solution x̄∗ and λ̄∗, then the local solutions
obtained by solving the following local problems

min
xi∈Xi

(cTi + λ̄∗Ai)xi (6)

for all ns subsystems, differ for at most m+1 subsystems
with the optimal solution x̄∗ of problem (5).

This enables each subsystem i to solve problem (6) locally,
based on the dual optimum λ̄∗. The resulting local solution
satisfies Xi for all i ∈ N , but may eventually violate
the coupling constraint (2). Accordingly, the authors in
Vujanic et al. (2016) tightened the constraints in (2) in
advance, and determined the dual optimum of the substi-
tute problem. Through this approach, the local solutions
determined from (6) based on the new dual optimum,
only violate the tightened coupling constraint, but not the
original one – thus, they constitute a feasible candidate of
(1). Here, the condition on Aixi ≥ 0, ∀xi ∈ Xi, ∀i ∈ N is
relaxed, but the following significant drawbacks still exist:

(1) the convergence rate towards the dual optimum λ̄∗

when employing the sub-gradient method is as slow
as the one towards x̄∗

i ;
(2) the problem (5) must have a feasible solution af-

ter tightening the coupling constraints (2), but the
tightening scheme is quite conservative, since each
coupling constraint with index j is tightened by:

(m+ 1) ·max
i∈N

( max
xi∈Xi

Ai(j, :)xi − min
xi∈Xi

Ai(j, :)xi),

(7)

resulting in a substitute constraint which is hard to
satisfy.

Thereafter, Falsone et al. (2019) proposed an improved
sub-gradient method, aiming at reducing the conservative-
ness caused by the tightening. In the work of Camisa et al.
(2018) and Camisa and Notarstefano (2019), the authors
employed the primal decomposition method instead of the
dual one for the solution of (5), in order to provide a finite-
time suboptimality bound.

Obviously, the common drawback of the work above is
the slow convergence rate towards either x̄∗

i , or λ̄∗ when
employing the sub-gradient method. In addition, require-
ments such as Aixi ≥ 0, ∀xi ∈ Xi, ∀i ∈ N , or the feasi-
bility of (5) with tightened coupling constraints, further
limit the applicability of these methods.

Thus, this paper proposes a novel distributed solution
scheme aiming at overcoming these issues. The main idea
of the proposed method is still based on the Shapley-
Folkman-Starr theorem – but unlike the existing methods
in which the theorem is employed to directly determine a
feasible candidate of (1), here it is applied to iteratively
improve feasible candidates for the solution of (1), until
the global optimum (or at least a sub-optimum) is found.
We show that the conservative assumptions mentioned
above are relaxed in the proposed approach, and that the
computations can be accelerated.

In the next section, the proposed distributed solution
of (1) is introduced and discussed in detail. Then, the
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procedure is tested on various MILP problems in Sec. 3
in order to illustrate its efficiency. The paper concludes
with a discussion and an outlook in Sec. 4.

2. THE DISTRIBUTED SOLUTION

The step of finding a first feasible candidate of an MIP
problem usually constitutes the first phase of solution in
most of the existing solvers, typically incurring a high cost
function value. Only after a certain number of iterations,
established search strategies, like branch-and-bound, or
branch-and-cut algorithms, the quality of the candidate
improves. Specifically for MILP problems according to (1),
many tests and applications have shown that – even if the
problem is large – the determination of the first feasible
candidate is typically much faster than the process of
converging to the optimal one. As an example, for the
electric vehicle charging problem considered in Vujanic
et al. (2016); Falsone et al. (2019), the determination of
the globally optimal solution needs over 6 hours, but the
first feasible candidate was found in less than one second.

Thus, by assuming that a first feasible candidate of (1) is

on hand and denoted by xf = [xf
1 ; · · · ;x

f
ns
], the main task

of the algorithm to be proposed for distributed solution is
to improve xf until the global optimum (or a value close
to it) is found. Recall that, when the standard branch-and-
bound method is applied to improve xf , it usually keeps
branching on the integer variables (leading to nodes). This
process, however, requires a heuristics on the priority of
the nodes to be considered first for branching. If the
heuristics is not efficient, this causes a large amount of
meaningless computation, e.g. when the new nodes are
infeasible, or worse than xf . It also requires to store
a large amount of data. Here instead, search directions
for continuous cost improvements in any iteration are
proposed.

2.1 Improving xf by the Sub-Gradient Method

The method first starts with determining a new coupling
constraint of (1) based on xf , and taking the form:

∑

i∈N

Aixi ≤ bf , with bf =
∑

i∈N

Aix
f
i . (8)

Since xf is a feasible candidate of (1), the vector bf must
satisfy:

bf ≤ b. (9)

Obviously, this implies that (8) is a tighter constraint
compared to the original one. Now, by replacing (2)
with (8) in problem (1), the following MILP problem is
obtained:

min
x1,··· ,xns

∑

i∈N

cTi xi (10)

s.t.:
∑

i∈N

Aixi ≤ bf

xi ∈ Xi, xi ∈ R
ri × Z

zi , ∀i ∈ N.

A similar MILP problem with tightened coupling con-
straint was also used in Vujanic et al. (2016), but there,
the existence of a feasible solution of the tightened problem
was only assumed, while the feasibility of (10) here always

holds, since xf is feasible. Now, by replacing the mixed-
integer set Xi in (10) with the convexified set Conv(Xi),
an LP problem is obtained:

min
x1,··· ,xns

∑

i∈N

cTi xi (11)

s.t.:
∑

i∈N

Aixi ≤ bf

xi ∈ Conv(Xi), xi ∈ R
ri+zi , ∀i ∈ N.

Its dual problem (obtained from dualizing the coupling
constraint (8)), has the form:

sup
λ

−λbf +
∑

i∈N

min
xi∈Conv(Xi)

(cTi + λAi)xi (12)

s.t.: λ ≥ 0.

Here, x̄∗,f = [x̄∗,f
1 ; · · · ; x̄∗,f

ns
] and λ̄∗,f denote the optimal

solution of (11) and (12).

Assumption 1. Both problems (11) and (12) have unique
optimal solutions x̄∗,f and λ̄∗,f .

Note that this assumption is typically not conservative,
since even for degenerate cases, in which this assumption
may be violated, one can avoid this situation by introduc-
ing small perturbations to the cost or constraints in (11),
as indicated in Vujanic et al. (2016).

For the series of MILP and LP problems introduced in
the last two sections, let their optimal costs be compared:
By using J(x∗), J(x̄∗), J(x∗,f ), and J(x̄∗,f ) to represent
the optimal costs of the problems (1), (5), (10), and (11)
respectively, as well as J(xf ) for the global costs of xf ,
the following relations can be established:

Theorem 3. For a given xf , it applies that:

J(x̄∗) ≤ J(x∗) ≤ J(x∗,f ) ≤ J(xf ), (13)

J(x̄∗) ≤ J(x̄∗,f ) ≤ J(x∗,f ). (14)

Proof. The first inequality (from left to right) in (13)
follows from the relaxed integrality constraint in (5) com-
pared to (1); the second inequality in (13) follows from
the tighter coupling constraint in (10) compared to (1);
the last inequality in (13) follows from the fact that xf

represents a feasible candidate of (10) only, but not neces-
sarily the optimal one; the first inequality in (14) is implied
by the tighter coupling constraint in (11) compared to
(5); the second inequality in (14) results from the relaxed
integrality constraint in (11) as opposed to (10). ✷

For the objective of improving xf the relations listed in
Theorem 3 point into useful direction: firstly, it can be
noticed that J(x∗) and J(x̄∗,f ) are both lower than J(xf ),
and the two values are bounded by the same lower bound
J(x̄∗) and the upper bound J(x∗,f ). This indicates that
x∗ and x̄∗,f are leading to similar global costs, which are
lower than J(xf ). Then, since:

• x∗ is the global optimum of (1), which defines the
best improved candidate one can find for xf ;

• and x̄∗,f is the global optimum of the LP problem
(11), which may not satisfy the local constraint Xi

(and thus may not be feasible for (1)),

it is straightforward to assume that a feasible candidate of
(1) being located close to x̄∗,f will attain a similar global
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Algorithm 1 Distributed computation of x̄∗,f

1: Initialization: ρ = 1, λ[ρ] = 0, xf , Flag = 0;
2: while ρ ≤ ρmax and Flag = 0 do
3: for i = 1 : ns do

4: x
[λ[ρ]]
i := argmin

xi∈Xi

(cTi + λ[ρ]Ai)xi

5: x
[ρ]
i := 1

ρ

ρ∑
j=1

x
[λ[ρ]]
i

6: end for

7: Decompose x
[λ[ρ]]
i into [x

[λ[ρ]]
i,r ;x

[λ[ρ]]
i,int ], ∀i ∈ N , and

solve the LP problem:

min
x1,r,··· ,xns,r

∑

i∈N

cTi · [xi,r ;0
zi×1] (15)

s.t.:
∑

i∈N

Ai,r · xi,r ≤ b−
∑

i∈N

Ai,int · x
[λ[ρ]]
i,int (16)

Di,r · xi,r ≤ di −Di,int · x
[λ[ρ]]
i,int , ∀i ∈ N (17)

xi,r ∈ R
ri , ∀i ∈ N

8: if (15) - (17) is feasible and the optimized solution

x∗
i,r , i ∈ N satisfies

∑
i∈N

cTi [x
∗
i,r ; x

[λ[ρ]]
i,int ] < J(xf ) then

9: Flag = 1
10: else
11: Flag = 0
12: end if

13: γ[ρ] :=
∑
i∈N

Aix
[λ[ρ]]
i − bf

14: λ[ρ+1] := P+(λ
[ρ] + s[ρ]γ[ρ])

15: ρ := ρ+ 1
16: end while

cost as J(x̄∗,f ) and J(x∗). Thus, such a feasible candidate
can be regarded as better than xf , and for determining
this candidate the knowledge of x̄∗,f is required.

Hence, the dual decomposition and sub-gradient method
are employed to compute x̄∗,f in a distributed fashion, see
Algorithm 1: If the lines 7 to 12 were omitted in Algorithm
1, this would represent a standard sub-gradient method,
known to suffer from slow convergence rates. In the al-
gorithm, ρ is the iteration counter and ρmax represents
the maximal number of iterations allowed to be executed
(usually a large number to ensure the convergence to x̄∗,f ),
and γ[ρ] is the sub-gradient of the dual function in (12).
The symbol s[ρ] is the step length chosen to update the
multiplier λ[ρ] in each iteration ρ, and the operation P+ in
line 14 denotes the projection onto the positive sub-space
of Rm. The computations in line 3 to 6 are carried out
in parallel for the subsystems. Note that the index [λ[ρ]]

in x
[λ[ρ]]
i is used to clarify that this solution to the sub-

problem in line 4 is specific for the present value of λ[ρ].
In addition, the computation in line 5 is an averaging over

the x
[λ[ρ]]
i obtained in the previous iteration. It leads to

x̄
∗,f
i for ρ → ∞, as long as the following conditions for the

step length s[ρ] are satisfied (see Anstreicher and Wolsey
(2009) for the proof):

s[ρ] → 0,

∞∑

ρ=1

s[ρ] = ∞,

∞∑

ρ=1

(s[ρ])2 < ∞. (18)

A simple choice of s[ρ] satisfying these conditions is s[ρ] =
1
ρ
. Finally, it is emphasized that the constraint xi ∈ Xi in

line 4 differs from the original constraint xi ∈ Conv(Xi)
in (11) and (12), since the computation of the convexified
set Conv(Xi) is hard, especially for a large dimension.
The authors in Vujanic et al. (2016) suggested to use
column generation techniques, see Barnhart et al. (1998),
to construct approximations of Conv(Xi). Here instead,
as the term to be minimized in line 4 is linear, i.e., must

exist an optimal x
[λ[ρ]]
i located in the vertices of Conv(Xi),

thus also in Xi. Accordingly, the constraint xi ∈ Xi is
adopted in line 4, since the outcome will not be affected
according to Assumption 1. In other words, a small-scale
MILP problem with local variables only is solved in line 4,
instead of the original LP problem requiring the knowledge
of Conv(Xi).

Clearly, without the steps in line 7 to 12, the Algorithm 1
would terminate after averaging to x̄∗,f in line 5. At this
stage, an improvement of xf can be determined based on
x̄∗,f . However, since the convergence towards x̄∗,f usually
requires many iterations, the computations in line 7 to
12 are carried out in addition, to reduce the number of
necessary iterations: Any set of local variables xi ∈ Xi can
always be decomposed into the real-valued part xi,r ∈ R

ri ,
and the integer part xi,int ∈ Z

zi . Similarly, the matrices
Ai and Di can also be decomposed into Ai = [Ai,r, Ai,int]
and Di = [Di,r, Di,int], such that Aixi = [Ai,r, Ai,int] ·
[xi,r; xi,int] and Dixi = [Di,r, Di,int] · [xi,r ; xi,int] hold.

With this scheme for the x
[λ[ρ]]
i obtained in line 4 in

iteration ρ, the newly assigned problem (15) in line 7 fixes

the integer part x
[λ[ρ]]
i,int , and leaves the real part x

[λ[ρ]]
i,r to be

newly selected. This aims at achieving the following goals
through the solution of (15):

• reducing the global costs attained by x
[λ[ρ]]
i , i ∈ N

through the variation of their real-valued parts;

• as x
[λ[ρ]]
i ∈ Xi applies according to line 4, the con-

straint (17) aims at preserving the local feasibility
during the variation of the real variables;

• by employing the sub-gradient method to solve prob-

lem (11), the x
[λ[ρ]]
i obtained in iteration ρ may, in

general, violate the dualized coupling constraints (8)
(see Vujanic et al. (2016) for the reasoning, and also
the second plot in Fig. 1, which demonstrates the
maximal violation to (8) in each iteration). However,
as the original coupling constraints (2) determine a
larger feasible space than (8) according to (9), the

x
[λ[ρ]]
i may have satisfied (2) even if (8) is not satisfied

(see the first plot in Fig. 1, recording the maximal
violation of (2)). Thus, as the real-valued part of

x
[λ[ρ]]
i is allowed to be newly selected in (15), the

constraint (16) aims at ensuring that the feasibility
of (2) is eventually recovered after the optimization.

Let x∗
i,r , i ∈ N denote the optimized solution of (15). If

problem (15) is feasible in iteration ρ, then a new feasible
candidate xnew = [xnew

1 ; · · · ; xnew
ns

] of (1) is found with

xnew
i := [x∗

i,r; x
[λ[ρ]]
i,int ], i ∈ N . Then, the global costs of the

new candidate J(xnew) is checked and if it is smaller than
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Fig. 1. Outcome of Algorithm 1 for randomly generated
instances of problem (1): the upper plot shows the
maximal violation of the original coupling constraint

(2) by x
[λ[ρ]]
i , i ∈ N , over the iterations. Values below

zero indicate that no violation is observed. The lower
plot shows, to the contrary, the maximal violation
of the tightened coupling constraint (8) over the

iterations. Notice that x
[λ[ρ]]
i , i ∈ N does not satisfy

the tightened coupling constraint (8) for the first
100 iterations by applying the sub-gradient method,
but has already satisfied the original one (2) already
for ρ = 11, i.e., the tightened constraint has to be
assessed as overly conservative.

J(xf ), a better candidate than xf is found, and Algorithm
1 terminates. As a result, the objective to improve xf

is realized before x̄∗,f has converged by the additional
solution of (15), leading to a significant reduction of the
computation time, as will be shown below.

It is remarked that the satisfaction of the conditions in line
8 of Algorithm 1 is not guaranteed in general. However,
the probability that the conditions are satisfied rises with
increasing ρ: since the multiplier λ[ρ] converges towards

its optimal value λ̄∗,f for ρ → ∞, the x
[λ[ρ]]
i , i ∈ N will

eventually differ in at most m + 1 subsystems from x̄∗,f

according to Theorem 2. As x̄∗,f satisfies the tightened
coupling constraint (8), and leads to low global costs

according to Theorem 3, the x
[λ[ρ]]
i , i ∈ N thus also tend

to satisfy the tightened coupling constraint (8) (and thus
the original one (2)) and low global costs for ρ → ∞.

Note that the solution of the LP problem (15) can be
carried out in a centralized fashion (e.g. by a central
coordinator), since the required computational effort is
negligible compared to the MILP problem (1), given that
only

∑
i∈N

ri real variables are involved

2.2 Further Improvement of xf

Now consider the case that the conditions in line 8 of Al-
gorithm 1 are never satisfied. Then, no feasible candidate
better than xf is found by the algorithm, and it termi-
nates after x̄∗,f is converged. Thereafter, for x̄∗,f , a set of
|N1| ≥ ns −m − 1 subsystems can be detected according

to Theorem 1, such that for i ∈ N1 the local solution x̄
∗,f
i

(as contained in x̄∗,f ) also satisfies Xi. At this stage, in
order to determine a feasible candidate of (1) being close
to x̄∗,f (thus better than xf ), the following problem is set
up for the remaining |N2| ≤ m+ 1 subsystems:

min
xi,∀i∈N2

∑

i∈N2

cTi xi (19)

s.t.:
∑

i∈N2

Aixi ≤ b−
∑

i∈N1

Aix̄
∗,f
i (20)

xi ∈ Xi, xi ∈ R
ri × Z

zi , ∀i ∈ N2 (21)

The solution of (19) aims at recovering the local feasi-
bility xi ∈ Xi of the remaining |N2| subsystems, while
the feasibility of the original coupling constraint (2) is
maintained. Note that, a new feasible candidate of (1) can
be determined if problem (19) has a feasible solution and
the optimized solution x

∗,rec
i , i ∈ N2 is found. Let the new

candidate still be denoted by xnew = [xnew
1 ; · · · ;xnew

ns
],

but xnew
i := x̄

∗,f
i , ∀i ∈ N1 and xnew

i := x
∗,rec
i , ∀i ∈ N2.

Then, if J(xnew) attains lower global costs than J(xf ), a
candidate better than xf is found. However, the feasibility
of problem (19) can also not be guaranteed in general, in
most cases due to violation of (20). But the following facts
indicate that the existence of a feasible solution to (19) is
likely:

(1) Due to |N2| ≪ |N1| (since m ≪ ns), only a small
fraction of the ns subsystems need to re-select their
local share of x̄∗,f . This implies that the left-hand
side of the coupling constraint (2), i.e.,

∑
i∈N

Aixi =
∑

i∈N1

Aixi +
∑

i∈N2

Aixi, will not deviate much from

∑
i∈N

Aix̄
∗,f
i after the |N2| subsystems have re-selected

their local candidates in (19);
(2) for the new local candidates of the |N2| subsystems,

the left-hand side of the coupling constraint (2) only
has to be smaller than b instead of bf in (20) (as∑
i∈N

Aix̄
∗,f
i ≤ bf ≤ b holds according to (11)).

Anyhow, if (19) has no feasible solution, or J(xnew) <
J(xf ) fails to hold, no improvement can be obtained for
xf by the proposed method. Then, the maximal difference
between J(xf ) and the globally optimal costs J(x∗) can
be assessed by the following theorem:

Theorem 4. For given xf , the difference between J(xf )
and J(x∗) is bounded by:

J(xf )− J(x∗) ≤ J(xf )− J(x̄∗,f ) + λ̄∗,f (b − bf). (22)

Proof. According to the relations listed in Theorem 3 the
following applies:

J(xf )− J(x∗) ≤ J(xf )− J(x̄∗) (23)

≤ J(xf )− J(x̄∗,f ) + J(x̄∗,f )− J(x̄∗).

As the LP problem (11) is transformed into (5) by perturb-
ing the dualized constraints according to (9), the difference
between their optimal costs are thus bounded by:

J(x̄∗,f )− J(x̄∗) ≤ λ̄∗,f (b− bf ). (24)

See Chapter 5.6 in Boyd and Vandenberghe (2004) for
a detailed explanation of this inequality. By substituting
inequality (24) into (23), the relation (22) is obtained. ✷
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Algorithm 2

1: Initialization: xf , flag = 0;
2: while flag = 0 do
3: determine coupling constraint (8) with xf

4: formulate (10), (11) and (12) with (8);
5: run Algorithm 1 and:
6: if the conditions in line 8 of Algorithm 1 are

satisfied before ρmax is reached then
7: a better candidate xnew is found and:

xf := xnew

8: else
9: solve (19);

10: if a feasible candidate xnew exists for (19) and
if it satisfies: J(xnew) < J(xf ) then

11: xf := xnew

12: else
13: flag = 1
14: end if
15: end if
16: end while

As λ̄∗,f and x̄∗,f have both been determined through
Algorithm 1, the value of the right-hand side of (22) can
be directly calculated, which gives an upper bound of the
performance loss of xf compared to the global optimum
x∗.

2.3 The Overall Procedure

As the last two paragraphs have explained, a better can-
didate xnew can be obtained by solving different mecha-
nisms, and Algorithm 2 shows how these can be combined
to an overall procedure. This procedure does not require
conservative assumptions as established in previous work,
i.e. the applicability of the proposed method is significantly
enhanced. Note that, in the best case for the computation
time, xnew is found when the conditions in line 8 of
Algorithm 1 are satisfied for the first time. Then, the
sub-gradient method does not have to be executed until
the primal/dual optimum is reached. If these conditions
are not satisfied in any iteration of Algorithm 1, xnew is
determined by solving (19). Only if no feasible solution
exists also for (19), or the relation J(xnew) < J(xf ) fails
to hold, no candidate better than xf is found, and the
performance loss of xf compared to x∗ is checked by use
of (22). Finally, if a better candidate xnew is found, xf is
set equal to xnew, and the iteration is repeated. The whole
procedure stops if no improvement is found, or an upper
bound on the computation time is reached.

3. NUMERICAL EXAMPLE

In this section, the proposed distributed solution was
tested for various MILP problems (1) of different size. The
local cost function ci, local constraintsXi and the coupling
constraints (2) are in each test randomly generated, while
instances without feasible solutions are discarded. In addi-
tion, no particular requirement on the coupling constraints
(2) are imposed, as done in Vujanic et al. (2014), nor is
any feasibility assumption used for the tightened problem
as in Vujanic et al. (2016).

In the first test instance, a number of ns = 40 subsystems
was considered, each with zi = ri = 15 integer and real
variables. The number of coupling constraints is m = 5.
For comparison purposes, the centralized solution of this
problem, which involves in total 600 integer variables, is
found in 336sec by using the solver CPLEX, IBM ILOG
(2009) on a 3.4GHZ processor, and the optimal cost is
J(x∗) = −2.17 · 105. However, the first feasible candidate
is determined already after only 3.34sec, but with a cost
of J(xf ) = −211.92.
By employing the proposed distributed solution to im-
prove xf , a better candidate xnew,1 is found after only
6 iterations in Algorithm 1 (0.35sec), with a cost of
J(xnew,1) = −2.14 · 105, i.e. a performance loss of only
1.13% compared to J(x∗). Then, starting from xnew,1 by
executing the proposed method once more, an even better
candidate xnew,2 with J(xnew,2) = −2.16 · 105 is found
after only 5 iterations in Algorithm 1, taking 0.48sec. In
this iteration, the performance loss is further reduced to
0.46%. Thereafter, no further improvement can be made.

For a larger problem instance with ns = 80 subsystems,
each with zi = ri = 25 integer and real variables (leading
to overall 2000 integer variables in the centralized prob-
lem), and with m = 8 coupling constraints. The global
optimum could not be found by centralized solution within
1 hour using CPLEX, but it only took 77sec to find the
first feasible candidate xf with J(xf ) = −2.32 · 103. The
proposed method then generates a better candidate xnew,1

with J(xnew,1) = −6.04 · 105 after 6 iterations (6.27sec)
in Algorithm 1. By employing a further iteration of Algo-
rithms 2 for xnew,1, an even better candidate xnew,2 was
found after 7 iterations in Algorithm 1 (in 9.06sec) and
with J(xnew,2) = −6.07 · 105. Further improvements were
not found, but the difference between J(xnew,2) and J(x∗)
is bounded by:

J(xnew,2)− J(x∗) ≤ 0.034 · 105 (25)

according to (22). Thus, although it is hard to compute
the optimal cost J(x∗) due to the high computational
complexity, one can ensure at most 0.55% performance
loss for J(xnew,2) through (25).

In the third test instance, a number of ns = 200 subsys-
tems was considered, and zi = ri = 10,m = 12. The global
optimum could again not be found within 1 hour, but the
first feasible candidate xf with J(xf ) = −1.69 · 104 was
obtained in only 7.23sec. The proposed method produces
a better candidate xnew,1 with J(xnew,1) = −7.57 · 105

after 2.09sec. No better candidate was found afterwards,
and the maximal performance loss compared to J(x∗) is
bounded by 3.56% according to (22).

The tests above show that the proposed method in all cases
achieves drastic improvements of xf within a very short
computation time (in particular with the first iteration of
Algorithm 2). The obtained candidates attain global costs
that are only slightly worse than the global optima. Even
for the case that the global optimum cannot be determined
in centralized fashion due to the high complexity of (1),
the bound defined in (22) still enables one to evaluate the
obtained candidate.

A set of additional tests are listed in Table 1.
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Table 1. Numerical experiments for different MILP problems with T indicating the time required
for the solution of xf , xnew,1 and x∗ (J(x∗) = − indicates that the global optimum was not

found within given time limit).

N zi, ri m T
x
f J(xf ) T

x
new,1 J(xnew,1) Tx

∗ J(x∗)

10 10 3 0.20sec 335.41 0.11sec −3.27 · 104 12.23sec −3.40 · 104

10 40 3 4.99sec 2.89 · 103 2.37sec −1.05 · 105 > 20min −

20 10 4 0.53sec −680.07 0.18sec −8.29 · 104 3.59sec −8.29 · 104

20 30 4 4.43sec −2.04 · 103 0.76sec −1.37 · 105 > 20min −

40 10 6 1.28sec −1.65 · 103 0.39sec −1.67 · 105 67.97sec −1.68 · 105

40 20 8 11.58sec 4.66 · 103 1.98sec −2.53 · 105 > 20min −

80 5 5 0.62sec 5.93 · 103 0.18sec −1.93 · 105 3.47sec −2.01 · 105

80 8 7 1.36sec −1.80 · 103 0.59sec −2.50 · 105 416sec −2.59 · 105

160 4 8 0.60sec 3.00 · 103 0.10sec −2.28 · 105 21.40sec −3.23 · 105

160 20 8 65sec 394.33 2.52sec −6.00 · 105 > 20min −

200 5 9 2.70sec −5.58 · 103 0.22sec −3.21 · 105 72sec −5.03 · 105

300 20 15 231sec −1.85 · 103 18sec −8.19 · 105 > 20min −

500 10 10 23sec 9.26 · 103 26sec −2.01 · 106 > 20min −

4. CONCLUSION

This work has proposed a distributed scheme for the
solution of MILP problems of type (1), as encountered,
e.g., in the optimal control problem of networked systems
involving hybrid dynamics. This work exploits the results
established in the Shapley-Folkman-Starr theorem to de-
compose the centralized problem, such that a set of small-
scale problems are to be solved in parallel, thus reducing
the overall complexity. Unlike the existing algorithms for
the same problem class (which are based as well on the
named theorem), the proposed method aims at improv-
ing the feasible candidates iteratively, instead of directly
computing a sub-optimal solution of (1). It was shown that
the proposed procedure does not employ quite conservative
assumptions used in previous work, and that the close-to-
optimal solutions could be obtained very efficiently for a
large number of tests. The current work aims at extending
the proposed method to the distributed solution of mixed-
integer quadratic and mixed-integer nonlinear program-
ming problems.
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