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Abstract: This paper studies the impact of different types of energy storage integrated with
a heat pump to improve energy efficiency in multiple radiant-floor buildings. In particular, the
buildings and the heating generation system are decoupled through a 3-element mixing valve,
which enforces a fixed flow rate but a variable temperature in the inlet water entering the
building pipelines. The paper presents an optimal control formulation based on an Economic
Nonlinear MPC scheme, in order to find the best compromise among different goals: make
the heat pump work when it is more efficient, store electrical energy when it is cheap, store
thermal energy in the tank when the heat pump is more effective, modulate the inlet water
temperature to satisfy the user’s comfort constraints, exploit the buildings thermal inertia. The
nonlinearity of the system stems from the variable flow rate into the hot water tank due to the
variable action of the mixing valve. The model is also time-varying due to the fact that the heat
pump efficiency depends on external conditions. The simulation results show that the proposed
optimal control algorithm is able to economically distribute energy among all storages in order
to insure cost benefits (almost 20% electricity cost saving) and comfort satisfaction with the
feasible computational effort.

Keywords: Building energy automation, Heat pump, thermal and electrical storages, Economic
MPC.

1. INTRODUCTION

Heat pump systems are usually described, for sizing and
control purposes, through their coefficient of performance
(COP), which is a function of several variables, includ-
ing external inputs, such as outside air temperature and
humidity, and load-dependent ones such as inlet water
temperature coming from the load Moran et al. (2010). As
pointed out in Verhelst et al. (2012), the lower the inlet wa-
ter temperature is, the higher the heat pump performance
is. As a result, since radiant-floor use low-temperature
emission heating systems, they are well suited for the
combination with heat pump systems Olesen et al. (2002).
In Verhelst et al. (2012), the effect of different COP models
on the optimal control performance for the application of
a radiant-floor building was studied. It was established
that there is up to 5% energy cost saving compared to
classic curve heating techniques. Heat pump systems can
also be beneficial for demand-response applications, where
the main focus is to shift demands from on-peak to off-peak
periods, as discussed in Arteconi et al. (2017). In this case,
heat pumps are usually connected to a buffer hot water
tank (HWT), both to increase the COP and to decouple

the (thermal) load and the (electrical) heat generation (see
Arteconi et al. (2013), Arteconi et al. (2017)). The space
heating control coupled with heat pump is well studied in
the literature, e.g. in Fischer and Madani (2017), Raste-
garpour et al. (2020). There are also numerous control
strategies to improve the energy consumption and com-
fort conditions in buildings (Awadelrahman et al. (2017),
del Mar Castilla et al. (2013), Mantovani and Ferrarini
(2014)). However, the heat pump performance control
is still a challenging issue due to the variability of the
performance of the heat pump itself due to operating and
environmental conditions. In particular, when dealing with
renewable energy sources, storage is increasingly necessary.
In that context, the combination of heat pumps with
different types of energy storages - electrical and thermal
- is an attractive solution to better shape the electrical
load in a demand-response scenario and to shift the heat
pump work when it is more efficient and when the price of
electrical energy is lower. The scenario addressed in this
paper extends the classic building heated by a heat pump,
and consists of a set of different buildings with different
desired comfort levels and different levels of flexibility.
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Fig. 1. Sketch of the system under study

The buildings are served by one hot water tank (HWT)
connected to a modulating air-to-water heat pump. An
electrical storage (battery) is also considered as an ad-
ditional storage element, beside HWT. The two different
types of storage enlarge the possibilities of finding good
compromises between serving the load, storing electrical
energy when it is cheap and running the heat pump when
it is more efficient. Additionally, the load side and heating
system are decoupled through a 3-element mixing valve
which enforces a fixed flow rate and variable temperature
for the inlet water into the building pipelines (see Fig. 1).
Consequently, the HWT is subject to a nonlinear dynamic
behavior due to variable water flow rate in the HWT.
The heat pump is modeled with its coefficient of perfor-

mance (COP), which is a parameter that depends strongly
on the weather and operating conditions. The heat pump
power is mainly provided by the electricity grid, but the
battery can shift the electrical load from on-peak periods
to off-peak periods. The battery stores electrical energy
before the heat pump transforms it into thermal energy,
while the HWT stores thermal energy produced by the
heat pump. Thus, the usage of these storage units are
driven by different goals: maximizing economic conve-
nience due to a variable electricity price (battery) and
maximizing the heat pump performance (HWT). More-
over, the electrical energy stored in the battery can also be
used for ancillary services to the grid. This paper combines
different and possibly conflicting objectives in an optimal
control problem formulation. In particular, in this paper a
Nonlinear Model Predictive Control (NMPC) is adopted,
which is an effective way to deal with the many physical
constraints and nonlinear dynamics typical of the consid-
ered application case, as shown in Rastegarpour et al.
(2020) and Maciejowski (2002). The simulation results
show the effectiveness of the developed NMPC for the
application of multiple residential buildings. The analysis
and comparison of the NMPC performance is made for
two scenarios: first, for a constant electricity price profile,
where the NMPC decision is mainly affected by the COP
variation. Second, for a day-night electricity tariff, where
the NMPC needs to make a compromise between COP
variation and electricity tariff. The modeling framework
can seamlessly host real-time pricing scenarios.

2. MODEL DESCRIPTION

2.1 Building specification

The case study of the present paper consists of three
residential radiant-floor buildings, each served by a three
element mixing valve that guarantees a constant water
flow rate inside of the building pipelines (see Fig. 1).
Each building is modeled using the techniques developed
in Rastegarpour et al. (2020) and Ferrarini et al. (2017),
where the building dynamics is defined by a set of ordinary
differential equations based on the energy balance equation
for the building air, wall, pavement and pipes temperature.
It reads as follows for i = 1, 2, 3:

Cw
dTwi

dt
= kw,oa (Toa − Twi

) + kw,z (Tzi − Twi
)

Cz
dTzi
dt

= kw,z (Twi
− Tzi) + kp,z (Tpi − Tzi)

Cp
dTpi
dt

= kp,z (Tzi − Tpi) + kb (Tri − Tpi)

Cr
dTri
dt

= kb (Tpi − Tri) + w Cwp (Tei − Tri)

(1)

The state dynamics of the system corresponds to a single-
zone model with four states, namely wall temperature
Twi

[◦C], zone temperature Tzi [
◦C], pavement temperature

Tpi [
◦C] and water pipeline temperature Tri [

◦C], while Cw,

Cz, Cp and Cr [ JK ] are the respective heat capacities. The

parameters kw,oa, kw,z, kp,z, kb[
W
K ] are the overall heat

transfer coefficients between respectively Toa and Tw, Tz
and Twi , Tpi and Tzi , Tri and Tpi . Tei represents the
inlet water temperature in the pipelines. The constant
parameter w[kgs ] denotes the water mass flow rate in

the building pipelines and Cwp[
J

kg K ] is the specific heat

capacity of the water. Table 1 shows the value of the
parameters used in the building model, which is the same
in all three buildings. The inlet water temperature of

Table 1. Building parameters

Cw 42×105[ J
K

] kw,oa 86[W
K

] w 0.124[ kg
s

]

Cz 6 × 106[ J
K

] kw,z 86[W
K

] Cwp 4180[ J
kg K

]

Cp 8 × 105[ J
K

] kp,z 594[W
K

]

Cr 1.7 × 106[ J
K

] kb 506[W
K

]

the buildings pipelines (Tei , i = 1, 2, 3), can be evaluated
through the energy balance equation on each valve as
follows:

w = ṁsi (k) + ṁri (k)
w Tei (k) = ṁsi (k) T1 (k) + ṁri (k) Tri(k)

(2)

where, ṁsi [
kg
s ] and ṁri [

kg
s ] show respectively the water

mass flow rate of the supply and return inputs of the ith

valve, see Fig. 1. T1 (k) is also the water temperature of
the top layer of the HWT, which is the same in the supply
inputs of all valves. Subsequently, at each time instant k,
the valve position xvi (k) on the supply direction can be
defined as follows:

xvi (k) =
ṁsi (k)

w
, i = 1, 2, 3 (3)
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2.2 Heat pump hot water tank

A typical modulating air-to-water heat pump for the resi-
dential buildings is considered in this study Daikin Europe
(2012). In order to form the energy cost predictions of
the heat pump, a model is required to report the ratio
of the delivered thermal power (Qhp) with respect to the
electrical power consumed by the heat pump compressor
(Php). Hence, in this paper, the heat pump is modeled by
its COP function, which is assumed to be known over the
prediction horizon and is computed at each time instant k
by the following ratio:

COP (k) =
Qhp(k)

Php(k)
(4)

The HWT connected to the heat pump condenser has a
linear relation with the heat pump due to the thermal
power Qhp(k) transferred to the middle layer of the tank.
The load side of the HWT is nonlinear when a variable
circulated water flow rate is applied to the tank. The
nonlinearity stems from the variable action of the mixing
valves, which provide a variable water flow rate ṁt(k) into
the HWT as follows:

ṁt (k) =

3∑
i=1

ṁsi (5)

where i denotes the building number. The control-oriented
model of the HWT is based on a multi-node model defining
the temperature dynamics of the fluid within the storage
tank. In this approach, similar to the one used in Nash
et al. (2017), the tank is discretized vertically into three
nodes, where the first node is the top one. The final model
is a three-state model, as described in Rastegarpour et al.
(2018), where T1(k), T2(k), and T3(k) are the first, second
and third layer, respectively.

2.3 Battery model

The battery model can be expressed as an integrator with
a fixed charging and discharging efficiency ξB. Considering
the power exchange of the battery PBatt (k) as an input of
the model, the energy model of the battery can be defined
as follows:

EBatt (k + 1) = EBatt (k)− ξB PBatt (k) (6)

where the battery efficiency ξB is equal to 0.9. According
to the battery model (6), a negative PBatt (k) corresponds
to the charging mode of the battery.

3. CONTROL OBJECTIVES

According to the dynamic model of the building, heat
pump, HWT and battery the vector of decision variables
defined as follows:

u (k) =


Php (j|k)
PBatt (j|k)
xv1 (j|k)
xv2 (j|k)
xv3 (j|k)

 , j = k, . . . , Nch + k − 1 (7)

where Nch denotes the control horizon which is considered
equal to prediction horizon. Moreover, there are also some

external inputs such as outside air temperature Toa(k),
COP(k) profile and electricity tariff, which are here con-
sidered as known time-varying profiles. The controller aims
at making a compromise between the maximization of
the COP, minimization of the overall electricity cost pur-
chased from the main electricity grid, while minimizing the
temperature set point tracking error, considering also the
operational and actuators limitations. The cost function
of the optimal control problem is then:

J(u, x) =

Nch−1∑
l=0

3∑
i=1

(
ΥP PGrid(k + l| k)

Υr,i (Tz,i(k + l| k)− Tsp,i)2
)

+

3∑
i=1

(
Υε εi

2
)

+V term,

(8)

where PGrid (j|k) = Php (j|k)−PBatt (j|k) is the power ex-
change with the main utility grid penalized by normalized
weighting coefficient ΥP based on electricity price profile,
and the terminal cost V term approximates the infinite
horizon cost:

V term = xT (k +Nch|k) Υv x (k +Nch|k) (9)

where Υv is a normalized weighting coefficient. Variables
Tsp1, Tsp2 and Tsp3 are the set points of the buildings
air temperatures for the first, second and third building,
respectively, and Υr1, Υr2 and Υr3 are the respective nor-
malized weighting coefficients. Moreover, the slack variable
ε1, ε2 and ε3 with the normalized weighting coefficients
Υε1, Υε2 and Υε3 are included in the problem formulation
to guarantee feasibility at any time instant. We use the
relaxed constraints:

Tsp,i − Tflx,i − εi ≤ Tz,i(k) ≤ Tsp,i + Tflx,i + εi
i = 1, 2, 3

(10)

where Tflx,i represents the building comfort flexibility
defined by the occupants. A set of operational constraints
ensures a safe operation of the electrical and thermal
equipment. The HWT temperature in all layers is bounded
as follows:

15 ◦C ≤ Ti(k) ≤ 60 ◦C
i = 1, 2, 3

(11)

where Ti(k) are the HWT temperature from top to bottom
layer, respectively. The HWT has a lower bound of 15 ◦C
to prevent any frost problem on the heat pump evaporator.
Heat pump power input Php, the State of Charge (SOC)
and battery power exchange PBatt(k) are bounded by:

0kW ≤ Php(k) ≤ 2kW
−1kW ≤ PBatt (k + 1)− PBatt (k) ≤ 1kW

4kWh ≤ EBatt (k) ≤ 5kWh
(12)

Additionally, as for the price profile, a day/night schedule
is considered such that its tariff changes only once per day
as follows:

P daye = 0.35
Pnighte = 0.10

Pe =
[
P daye Pnighte

] (13)
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4. NONLINEAR MODEL PREDICTIVE CONTROL

As the dynamic model of the system described in Section
2 is nonlinear, the resulting optimal control problem holds
nonlinear equality constraints. The sampling time required
for the building heating system is sufficiently long to
allow the computation of the online exact solution of the
NMPC problem without any real-time issue. Considering
the control objectives described in Section 3, together with
the plant model described in Section 2, the main objective
of the NMPC algorithm is to minimize the electricity cost
purchased from the electricity grid, at each sampling time
k for a given prediction (control) horizon Np (Nch). Hence,
the vector of control policy u(k) is defined by solving the
following optimal control problem,

min J(u, x)
s.t. equations : (9) to (13)

system dynamics
(14)

The sampling time Ts is chosen as 15 minutes. In this
paper, the multiple shooting method is used Kirches et al.
(2012). The system dynamics are discretized via an explicit
Runge-Kutta4 scheme with a fixed step size TRK4 = Ts

4 ,
resulting in four integration steps per shooting interval.
The resulting nonlinear program is solved by a primal-
dual interior point method, see Potra and Wright (2000),
using the software IPOPT. Moreover, The differentiation
of the discrete dynamics, required for the nonlinear solver,
is performed via Algorithmic Differentiation using the
CasADi software package. see Andersson et al. (2019).

5. SIMULATION RESULTS AND DISCUSSION

5.1 Simulation settings

In this section, the proposed algorithm is tested for the
application of three 150m2 radiant-floor buildings with the
same specifications as described in Table 1, but different
desired comfort level. In this scenario, the building number
3 does not accept any flexibility, while the building one and
two are more flexible:

Tflx1 = 0.5 ◦C, Tsp1 = 18 ◦C
Tflx2 = 1 ◦C, Tsp2 = 20 ◦C
Tflx3 = 0 ◦C, Tsp3 = 18 ◦C

(15)

The hot water required for the building heating is provided
by a 200l HWT, which is connected to a heat pump with
the maximum capacity of 2kW electrical power, which
can deliver up to 12kW thermal power. In this study, as
the main focus is on the energy resources management, a
predefined COP profile is considered, see Fig. 2(a). The
assumptions are also made of the perfect prediction of
the external inputs, particularly the weather temperature.
The ambient air temperature profile is shown in Fig. 2(c),
which is a periodic signal representing a typical winter
day in the Italy, with a daily mean temperature of 0 ◦C.
As already shown in (8), the discrepancies between the
buildings air temperatures and their set-points are penal-
ized by weighting coefficients Υr,i, i = 1, 2, 3 to deliver a
temperature as close as possible the one requested by the
occupants. The slack variables are also penalized with a
weighting factor, which is much larger than other coeffi-
cients to satisfy the desired comfort bound whenever the

Fig. 2. External inputs initialization, (a): COP profile, (b):
Electricity tariff, (c): Outside air temperature

problem is feasible. Table 2 shows all normalized weighting
coefficient used in the NMPC formulation. The results are

Table 2. MPC parameters: normalized weight-
ing coefficients

Υr1 1 Υr3 1 Υε2 10

Υr2 1 Υε1 10 Υε3 10

Υp diag ([Pe (k : k + Np − 1)]) /Max(PGrid)

discussed in two parts. First, the NMPC performance is
studied for a constant electricity price scenario. Second,
the analysis is performed for the day-night electricity tariff
as shown in Fig. 2(b). For both scenarios, the results
reveal that the NMPC can efficiently exploit the inertia
of the HWT and of the buildings, and finds a compromise
between the electricity tariff and the COP profile of the
heat pump for charging or discharging of both the HWT
and battery. As a result, it manages to economically shift
the load from on-peak periods to the off-peak periods,
while satisfying all desired comfort levels (15).

5.2 Constant electricity price scenario

In the constant electricity cost scenario (see Fig. 3) the
desired comfort level is always satisfied by the NMPC, and
the available flexibility of building number 1 and building
number 2 are used to shift the activation of the heat
pump to more efficient time periods. More precisely, when
the COP is high, i.e. from midnight to midday (labeled
AM hereafter), the HWT is charged by the heat pump
to save thermal energy in the HWT, which gets released
during PM periods, when the heat pump COP is low.
Conversely, during PM hours, the heat pump is mostly
used to satisfy the load constraints, and is sometimes off.
The thermal energy stored in the HWT is then exploited
to serve the buildings. In these periods, the mixing valves
are at their minimum value, so as to exploit as much as
possible the buildings inertia. Clearly, using the 3-element
mixing valve at the pipeline inlet of each building increases
the degree of freedom of the NMPC scheme. Therefore, the
NMPC scheme is able to provide different comfort levels in
different buildings, as shown in Fig. 3(a,b,c). For example,
as there is no flexibility in building number 3, valve number
3 is used to set the temperature of building number 3 at
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the requested set point. There is an interaction between
the valves, which explains the variation of valve number
3, see Fig. 3(f). Indeed, valve number 1 and valve number
2 act on the HWT temperature to exploit the flexibility
of building number 1 and 2 (Fig. 3(a, b)). This causes
rapid changes in the HWT temperature, which in turn
is used by valve 3 to achieve a fixed air temperature in
building number 3. Furthermore, the NMPC scheme tends
to charge the battery during PM period, when the heat
pump is almost off. Actually, with a fixed price profile, the
NMPC shapes the battery power based on COP estimation
only. In this time period, the heat pump is off due to the
low COP value, and the electrical energy is stored in the
battery for later use, in order to minimize the energy cost.

5.3 Day/Night electricity price scenario

Fig. 4 illustrates the NMPC performance for the day-night
electricity price scenario. As before, the desired comfort
levels are fulfilled by the controller. However, unlike the
fixed price scenario, here the NMPC scheme tends to
increase the temperature of the building 1 and 2 to the
maximum limit during off-peak periods to better exploit
the inertia of the buildings during on-peak periods, see
Fig. 4(a, b). In the fixed-price scenario, the buildings
temperature was kept at a lower level to enable lower set
points for the HWT. In this scenario, the NMPC scheme
operates in four distinguishable phases. In the first quarter
of each day, i.e. at off-peak time and when the COP is
high, the NMPC scheme charges all available forms of
storage: the battery, HWT and the building walls. The
battery and HWT are charged to their higher limit and the
valves are opened to bring the building at their maximum
temperature. These effects can be observed in the first
quarter of each day, see Fig. 4. In the last quarter of
each day, in off-peak periods but when the COP is lower,
the NMPC scheme tends to charge mainly the battery as
electrical energy is cheap. The heat pump is used less as
the COP is low. The battery is fully charged during off-
peak periods regardless of the COP value, to be ready for
discharging during on-peak periods, see Fig. 4(i). In the
second quarter of each day, both the COP and electricity
price are high, which is the most challenging period. The
power purchased from the grid is then zero in this period as
the priority is given to the electricity cost minimization.
So, all the required electrical power is provided by the
battery. As the COP is high, it is better for the heat pump
to start heating the HWT and consequently heating the
buildings. Therefore, the heat pump runs at almost full
load, and the battery is discharged to satisfy the electric
power demand and without purchasing electricity from the
grid. In the meanwhile, all valves are mostly open to allow
the heat to enter the building. Finally, in the third quarter
of each day, the COP is low and the period is on-peak.
The battery is therefore discharging. Moreover, the low
COP value makes it uninteresting to run the heat pump.
In this period, the HWT and building inertia are exploited
the most, with the heat pump being switched off almost
completely.

6. CONCLUSION

The present paper focuses on energy efficiency in smart
buildings, enabling them as future crucial nodes of a smart
microgrid, being able to change their own load profile.
In this vision, two main factors have been considered
here: the adoption of both thermal and electrical storage
units and of suitable optimal control techniques to accom-
modate all the constraints, all the competing objectives,
and the different dynamics of the components (buildings,
pump, storages). The control algorithm is realized with
a nonlinear time-varying MPC. The results discussed here
are extremely encouraging. First, computational issues are
solved, both from numerical point of view and computa-
tion burden: the 15-minute simulation step is executed in
less than 2 seconds on a standard office personal com-
puter equipped with Matlab toolbox. Then, the optimal
control formulation proposed here proved to be consistent
in many different scenarios, even if only two of them are
described with the necessary detail here. According to the
results obtained, it is possible to cut electricity cost by
approximately 20% in the variable price scenario. Future
directions include the development and integration of more
complex models for the heat pump. Also the sensitivity
to system parameters encourages the adoption of some
adaptation and estimation technique, for the heat pump
itself but also for the tank and for the building.
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