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Supelec-CNRS, Université Paris Saclay, Paris, France
(e-mail: sorin.olaru@centralesupelec.fr).

∗∗∗Department of Mechanical Engineering, University of Thessaly,
38334 Volos, Greece. (e-mail: k.ampountolas@mie.uth.gr).

Abstract: This paper presents a decentralised periodic interpolating control (dpIC) scheme for
the constrained control of interconnected systems, which employs periodic invariance and vertex
reachability of target sets. Periodic invariance allows the state of the system to leave a candidate
set temporarily but return into the set in a finite number of steps. We consider a periodic
invariant set with low-complexity (e.g. rectangle, hexagon for planar systems) to replace the
expensive controllable invariant outer set. This set is defined within the controllable stabilising
region of each subsystem and a reachability problem is solved off-line for each vertex of the outer
set to provide an admissible control sequence that steers the system state back into the original
target set after a finite number of steps. dpIC is effectuated between such periodic invariant
sets for each subsystem and the local maximal admissible inner set by means of an inexpensive
linear programming problem, which is solved on-line at the beginning of each periodic control
sequence. dpIC is demonstrated on the problem of stabilising a platoon of vehicles.
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1. INTRODUCTION

Interpolating control (IC) in (Nguyen et al., 2013; Nguyen,
2014) has been introduced as an alternative of the vertex
control (Gutman and Cwikel, 1986) for constrained linear
time-invariant (LTI) systems. Vertex control exploits only
the border of the feasible area and convergence becomes
slower as the system approaches the origin. IC overcomes
this drawback of slow convergence by providing a smooth
transition between a low-gain vertex controller and a high-
gain constraint-admissible feedback control, which satisfies
some user-defined performance (Nguyen et al., 2012). An
explicit formulation and some geometrical properties have
been presented in Nguyen et al. (2016), while different
interpolating control strategies are discussed in Rossiter
and Ding (2010); Nguyen et al. (2014b); Kheawhom and
Bumroongsri (2015) Decentralised interpolating control
(dIC) (Scialanga and Ampountolas, 2018a,b) is introduced
to overcome the computational burden of large-scale sys-
tems, dIC approaches decompose the overall system into
an interconnected system and solve constrained control
problems via distributed interpolation in low-dimensional
spaces. To this end, separable invariant sets are computed
and the control is obtained as solution of a low-dimensional
linear programming (LP) problem for each subsystem.

Both centralised and decentralised IC approaches rely on
the availability of controllable invariant sets associated
with different closed loop objectives (local performance or
the enlargement of the stabilising set) and use the interpo-

lation as a tool for constructing a smooth state feedback
function. Broadly speaking, interpolating control asks for
the computation of an approximation of the controllable
area (Nguyen, 2014; Kheawhom and Bumroongsri, 2015),
which algorithms might not converge converge in finite
time (Borrelli et al., 2017).

To alleviate these shortcomings, the present paper presents
a low-complexity decentralised periodic interpolating con-
trol (dpIC) scheme for the constrained control of in-
terconnected systems, which employs periodic invariant
sets and vertex reachability of target sets. Periodic in-
variant sets are computed for each subsystem and used
to enlarge the stabilising region in case that maximal
controllable invariant sets cannot be determined or are
unknown during the design process. A periodic invariant
set is defined in the local controllable area of the sub-
system and a sequence of local controls that guarantee
periodic invariance are computed as solution of a reach-
ability problem, both procedures being tractable off-line.
For the interpolation, an inexpensive LP problem is solved
at the beginning of each periodic invariance sequence.
The resulting constrained interpolating control guarantees
stability of the interconnected system despite the unknown
couplings. The proposed dpIC offers a fair approximation
of controllable invariant sets in a low-dimensional low-
complexity structure and provides an alternative to the
decentralised IC (Scialanga and Ampountolas, 2018b,a)
while overcoming its main limitation, that is, the availabil-
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ity of controllable invariant sets. Similar to the other de-
centralised approaches (Mayne et al., 2005; Riverso et al.,
2013; Grancharova and Johansen, 2014), dpIC is meant for
weakly coupled interconnected systems where couplings
are treated as disturbances. While this requirement can
lead to a degree of conservatism, we show that dpIC can
be applied to real world applications.

2. PRELIMINARIES

2.1 System Dynamics and Constraints
Consider a discrete-time linear time-invariant intercon-
nected system consisting of N subsystems,

Si : xi(k+1) = Aixi(k)+Biui(k)+
∑
j∈Mi

eijĀijxj(k), (1)

where the local state variable xi ∈ Rni is regulated by
a local control input ui ∈ Rmi , i ∈ N = {1, 2, . . . , N}.
Ai ∈ Rni×ni and Bi ∈ Rni×mi are the state and control
matrices; and, Āij ∈ Rni×nj is an interconnection (adja-
cency) matrix between subsystem i and j, where Mi is
the set of neighbour subsystems to i for information ex-
change; eij ∈ [0, 1] are weighting constants, modelling the
strength of adjacent interconnections. The local variables
are subject to local constraints,{

xi(k) ∈ Xi, Xi = {xi ∈ Rni | Fxixi ≤ gxi},
ui(k) ∈ Ui, Ui = {ui ∈ Rmi | Fui

ui ≤ gui
}, (2)

∀ k ≥ 0, i ∈ N , where Fxi
, Fui

are constant matrices and
gxi

, gui
are constant vectors of appropriate dimension with

positive elements. The decentralised constrained control
problem of the interconnected system (1) is to design a
controller that regulates each subsystem Si, i ∈ N , to the
origin under bounded and locally unknown interconnec-
tions, while verifying the constraints (2). We assume that
the couple (Ai, Bi), i ∈ N , define a controllable system
and there exists a local stabilising state-feedback controller
ui(k) = Kixi(k), ∀ i ∈ N . Finally, the resulting closed-
loop state matrix Ai + BiKi, i ∈ N , is Hurwitz. The
interconnected system (1) will be re-written as,

Si : xi(k + 1) = Aixi(k) +Biui(k) +Diwi(k), (3)

where the term Diwi(k) =
∑
j∈Ni

eijĀijxj(k), i ∈ N ,

wi ∈ Rn−ni accounts for the interconnection uncertainty.
From the constraints of the local states xj ∈ Xj , j ∈ Mi,
a set of local constraints for the interconnection variable
wi, i ∈ N , is defined by polytopic sets,

wi(k) ∈ Wi = {wi ∈ Rni | Fwiwi ≤ gwi}, i ∈ N (4)

with matrix Fwi
and vector gwi

of appropriate dimensions.

2.2 Set Invariance and Periodic Invariance
This section provides definitions on set invariance and
periodic invariance for the constrained LTI system (3)
with constraints (2) and (4) as presented in Lee and
Kouvaritakis (2006); Borrelli et al. (2017); Blanchini and
Miani (2015); Olaru et al. (2014). These will be used in
the rest of the paper for the dynamics of each subsystem
Si, ∀i ∈ N . Below, we omit the index i for clarity.

Definition 2.1. (Constraint-admissible Robust Invariance).
Given the local controller ui(k) = Kixi(k), the set Ω ⊆ X
is a robust positively constraint-admissible invariant set
with respect to x(k + 1) = AKx(k) + Dw(k), where
AK = A+BK, and subject to the local constraints (2) and
(4), if ∀x(0) ∈ Ω and ∀w(k) ∈ W, the system evolution
satisfies x(k) ∈ Ω and Kx(k) ∈ U , ∀ k ≥ 0.

The largest Constraint-admissible Robust Invariant Set
(CaRIS) for the system (3) in closed loop with a stabilizing
controller ui(k) = Kixi(k), that respects constraints (2)
can be determined under mild conditions. It can be char-
acterised in polyhedral form as Ω = {x ∈ Rn : FΩx ≤ gΩ},
where FΩ is a constant matrix and gΩ is a constant vector
of appropriate dimensions.

Definition 2.2. (Robust Controllable Invariance). Given
system (3) and the constraints (2), (4), the set Ψ ⊆ X
is robust controllable invariant, if ∀x(k) ∈ Ψ, there exists
an admissible control u(k) ∈ U such that x(k + 1) ∈ Ψ,
∀w(k) ∈ W, ∀ k ≥ 0.
The maximal robust controllable invariant set Ψ might
not be finitely determined within the class of polyhedral
sets (Borrelli et al. (2017)). However, in the sequel, a
polyhedral approximation will be considered with the half-
space representation given by Ψ = {x ∈ Rn : FΨx ≤ gΨ},
where FΨ is a constant matrix and gΨ is a constant vector
of appropriate dimensions. The previous definition can
be seen as a limit case of λ-contractiveness as the next
definition highlights.

Definition 2.3. (Robust λ-contractive Set). Given a scalar
λ ∈ (0, 1], a set Ψ ⊆ X containing the origin is called
robust controllable λ-contractive for (3) with respect to
(2), (4), if for any x(k) ∈ Ψ there exists u ∈ U such that
x(k + 1) ∈ λΨ, ∀w(k) ∈ W.
If λ = 1, the set is the robust controllable invariant set.

Definition 2.4. (Robust Periodic Invariant Set). For a
given λ ∈ (0, 1] the set S ⊂ Rn containing the origin
is called robust controllable periodic λ-contractive with
respect to the system (3) and constraints (2)-(4) if there
exists a positive number p > 0 such that for any x(0) ∈ S
there exists an admissible control sequence u(`) ∈ U ,
` = 0, . . . , p − 1, such that x(p) ∈ λS holds. If λ = 1
the set is called robust controllable periodic invariant.
2.3 Interpolating Control (IC) principles
This section presents the interpolating control (IC) scheme
introduced as improved vertex control (Gutman and
Cwikel, 1986). IC relies on the smooth interpolation be-
tween a vertex controller and an optimal high-gain feed-
back controller (Nguyen, 2014). Fig. 1(a) depicts the idea
behind the interpolating control method. The set Ψ de-
picted in yellow is denoted as outer set and the CaRIS Ω
denoted as inner set and depicted in red. Any x(k) ∈ Ψ
can be decomposed as a convex combination,

x(k) = s(k)xv(k) + (1− s(k)) x0(k), (5)

where xv(k) ∈ Ψ and xo(k) ∈ Ω, and s(k) ∈ [0, 1] plays
the role of interpolating coefficient. At each time instant,
given the coefficient s(k), one can obtain the control:

u(k) = s(k)uv(k) + (1− s(k))u0(k), (6)

where u0(k) = K x0(k) is an inner stabilising controller
associated to the CaRIS and uv(k) is the vertex control
applied to xv(k). The control (6) provides a smooth
transition between the two controllers and convergence to
the minimal robust invariant set. Consider the change of
variables r0 = (1− s)x0 and rv = sxv. It follows r0 ∈ (1−
s) Ω and rv ∈ sΨ. The decomposition (5) can be rewritten
as r0 = x− rv. To solve the interpolation problem, an LP
problem is formulated (index k is omitted for clarify):

min
s,rv

s, subject to:


sgΩ − FΩrv ≤ gΩ − FΩx,

−sgΨ + FΨrv ≤ 0,

0 ≤ s ≤ 1,

(7)
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(a) (b)
Fig. 1. (a) The current state x can be decomposed as a convex combination of xv ∈ ∂Ψ and x0 ∈ ∂Ω. (b) Periodic invariance idea.

where the zero in the second inequality is a vector of zeros
with appropriate dimension. The solution of (7) is the
interpolating coefficient s∗ and the vector r∗v . The original
state can be recovered from r∗0 = x − r∗v . The solution of
(7) leads to an admissible control action (6) at each time
step that stabilises the constrained system (Nguyen et al.,
2013). Once the state enters Ω, the interpolation control
is equivalent to the stabilising controller u0(k) = Kx0(k).

3. PERIODIC INTERPOLATING CONTROL

3.1 Construction of Periodic Controlled Invariant Sets

The following arguments apply to each constrained inter-
connected LTI subsystem Si, i ∈ N , in (3). Consider a
low-complexity polytope (e.g. hyper-rectangle). This rep-
resents a candidate periodic invariant set for our control
problem. Since it is not a traditional invariant set, it has to
be defined within the controllable area of the constrained
system (2), (3), (4). Additionally, it will be imposed to
contain the inner set which is à priori available (as a robust
controlled invariant set with respect to a linear stabilising
controller). Although the set is defined in the controllable
area, it cannot guarantee its invariance with respect to
the evolution of the state. Since for this particular outer
set the vertices are known beforehand, an optimisation
problem, similar to the one presented in Nguyen et al.
(2014a), can be formulated that guarantees by its feasibil-
ity that ∀x ∈ P, the states re-enter P in a finite number
of steps. This takes the form of a reachability problem
that is solved off-line for each vertex of the outer set. It
provides an admissible control sequence that steers the
state of the system back into the original target set despite
the unknown but bounded couplings between subsystems.
Fig. 1(b) shows an initial rectangle B that verifies the state
constraints (in white). The sequence of sets describes the
evolution of the state x ∈ B for an admissible control
sequence. Periodic invariance allows for the state vector
to leave the set temporarily but return in a finite number
of time steps, i.e., to leave the set for k < p, where p
is the length of the period. In a finite number of steps
the evolution of each x ∈ B is steered inside B with
an admissible sequence of inputs computed off-line. The
sequence of sets is plotted to show the periodic invariance
idea and how the period length is determined.

Reachable sets describe the evolution of the system to
target regions. The next section introduces a reachability
problem for interconnected systems. It is solved off-line
and allows for distributed periodic interpolating control.

p-step reachability problem for interconnected systems:

Let vhi
, hi = 1, . . . ,Υi, with Υi ≥ ni + 1 be the vertices

of the polytope. The reachability problem considers the
action of the disturbances to the system at each time
step of the period to determine the phi

control sequence
uvhi

=
{
uvhi

(1), . . . , uvhi
(phi

)
}

that steers the hi-th vertex
vhi

of Pi back into the target set in a number of finite
steps.

For (3), since interconnections are bounded, the reacha-
bility problem considers the worst case interconnections
when computing the control sequence uvhi

, i ∈ N . Define
w̄i as the worst case local interconnection for Si, i ∈ N
(practically, w̄i are the vertices of the set Wi). The reach-
ability problem associated to the problem (2), (3), (4) and
polytope Pi reads (indices i and hi are omitted for clarity):

λ (uv(0), . . . , uv(p− 1)) = min
uv,λ

λ

subject to:

Av +Buv(0) + w̄ ∈ X ,
...

Ap−1 v +Ap−2Buv(0) +Ap−2w̄ +Buv(p− 2) + w̄ ∈ X
Ap v +Ap−1Buv(0) +Ap−1w̄ +Buv(p− 1) + w̄ ∈ λP
uv(k) ∈ U , k = 0, . . . , p− 1, 0 ≤ λ < 1.

(8)
The reachability problem provides a suitable local control
sequence that steers each vertex of the polytope Pi, i ∈ N ,
into the polytope in a contractive way, while verifying
the system constraints and interconnections. For each
subsystem Si, a period length is defined as:

pi = l.c.m. phi , hi = 1, . . . ,Υi,

where l.c.m. stands for least common multiple. The inputs
obtained from (8) are stored and then used to compute
the decentralised pIC control while the state is outside Ωi,
i ∈ N , as described in the next section.

3.2 Decentralised Periodic Interpolating Control

This section presents the proposed dpIC for the decen-
tralised LTI interconnected system (3) subject to (2)–
(4). In this approach, the weakly coupled interconnected
systems are treated as disturbances. The first step is to
introduce a local state feedback controller ui(k) = Kixi(k)
for each subsystem Si, i ∈ N , and under the assumption it
exists 1 , compute the local CaRIS Ωi which will play the
role of the inner set for the constrained system. Then, a
1 The existence is related to satifaction of input/state constraints
by the minimal robust positive invariant set.
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low-dimensional low-complexity outer set Pi is defined as
a polytope. That is, the local robust periodic invariant
set for the system Si, i ∈ N and will play the role
of the outer set. A reachability problem formulation for
decentralised control guarantees that, for every local initial
state xi ∈ Pi, a sequence of pi control steps, i ∈ N , steers
the state into the local target polytope in a contractive
way, while verifying the state and control constraints.

Online decentralised periodic interpolating control

Consider the initial state xi(0) ∈ Rni of a subsystem
inside the corresponding outer set Pi (and target set of
periodic control), i ∈ N . A scaling factor λ∗i ∈ [0, 1] can
be computed such that the initial state is contained in the
contractive set λ∗iPi. λ∗i can be considered as the smallest
contractive factor such that xi(0) ∈ λ∗iPi, and can be
obtained by solving the LP problem:

λ∗i = min
λi

λi subject to:

{
FPi

xi ≤ λi gPi
,

0 ≤ λi ≤ 1,
(9)

i ∈ N , where FPi
and gPi

are the matrix and vector that
define the half-space representation of Pi. Then, λ∗iPi can
be set as the target set for the periodic control sequence.

The state xi(0) can be decomposed as xi(0) = si(0)xvi (0)+
(1 − si(0))x0

i (0) by solving the LP problem (7) with
Ψi = Pi. The states xvi and x0

i lie on the border of Pi and
Ωi, respectively. Then, xvi (0) can be written as a convex
combination of the vertices of the outer set Pi, i.e.,

xvi (0) =

Υi∑
hi=1

αhi
(0) vhi

, αhi
≥ 0,

Υi∑
hi=1

αhi
= 1, (10)

where αhi
, i = 1, . . . ,Υi are convexity coefficients in the

unit simplex. The control action of each subsystem Si, i ∈
N , at k = 0 is a convex combination of the state feedback
control applied to the state x0

i (0) and the combination of
the controls applied to the vertices vhi

, as in the decom-

position (10), i.e., ui(0) = si(0)
∑Υi

hi=1 αhi(0)uvhi
(0)+(1−

si(0))Kix
0
i (0), i ∈ N , where uvhi

(0) is the first element of
the control sequence (8) applied to the vertex vhi . For the
next pi−1 steps, consider the pi-sequence that is available
from the reachability problem (8), to obtain the control,

ui(k) = si(0)

Υi∑
hi=1

αhi
(0)uvhi

(k)

+ (1− si(0))Ki(Ai +BiKi)
kx0

i (0),

(11)

for k = 0, . . . , pi − 1. The control (11) is applied to (3)
for pi steps or until the state reaches one of its target
sets, i.e., either the admissible set Ωi or the contractive
set λ1

iPi, where λ1
i is the scaling factor associated to the

first periodic cycle. The control (11) guarantees that the
initial state xi(0) enters the contractive polytope λ1

iPi
in pi steps maximum. After the state returns into the
set, a new periodic sequence is computed. Note that in
(11), the interpolating coefficient si and the coefficients
αhi , hi = 1, . . . ,Υi, in the convex combination (10) are
kept constant, i.e. si(k) = si(0) and αhi(k) = αhi(0),
k = 1, . . . , pi, hi = 1, . . . ,Υi.

The contractive factor λi2 associated to each target set
Pi is updated for the new state xi(k̄) by solving the
LP problem (9), where k̄ is the first time step of the
periodic sequence. The current state would be inside λi2Pi,

Fig. 2. Vehicle platooning (Liu and Zamani, 2019).

λi2 < λi1, where Pi is the outer set of the periodic IC. After
a new λi is obtained, a new interpolating decomposition
(si(k̄), xvi (k̄), x0

i (k̄)) is computed between the outer set Pi
and the inner set Ωi based on (7). The outer state is defined
as convex combination of some of the vertices of the
polytope as in (10) with coefficients αhi

(k̄), hi = 1, . . . ,Υi.
Similar to (11) applied to the initial local state, a sequence
of pIC associated to the new local states is applied to the
subsystems Si, i ∈ N , i.e.,

ui(k̄ + k) = si(k̄)

Υi∑
hi=1

αhi(k̄)uvhi
(k̄ + k)

+ (1− si(k̄))Ki(Ai +BiKi)
kx0

i (k̄),

(12)

for k = 0, . . . , pi − 1, where si(k̄), i ∈ N , are the new
interpolating coefficients to be kept constant in the new
periodic sequence.

To summarise, for each subsystem i a contractive factor
λi is computed at the beginnning of the periodic cycle
and (5) is obtained as solution of (7). The outer state
is decomposed as in (10) and the periodic interpolating
control (12) is applied to the state for pi steps or until it
reaches either the current λiPi or the local CaRIS Ωi. If the
state enters the scaled target set, a new periodic sequence
is computed. In case the state converges into CaRIS in less
than pi steps, the control action reduces to ui = Kixi.

3.3 Recursive Feasibility and Asymptotic Stability

This section provides recursive feasibility and asymptotic
stability theorems for the proposed decentralised pIC for
each constrained subsystem Si, i ∈ N .

Theorem 1. The decentralised periodic interpolation prob-
lem (5), (6), (7), (12), (8) is pi-step feasible for linear time
invariant interconnected systems Si, i ∈ N , and p-step
feasible for the overall system (3), S =

⋃
i∈N Si, where p

is the overall period length defined as p = l.c.m.
i∈N

pi, with

constraints (2)–(4) for all states x ∈ P =
∏
i∈N Pi ⊆ Rn,

where x =
[
xT1 , . . . , x

T
N

]T
: ∀xi(k) ∈ Pi =⇒ xi(k +

p) ∈ Pi,∀x(k) ∈ P =⇒ x(k + p) ∈ P.

Proof. Proof is omitted due to space limitation.

Theorem 2. The decentralised periodic interpolating con-
trol (6), (7), (12), (8) guarantees asymptotic stability
of the linear time invariant interconnected systems (3),
Si, i ∈ N , and the overall systems S =

⋃
i∈N Si with

state constraints X =
∏
i∈N Xi, control constraints U =∏

i∈N Ui, and coupling constraints W =
∏
i∈N Wi for any

initial point x(0) ∈ P, P =
⋃
i∈N Pi.

Proof. Proof is omitted due to space limitation.

4. APPLICATION TO VEHICLE PLATOONING

A platoon of N + 1 vehicles depicted in Fig. 2. The leader
vehicle is marked with index 0 and the following vehicles
have ordered increasing indices. Consider the simplified
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(a) (b)

Fig. 3. Invariant set of subsystem S1 (left) and subsystems Si,
i = 2, . . . , 6 (right).

description of an interconnected platoon (Sadraddini and
Belta, 2018) with six vehicles and one leader. The inter-
connected system Si can be written as:

xi(k + 1) =

[
1 −1
0 1

]
xi(k) +

[
0
1

]
ui(k) +

[
0 ε
0 0

]
xi−1(k) +

[
1 0
0 1

]
wi.

(13)

The state variable of each follower is defined as the local
state variable xi = [di vi]

T, where di is the relative
distance between the i-th vehicle and the (i−1)-th vehicle
and the leader vehicle is denoted as 0-th vehicle; vi is the
vehicle speed; ui is the local control input; the constant
ε defines the interconnection degree with the preceding
vehicle; wi is the local disturbance present in the system.

We consider the interconnections as disturbances in addi-
tion to natural disturbances already present in the system.
The control objective is to group together the vehicles in
a platoon with steady-state speed and spacing, ve and
∆xe, respectively, where ∆xe = ∆xmin + hve, with h is
a constant time headway, ∆xmin is the minimum gap at
zero speed. System (13) is subject to local constraints in
order to guarantee stability and avoid collision:

3 ≤ di ≤ 30 [m], 0 ≤ vi ≤ 20 [m/s], (14a)

−0.9 ≤ ui ≤ 1, −λ
[
0.1
2

]
≤ wi ≤ λ

[
0.1
2

]
[m/s], (14b)

where λ = 0.06. The platoon aims to reach the speed
ve = 15 m/s, with time headway h = 0.2 s, and ∆xe = 6 m.
In order to transform the control problem into a regulation
to the origin problem, we introduce a change in the system
variables: x̃i = di − ∆xe and ṽi = vi − ve. The system
matrices in (13) keep the same values but new constraints
are defined as (for each i ∈ N ):

−3 ≤ d̃i ≤ 24 [m], −15 ≤ ṽi ≤ 5 [m/s]. (15)

The control constraints ui and disturbances wi were un-
changed. We simulate the constrained interconnected sys-
tem (13), (14b), (15), composed of N = 6 followers and
one leading vehicle. The weight ε is set to 0.03.

We compare the proposed dpIC with the dIC (Scialanga
and Ampountolas, 2018b). For each subsystem Si, i ∈ N
a high-gain feedback controller ui = Kixi is computed
with weighting matrices Qi = diag([0.1, 0.1]) and Ri = 1.
Then, the positively invariant sets Ωi are computed with
respect to the constrained system and gain matrices Ki =
[0.2054 − 0.7835], i ∈ N ; and the maximal controllable
invariant sets Ψi, i ∈ N to implement the IC.

To implement dpIC and reduce the complexity of the outer
controllable IS, consider a local low-complexity polyhedron
Pi ⊆ Rni with a smaller number of vertices compared
with the outer set Ψi for each subsystem Si, i ∈ N .
Figs 3(a) and 3(b) depict the Ωi (in red colour) and

the maximal controllable set (in yellow colour). The sets
in light yellow colour are the local polyhedrons that
are user-defined. In reference to Fig. 3(a), the inner set
has vertex representation with 7 vertices, the maximal
controllable set has 18 vertices, while the low-complexity
polyhedron is defined with 8 vertices. The high number
of elements in the vertex representation of the outer set
Ψ1 explains how the local polyhedron P1 would lead to
a reduction of complexity in the set representation and
online computations. The low-complexity polyhedron P1

has period p1 = 1 with reference to the reachability
problem (8). Sets in Fig. 3(b) are the invariant sets for the
subsystems Si, i = 2, . . . , 6. Pi, i = 2, . . . , 6, have period
length pi = 3.Consider the following simulation scenario:

x0 = [d1 v1 d2 v2 d3 v3 d4 v4 d5 v5 d6 v6]T,

x0 = [4 12.6 5 11.5 6.5 13.3 6.4 11.8 7 13 4 12.4]T.

Fig. 4 shows that both decentralised control approaches
stabilise the system around its target, ∆xe = 6 m and ve =
15 m/s. Decentralised pIC provide similar control action
and almost identical control evolution as decentralised IC
without the necessity of computing the expensive maximal
robust controllable invariant set. The online computations
of the improved IC with periodic sets requires 0.512 CPU-
secs compared with 1.291 CPU-secs that dIC needs for its
online computations (CPU: Intel Core i7-3770S 3.1GHz;
MATLAB 2016b). It is expected that the improvements
introduced with the periodic IC should increase for large-
scale interconnected systems. Fig. 5 depicts the interpolat-
ing coefficients for pIC and IC. As expected, all coefficients
are non-increasing and positive functions. Decentralised
pIC and IC steer the state variable into the stabilising
inner set Ωi, i ∈ N , in less than 5 steps. Finally, these
results underline that decentralised pIC provide a stabil-
ising control action similar to the decentralised IC, while
avoiding the computation of the (centralised) controllable
invariant sets and with less on-line computational effort.

5. CONCLUSION

This work presented a novel low-complexity decentralised
periodic interpolating control scheme for the constrained
control of interconnected systems. Each subsystem is cou-
pled with a low-complexity approximation of the control-
lable set and a reachability problem is solved off-line for
each vertex of the outer set. This determines a sequence
of admissible controls that steer the local state back into
the original target set after a finite number of time steps
(i.e. enforcing its periodic controlled invariance). For the
interpolation, an LP problems is solved at the beginning of
each periodic cycle. A numerical application showed that
dpIC provides similar performance to previously proposed
IC schemes, while it guarantees convergence and satisfac-
tion of constraints, though it employs a naive rectangular
representation of the controllable invariant set.
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