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Abstract: In this paper, we focus on the direct adaptive fuzzy control design for a class of uncertain MIMO 
nonlinear systems with indefinite control gain matrix and unknown control direction. The control design is 
based on the approximation of an unknown ideal control law that can meet the control objective by using 
fuzzy systems. The adjustable parameters of the used fuzzy systems are adjusted online using the error 
between the unknown ideal controller and the fuzzy controller. In this paper, unlike most existing works, 
the Nussbaum gain technique is not used to overcome the obstacle of the unknown control direction. In 
fact, with the help of a matrix decomposition technique, the unknown control direction is redefined as an 
unknown constant vector, which is estimated online by a suitable update law. The stability of the closed-
loop system is studied using the Lyapunov direct approach. Numerical simulation results are provided to 
illustrate the effectiveness of the proposed control design approach. 
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

1. INTRODUCTION 

Over the past three decades, adaptive control of uncertain 
nonlinear systems using fuzzy systems has been extensively 
studied (Er and Mandal, 2016; Guerra et al., 2015; Labiod and 
Guerra, 2007; Ordonez and Passino, 1999). The stability 
analysis of these adaptive control techniques is carried out by 
using the Lyapunov direct method. Theoretically speaking, 
there are two different approaches that have been used in 
conceiving adaptive fuzzy controllers for uncertain nonlinear 
systems: the indirect and the direct adaptive control 
approaches. In the first approach, fuzzy logic systems are 
employed to approximate the uncertain nonlinearities and 
these approximations are then used to design a control law 
(Ordonez and Passino, 1999). On the other hand, in the second 
approach, fuzzy logic systems are employed to approximate 
unknown ideal control laws (Labiod and Guerra, 2007; 
Ordonez and Passino, 1999). 
However, most of the adaptive fuzzy control strategies have 
been designed for uncertain nonlinear systems with a priori-
known control direction, i.e. the sign of the control gain 
coefficient of SISO systems, or the sign of the control gain 
matrix of MIMO systems is assumed a priori-known. In fact, 
without this assumption, adaptive fuzzy controller design 
becomes much more difficult because one cannot decide the 
direction along which the control operates. That is why the 
problem of designing effective adaptive fuzzy controllers for 
uncertain nonlinear systems with a priori-unknown control 
direction is receiving increasing attention. This problem has 
been mostly tackled by using the Nussbaum-type function 
technique (Chen, 2019; Nussbaum, 1983). This technique has 
been effectively used in adaptive control design for a class of 

uncertain multivariable nonlinear systems with an unknown  
sign of the control gain matrix, see for example, Boulkroune 
et al. (2010), Chen et al. (2017), Shi et al. (2017), Song et al. 
(2017), Zhang and Yang (2019). In Labiod and Guerra (2017), 
without utilizing the Nussbaum gain technique, a simple 
solution to the unknown control direction problem for a class 
of MIMO nonlinear systems was proposed. However, in the 
aforementioned papers, the control gain matrix is assumed 
either positive definite or negative definite. In fact, the control 
design problem is more challenging in the case of uncertain 
MIMO nonlinear systems with indefinite control gain matrix. 
In this paper, inspired by the work of Labiod and Guerra 
(2017) and without using the Nussbaum gain technique, we 
propose a simple solution to the unknown control direction 
problem for a class of multi-input multi-output uncertain 
nonlinear systems with indefinite control gain matrix. The key 
idea is to use a matrix decomposition technique to define the 
sign of the control gain matrix as an unknown constant vector. 
Then, the entries of this vector are estimated in the same way 
as the unknown parameters of the fuzzy controller. 
The remainder of this paper is structured as follows. Section 2 
describes the problem formulation. Section 3 presents the used 
fuzzy logic systems. Section 4 presents the proposed direct 
adaptive fuzzy controller with the controller parameters and 
the control direction adaptive laws. Finally, section 5, gives 
some numerical simulation results to highlight the 
effectiveness of the proposed adaptive fuzzy control scheme. 

2. PROBLEM FORMULATION 

We consider multi-input multi-output nonlinear uncertain 
dynamic systems of the form 
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Then, we can write system (1) compactly as 

      r  y f x G x u  (2) 

The aim of this paper is to design an adaptive fuzzy control 
law  tu , without the knowledge of the control direction, such 

that the system output  ty  tracks a given desired trajectory 

     1 , ,
T

d d dpt y t y t   y  as closely as possible while all 

signals in the closed-loop system remain bounded. 

In order to control uncertain nonlinear system (1), the 
following assumptions are required. 

Assumption 1.  Each desired trajectory  diy t , 1, ,i p  , and 

its time derivatives up to order ir  are continuous and bounded. 

Assumption 2. The control gain matrix  G x  is nonsingular, 
and all its leading principal minors are nonzero and their signs 
are unknown. 

Remark 1. Assumption 2 means that the control gain matrix 
may be non-symmetric and indefinite. Moreover, if some 
principal minors of the matrix  G x  are zero, an interchange 

of rows or columns may be needed before proceeding to 
controller design. 

Since the matrix  G x  is nonsingular with nonzero leading 

principal minors, the following lemma (Boulkroune et al., 
2010; Tao, 2013) will be used in the controller design. 

Lemma 1. Consider a real matrix   G x    with nonzero leading 

principal minors. Then it can be decomposed as: 

      *
sG x G x D T x  (3) 

where  sG x is a symmetric positive definite matrix, 
* * * *

1 2diag , , , nd d d   D  where  *
1 1sgnd   , 

* 2
2
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d
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   

  with  i  are the leading 

principal minors of the matrix  G x  and  sgn   is the sign 

function; i.e.  *D  is a diagonal matrix with diagonal entries 
* 1id    or -1,   T x  is a unity upper triangular matrix 

Remark 2. The diagonal matrix *D  contains information on 
the control direction, i.e. the sign of the control gain matrix 
 G x . It is worth to note that the knowledge of the control 

direction *D  is crucial for constructing a stable controller 
parameter adaptation law. However, in this paper, the control 
direction *D  is assumed unknown and it will be estimated 
online (its diagonal entries) by an appropriate adaptation law. 

Now, we define the tracking errors as follows 

       ; 1, ,i di ie t y t y t i p     (4) 

and the following filtered tracking errors 

    
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d
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 (5) 

From (5),   0is t   is a linear differential equation whose 

solution implies that  ie t  converges to zero with a time 

constant  1i ir  . In addition, the time derivatives of  ie t  

up to order 1ir   also converge to zero (Slotine and Li, 1991). 

Thus, the control objective becomes the design of a controller 
to enforce  is t  to converge to zero, 1, ,i p  . 

The time derivatives of the filtered errors (5) are 
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1, ,
T

ps s   s ; 1, ,
T

pv v   v  

Then we can represent (6) in the following compact form  

      s v f x G x u
 

(8) 

If the nonlinear functions  f x  and  G x  are known, to 

accomplish the control objective, we can apply the following 
nonlinear control law (Labiod and Guerra, 2007) 

 
      * 1

0 0tanh     u G x f x v K s K s
 

(9) 
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where, 1, , pdiag k k   K  , 0 01 0, , pdiag k k   K , with 

0ik   and 0 0ik  , for  1, ,i p  , 0  is a small positive 

constant, and  tanh   is the hyperbolic tangent function. 

Actually, when we choose the control input as *u u , 
equation (8) becomes 

  0 0tanh   s K s K s
 

(10) 

or, equivalently 

  0 0tanh , 1, ,i i i i is k s k s i p    
 

(11) 

From (11) one can conclude that   0is t   as t   and, 

accordingly,  ie t  and all its time derivatives up to order 1ir   

converge asymptotically to zero (Slotine and Li, 1991). 

However, in this paper, the nonlinear function  f x  is 

assumed unknown and the control gain matrix  G x   is also 

assumed unknown with unknown sign. Consequently, the ideal 
nonlinear control law (9) cannot be used. In such a case, we 
propose a design method relying on the estimation of the sign 
of the control gain matrix (the diagonal entries of the matrix 

*D ) and on the approximation of the entire unknown ideal 
control law (9) by using adaptive fuzzy systems.  

3. DESCRIPTION OF THE USED FUZZY SYSTEMS 

In this paper, we approximate the unknown continuous 
functions by using the zero-order Takagi-Sugeno fuzzy system. 
This fuzzy logic system performs a mapping from an input 

vector  1, ,
T m

mz z   zz    to a scalar output fy  , 

where 
1 mz z    z   and 

iz   . Let us define iM  

fuzzy sets j
iF , 1, , ij M  , for each input variable iz , then 

the Takagi-Sugeno fuzzy logic system will be characterized by 
a set of if-then fuzzy rules of the following form (Labiod and 
Guerra, 2007; Wang, 1994)  


 

k
1 1R : If is and and is

                        Then is 1, ,

k k
m m

k
f f

z G z G

y y k N




 

where  1, , iMk
i i iG F F  , 1, ,i n  , k

fy  is the crisp output 

of the k -th rule, and N  is the number of rules. 

By considering the singleton fuzzifier strategy and the product 
inference engine, the output of the fuzzy system can be 
expressed as follows (Wang, 1994) 

  
 
 
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N k
k fk

f N
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y
y
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z
z

z
 () 

where    
1 k

i

m

k iGi
z 


z  and  1 , ,k Mi

i i iG F F
    ,  with

 j
i

iF
x is the membership function of the fuzzy set j

iF . 

The output (13) can be written in the following compact form 
(Wang, 1994) 

    T
fy z w z  (14) 

where 1 , ,
TN

f fy y      is a vector grouping all consequent 

parameters, and      1 , ,
T

Nw w   w z z z  is a set of fuzzy 

basis functions defined as 

    
 

1

, 1, ,k
k N

jj

w k N





 


z
z

z
  (15) 

The fuzzy system (13) is assumed to be well-defined so that 

 
1

0
N

jj



 z  for all  zz . 

It has been proved in Wang (1994) that fuzzy systems in the 
form of (14) with Gaussian membership functions can 
approximate continuous functions over a compact set. The 
approximation accuracy is related to the number of fuzzy rules 
considered. 

4. ADAPTIVE FUZZY CONTROL DESIGN 

In order to design the adaptive control law, each entry of the 
ideal control law (9) will be approximated by a fuzzy system 
in the form of (14) as the following 

      * * ; 1, ,T
i i i iu i p    z w z z  (16) 

where ,
TT T   z x s ,  iw z  is a fuzzy basis function vector 

which is specified by the designer, *
i  is an unknown ideal 

parameter vector, and  i z  is the fuzzy approximation error 

which is assumed bounded. 
Let us define the following vectors and matrices 

     1 , ,
T

p     z z z ; * * *
1 , ,

TT T
p      , 

     1 , , pdiag    w z w z w z  

Using the above notation, one can write (16) in a compact 
format as 

    * *T   u w z z  () 

Now, let   be the estimate the unknown ideal parameter 
vector * and consider the actual adaptive control law for 
system (1) as the following 

    T u z w z  () 

After the specification of the control law, the next step should 
be the design of the controller parameter adaptation law to 
meet the control objective. However, because the control 
direction (i.e. the sign of the control gain matrix  G x  defined 

by the signs of the diagonal entries of the matrix *D ) is 
unknown, to get a stable adaptation, the parameter adaptation 
law should be combined with an online control direction 
estimator. 

Adding and subtracting   *G x u  to the right-hand side of (8) 

leads to the following error dynamics 

        * *    s v f x G x u G x u G x u  (19) 

Using (9), (19) becomes 

    0 0tanh    
us K s K s G x e  (20) 
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where * ue u u .  

By using Lemma 1, the matrix  G x  can be expressed as 

          * *   S SG x G x D T x G x D G x   (21) 

where       *
pI  SG x G x D T x   with pI  the identity 

matrix of size p . 

Substituting (21) into (20) yields  

     *
0 0tanh     

S u us K s K s G x D e G x e   (22)  

From (17) and (18), one can write *
uD e as  

     * * T   uD e D w z z  (23) 

Using the fact that * *    D D D D D D , where 
* D D D  and *

1 2diag , , , nd d d   D  is the estimate of 

the unknown control direction * * * *
1 2diag , , , nd d d   D , (23) 

can be further written as 

      * * *T T       
uD e Du Dw z Dw z D z  (24) 

By defining the following lumped disturbance term 

   * *T   Dw z D z , it follows that 

  * T     
uD e Du Dw z  (25) 

Let use define 
* * * *

1 2, , ,
T

nd d d   d
, 1 2, , ,

T

nd d d   d
 

and * d d d , so, we have 
* *diag    D d

,  diagD d  

and
diag    

D d
. 

In order to obtain a stable adaptation without the knowledge of 
the control direction *D and inspired by our previous works 
(Labiod and Guerra, 2007, 2016, 2017), the following cost 

function     * *1

2

T
J  u S uD e G x D e  can be used to derive 

the following robust parameter adaptation laws 

     1 0 0 1 1tanh         w z D s K s K s  (26) 

     2 0 0 2 2diag tanh        d u s K s K s d  (27) 

where 1  and 2  are two strictly positive design constants, 1  

and   2  are two small positive design constants. 

Consider the following Lyapunov function candidate 

 
1 2

1 1 1

2 2 2
T T TV  

 
     s s d d  (28) 

The time derivative of V  is 

 
1 2

1 1T T TV  
 

      s s d d  (29) 

Substituting (20), (26) and (27) into (29), and using the equality 

   0 0tanh    us K s K s G x e , one gets 

   

    
0 0

1 2

tanhT T T

T
T T T

V 

    

   

    



  
u

u

s K s s K s s G x e

Du Dw z G x e d d
 (30) 

By using (25) one obtains 

     
   

0 0

*
1 2

tanhT T T T
s

T T T T T

V 

     

    

   



 
u u u

u u u

s K s s K s e G x e s G x e

e D G x e G x e d d
 (31) 

By completion of squares, the following equalities hold 

     2 22* *1 1 1
1 1 2 2 2

T T   
                    (32) 

  2 22* *2 2 2
2 2 2 2 2

T T   
          d d d d d d d d  (33) 

Now, by considering the fact that the   modification 
parameter adaptive laws (26) and (27) ensure the uniform 
boundedness of the adaptive parameters   and d , we can 
assume that the following inequality holds 

     

 

   

2*2
0 0

22 2* *1 1 2

2 2
3 4

1 2

tanh
2

2 2 2

2 2

T T T

T T

T T
s t


 

  
  

 
   

   

    

    

u u

u u

u u

s K s s G x e G x e d

e D G x e d

s K s e G x e d

 (34) 

where 1 , 2 , 3 , 4  are positive constants and  t  a 

positive bounded function. 

By using the above equations (31)-(34), the time derivative of 
V  can be upper bounded as 

 
     

   

1 2

2 2

1 3 2 4

1 1

1 1

2 2

T T
sV  

     

    

    



 

u us K s e G x e

d
 (35) 

If the following inequalities are satisfied: 1 1  , 2 1  , 

3 1   and 4 2  , (35) can be rewritten as 

 V V c    (36) 

where         1 min 1 1 3 2 2 4min 2 1 , , ,           K

      2sup 1 T
s

t
c t    u ue G x e . 

We are now ready to prove the following theorem. 

Theorem 1. For uncertain MIMO nonlinear system (1), under 
Assumptions 1 and 2, the control law (18) with parameter 
adaptation laws (26) and (27) guarantees the boundedness of all 
the signals in the closed-loop system and the asymptotic 
convergence of the tracking error to a small neighborhood of 
the origin. 

Proof. By integrating (36) over  0, t , one can obtain the 

following inequality 

    0 0 tc c
V t V e 

 
     

 
  

From inequality (37), one can conclude that all signals of the 
closed-loop system are uniformly bounded and that the filtered 
tracking error  ts  is uniformly ultimately bounded with 
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respect to the set:   2
:p c

t


    
  
s s . This in turn implies 

that each tracking error  ie t and its first  1ir   derivatives 

converge to residual sets defined as:     1 2
2j j j n c

e t 


  , 

0,..., 1ij r  , 1,...,i p . 

Remark 3. In this paper, in order to improve the performance of 
the adaptive fuzzy controller, the parameter adaptation law is 
obtain by the minimization of a cost function that quantifies the 
error between  *u  and u  (Labiod and Guerra, 2007). 

5.  SIMULATION RESULTS 

In this section, in order to validate the effectiveness of the 
presented adaptive fuzzy controller, we apply it to a two-link 
robotic manipulator moving in a vertical plane. The dynamic 
model of the two-link robotic manipulator is given by (Ordonez 
and Passino, 1999; Slotine and Li, 1991) 

          1 * ,      q M q D u C q q q G q F q   (38) 

where  1 2,
T

q qq  are the joint angles,  1 2,
T

u uu  are the 

joint inputs, and 

11 12

21 22

M M

M M

 
  
 

M  ,    2 1 2

1

,
0

hq h q q

hq

   
  
 

C q q
  




 , 

 2 2 2
11 1 2 1 1 2 1 2 1 2 22 cosc c cM I I m m q            

2
22 2 2 2cM I m    

 2
21 12 2 2 2 2 1 2 2cosc cM M I m m q       

 2 1 2 2sinch m q    

       
 

1 1 2 1 1 2 2 1 2

2 2 1 2

cos cos

cos
c c

c

m m g q m g q q

m g q q

    
   

G q
  


 

   
 

1 1

2 2

6 0.5sgn

6 0.5sgn

q q

q q

  
   

F q
 


 

 

The following parameter values are used in this paper: 
2

1 0.2kgmI  , 2
2 0.2kgmI  , 1 1.0kgm  , 2 1.0kgm  , 

1 1.0 m , 2 1.0 m , 1 0.5mc  , 2 0.5mc  , 
29.8m sg  . Let y q ,  1 1 2 2, , ,

T
q q q qx   , and 

        1 ,   f x M C q q q G q F q   ,   1 *G x M D , 

Then, the robot manipulator dynamics given by (38) can be 
written as 

     y f x G x u , (39) 

Equation (39) is in the input-output form given by (2) and the 
matrix   1 *G x M D  is nonsingular. Note that the matrix 

*D  is a diagonal matrix with +1 or -1 on the diagonal and it is 
introduced to change the control direction. 
The control objective is to force the robot manipulator outputs 

1 1y q  and 2 2y q  to track the following desired trajectories 

 1 sindq t  and  2 cosdq t , respectively.  

Within this simulation, two fuzzy systems in the form of (14) 
are used to generate the control signals 1u  and 2u . The input 

vector of each fuzzy system is defined as

       1 1 2 2, , ,
T

e t e t e t e t   z   , and for each input variable iz

, 1, ,4i   , we define three Gaussian membership functions 
centered at 1.25 , 0 , 1.25  with a variance equal to 0.6 . The 

robot system initial conditions are    0 0.25,0,0.5,0
Tx , the 

initial values of the estimated parameters  0  are set equal 

to zero, and the initial values of the estimated control direction 

is    0 0.5, 0.5
T  d . The used design parameters are 

chosen as follows: 1 2  , 2 2  ,  5,5diagK , 

 0 5,5diagK , 1 2  , 2 2  , 0 0.01  , 1 0.001  ,  and 

2 0.001  . 

Simulation results for the case  * diag 1,1 D  are shown in 

Figs. 1–3. Fig. 1 shows actual and desired joint positions of 
links 1 and 2. Fig. 2 shows joint control torque inputs. Fig. 3 
shows the estimated control directions 1d  and 2d . We can see 

that actual trajectories converge to the desired ones, and that 
the control direction is correctly identified. 

Simulation results for the case  * diag 1, 1  D  are shown in 

Figs. 4–6. Fig. 4 shows actual and desired joint positions of 
links 1 and 2. Fig. 5 shows joint control torque inputs. Fig. 6 
shows the estimated control directions 1d  and 2d . We can see 

that we obtain similar control tracking performance. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Output tracking performance of links 1 and 2: actual 
(solid lines); desired (dotted lines).  
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Control input signals; u1 solid line, u2 dotted line. 
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Fig. 3. Control direction; d1 solid line, d2 dotted lines. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  Output tracking performance of links 1 and 2: actual 
(solid lines); desired (dotted lines). 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Control input signals; u1 solid line, u2 dotted line. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Control direction; d1 solid line, d2 dotted lines 
 

6. CONCLUSIONS 

For a class of uncertain MIMO nonlinear systems with 
indefinite control gain matrix and unknown control direction, 
this paper has proposed a direct adaptive controller by using 
fuzzy systems. The fuzzy systems are used to approximate an 
unknown ideal nonlinear control law that ensures the control 
objective. Under the assumption that the unknown control gain 
matrix is indefinite, by using a matrix decomposition 
technique, the unknown control direction and the adjustable 
parameters of the fuzzy controller are adjusted online by a 
suitable parameter adaptive law that minimizes the error 
between the ideal control law and the fuzzy controller. Using 
the Lyapunov direct approach, all the closed-loop signals have 
been shown to be uniformly bounded. The effectiveness of the 
proposed adaptive control scheme has been demonstrated by 
simulation studies. 
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